Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

结直肠癌诊断与治疗分子标志物研究进展

卷 24, 期 6, 2024

发表于: 29 November, 2023

页: [595 - 611] 页: 17

弟呕挨: 10.2174/0115680096270555231113074003

价格: $65

摘要

结直肠癌是世界上最常见的癌症类型之一。由于结直肠癌的发展需要时间,如果在早期阶段发现,其发病率和死亡率可以得到有效治疗。因此,非侵入性或侵入性生物标志物在结直肠癌的早期诊断中起着至关重要的作用。已经进行了许多实验研究来评估粪便、血清和组织中的遗传、表观遗传或蛋白质标记物。通过识别指示癌症生长的基因、rna和/或蛋白质,有可能找到有助于结直肠癌诊断的生物标志物。结直肠癌分子亚型、DNA甲基化、microrna、长链非编码rna、外泌体及其在结直肠癌中的作用的最新进展导致了新的生物标志物的发现。在小规模调查中,大多数生物标记物看起来很有希望。然而,在常规临床应用之前,需要大规模的临床试验来验证其有效性。因此,本综述着重于小规模调查和大数据分析的结果,可能为结直肠癌的诊断、治疗和预后提供生物标志物的概述。

关键词: 结直肠癌,诊断,治疗,预后,循环肿瘤,长链非编码rna, microrna,蛋白质,外泌体。

图形摘要
[1]
Morgan, E.; Arnold, M.; Gini, A.; Lorenzoni, V.; Cabasag, C.J.; Laversanne, M.; Vignat, J.; Ferlay, J.; Murphy, N.; Bray, F. Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from GLOBOCAN. Gut, 2023, 72(2), 338-344.
[http://dx.doi.org/10.1136/gutjnl-2022-327736] [PMID: 36604116]
[2]
Xi, Y.; Xu, P. Global colorectal cancer burden in 2020 and projections to 2040. Transl. Oncol., 2021, 14(10), 101174.
[http://dx.doi.org/10.1016/j.tranon.2021.101174] [PMID: 34243011]
[3]
Murphy, N.; Moreno, V.; Hughes, D.J.; Vodicka, L.; Vodicka, P.; Aglago, E.K.; Gunter, M.J.; Jenab, M. Lifestyle and dietary environmental factors in colorectal cancer susceptibility. Mol. Aspects Med., 2019, 69, 2-9.
[http://dx.doi.org/10.1016/j.mam.2019.06.005] [PMID: 31233770]
[4]
André, T.; de Gramont, A.; Vernerey, D.; Chibaudel, B.; Bonnetain, F.; Tijeras-Raballand, A.; Scriva, A.; Hickish, T.; Tabernero, J.; Van Laethem, J.L.; Banzi, M.; Maartense, E.; Shmueli, E.; Carlsson, G.U.; Scheithauer, W.; Papamichael, D.; Möehler, M.; Landolfi, S.; Demetter, P.; Colote, S.; Tournigand, C.; Louvet, C.; Duval, A.; Fléjou, J-F.; de Gramont, A. Adjuvant fluorouracil, leucovorin, and oxaliplatin in stage II to III colon cancer: Updated 10-year survival and outcomes according to BRAF mutation and mismatch repair status of the MOSAIC Study. J. Clin. Oncol., 2015, 33(35), 4176-4187.
[http://dx.doi.org/10.1200/JCO.2015.63.4238]
[5]
Kim, C.W.; Baek, J.H.; Choi, G.S.; Yu, C.S.; Kang, S.B.; Park, W.C.; Lee, B.H.; Kim, H.R.; Oh, J.H.; Kim, J.H.; Jeong, S.Y.; Ahn, J.B.; Baik, S.H. The role of primary tumor resection in colorectal cancer patients with asymptomatic, synchronous unresectable metastasis: Study protocol for a randomized controlled trial. Trials, 2016, 17(1), 34.
[http://dx.doi.org/10.1186/s13063-016-1164-0] [PMID: 26782254]
[6]
Pinson, H.; Cosyns, S.; Ceelen, W.P. The impact of surgical resection of the primary tumor on the development of synchronous colorectal liver metastasis: A systematic review. Acta Chir. Belg., 2018, 118(4), 203-211.
[http://dx.doi.org/10.1080/00015458.2018.1446602] [PMID: 29783886]
[7]
Califf, R.M. Biomarker definitions and their applications. Exp. Biol. Med. (Maywood), 2018, 243(3), 213-221.
[http://dx.doi.org/10.1177/1535370217750088] [PMID: 29405771]
[8]
Chand, M.; Keller, D.S.; Mirnezami, R.; Bullock, M.; Bhangu, A.; Moran, B.; Tekkis, P.P.; Brown, G.; Mirnezami, A.; Berho, M. Novel biomarkers for patient stratification in colorectal cancer: A review of definitions, emerging concepts, and data. World J. Gastrointest. Oncol., 2018, 10(7), 145-158.
[http://dx.doi.org/10.4251/wjgo.v10.i7.145] [PMID: 30079141]
[9]
Pellino, G.; Gallo, G.; Pallante, P.; Capasso, R.; De Stefano, A.; Maretto, I.; Malapelle, U.; Qiu, S.; Nikolaou, S.; Barina, A. Noninvasive biomarkers of colorectal cancer: Role in diagnosis and personalised treatment perspectives. Gastroenterol Res Pract., 2018, 2018, 2397863.
[http://dx.doi.org/10.1155/2018/2397863]
[10]
Wang, M.J.; Ping, J.; Li, Y.; Adell, G.; Arbman, G.; Nodin, B.; Meng, W.J.; Zhang, H.; Yu, Y.Y.; Wang, C.; Yang, L.; Zhou, Z.G.; Sun, X.F. The prognostic factors and multiple biomarkers in young patients with colorectal cancer. Sci. Rep., 2015, 5(1), 10645.
[http://dx.doi.org/10.1038/srep10645] [PMID: 26013439]
[11]
Zhang, X.; Sun, X.F.; Shen, B.; Zhang, H. Potential applications of DNA, RNA and protein biomarkers in diagnosis, therapy and prognosis for colorectal cancer: A study from databases to AI-assisted verification. Cancers (Basel), 2019, 11(2), 172.
[http://dx.doi.org/10.3390/cancers11020172] [PMID: 30717315]
[12]
Baylin, S.B.; Herman, J.G. DNA hypermethylation in tumorigenesis: Epigenetics joins genetics. Trends Genet., 2000, 16(4), 168-174.
[http://dx.doi.org/10.1016/S0168-9525(99)01971-X] [PMID: 10729832]
[13]
Imperiale, T.F.; Ransohoff, D.F.; Itzkowitz, S.H.; Turnbull, B.A.; Ross, M.E. Fecal DNA versus fecal occult blood for colorectal-cancer screening in an average-risk population. N. Engl. J. Med., 2004, 351(26), 2704-2714.
[http://dx.doi.org/10.1056/NEJMoa033403] [PMID: 15616205]
[14]
Issa, J.P. The epigenetics of colorectal cancer. Ann. N. Y. Acad. Sci., 2000, 910(1), 140-155.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb06706.x] [PMID: 10911911]
[15]
Silva, T.D.; Vidigal, V.M.; Felipe, A.V.; De Lima, J.M.; Neto, R.A.; Saad, S.S.; Forones, N.M. DNA methylation as an epigenetic biomarker in colorectal cancer. Oncol. Lett., 2013, 6(6), 1687-1692.
[http://dx.doi.org/10.3892/ol.2013.1606] [PMID: 24260063]
[16]
Behrouz Sharif, S.; Hashemzadeh, S.; Mousavi Ardehaie, R.; Eftekharsadat, A.; Ghojazadeh, M.; Mehrtash, A.H.; Estiar, M.A.; Teimoori-Toolabi, L.; Sakhinia, E. Detection of aberrant methylated SEPT9 and NTRK3 genes in sporadic colorectal cancer patients as a potential diagnostic biomarker. Oncol. Lett., 2016, 12(6), 5335-5343.
[http://dx.doi.org/10.3892/ol.2016.5327] [PMID: 28105243]
[17]
Li, J.; Chen, C.; Bi, X.; Zhou, C.; Huang, T.; Ni, C.; Yang, P.; Chen, S.; Ye, M.; Duan, S. DNA methylation of CMTM3, SSTR2, and MDFI genes in colorectal cancer. Gene, 2017, 630, 1-7.
[http://dx.doi.org/10.1016/j.gene.2017.07.082] [PMID: 28782576]
[18]
Bagheri, H.; Mosallaei, M.; Bagherpour, B.; Khosravi, S.; Salehi, A.R.; Salehi, R. TFPI2 and NDRG4 gene promoter methylation analysis in peripheral blood mononuclear cells are novel epigenetic noninvasive biomarkers for colorectal cancer diagnosis. J. Gene Med., 2020, 22(8), e3189.
[http://dx.doi.org/10.1002/jgm.3189] [PMID: 32196834]
[19]
Armstrong, A.J.; Marengo, M.S.; Oltean, S.; Kemeny, G.; Bitting, R.L.; Turnbull, J.D.; Herold, C.I.; Marcom, P.K.; George, D.J.; Garcia-Blanco, M.A. Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol. Cancer Res., 2011, 9(8), 997-1007.
[http://dx.doi.org/10.1158/1541-7786.MCR-10-0490] [PMID: 21665936]
[20]
Hao, T.B.; Shi, W.; Shen, X.J.; Qi, J.; Wu, X.H.; Wu, Y.; Tang, Y.Y.; Ju, S.Q. Circulating cell-free DNA in serum as a biomarker for diagnosis and prognostic prediction of colorectal cancer. Br. J. Cancer, 2014, 111(8), 1482-1489.
[http://dx.doi.org/10.1038/bjc.2014.470] [PMID: 25157833]
[21]
Phallen, J.; Sausen, M.; Adleff, V.; Leal, A.; Hruban, C.; White, J.; Anagnostou, V.; Fiksel, J.; Cristiano, S.; Papp, E.; Speir, S.; Reinert, T.; Orntoft, M.B.W.; Woodward, B.D.; Murphy, D.; Parpart-Li, S.; Riley, D.; Nesselbush, M.; Sengamalay, N.; Georgiadis, A.; Li, Q.K.; Madsen, M.R.; Mortensen, F.V.; Huiskens, J.; Punt, C.; van Grieken, N.; Fijneman, R.; Meijer, G.; Husain, H.; Scharpf, R.B.; Diaz, L.A., Jr; Jones, S.; Angiuoli, S.; Ørntoft, T.; Nielsen, H.J.; Andersen, C.L.; Velculescu, V.E. Direct detection of early-stage cancers using circulating tumor DNA. Sci. Transl. Med., 2017, 9(403), eaan2415.
[http://dx.doi.org/10.1126/scitranslmed.aan2415] [PMID: 28814544]
[22]
Poulet, G.; Garlan, F.; Garrigou, S.; Zonta, E.; Benhaim, L.; Carrillon, M.J.; Didelot, A.; Le Corre, D.; Mulot, C.; Nizard, P.; Ginot, F.; Boutonnet-Rodat, A.; Blons, H.; Bachet, J.B.; Taïeb, J.; Zaanan, A.; Geromel, V.; Pellegrina, L.; Laurent-Puig, P.; Wang-Renault, S.F.; Taly, V. Characterization of plasma cell-free DNA integrity using droplet-based digital PCR: Toward the development of circulating tumor DNA-dedicated assays. Front. Oncol., 2021, 11, 639675.
[http://dx.doi.org/10.3389/fonc.2021.639675] [PMID: 34094923]
[23]
Andriamanampisoa, C.L.; Bancaud, A.; Boutonnet-Rodat, A.; Didelot, A.; Fabre, J.; Fina, F.; Garlan, F.; Garrigou, S.; Gaudy, C.; Ginot, F.; Henaff, D.; Laurent-Puig, P.; Morin, A.; Picot, V.; Saias, L.; Taly, V.; Tomasini, P.; Zaanan, A. BIABooster: Online DNA concentration and size profiling with a limit of detection of 10 fg/μL and application to high-sensitivity characterization of circulating cell-free DNA. Anal. Chem., 2018, 90(6), 3766-3774.
[http://dx.doi.org/10.1021/acs.analchem.7b04034] [PMID: 29498256]
[24]
Saucedo-Sariñana, A.M.; Lugo-Escalante, C.R.; Barros-Núñez, P.; Marín-Contreras, M.E.; Pineda-Razo, T.D.; Mariscal-Ramírez, I.; Gallegos-Arreola, M.P.; Rosales-Reynoso, M.A. Circulating cell-free-DNA concentration is a good biomarker for diagnosis of colorectal cancer in Mexican patients. Cell. Mol. Biol., 2022, 68(6), 1-8.
[http://dx.doi.org/10.14715/cmb/2022.68.6.1] [PMID: 36227685]
[25]
Leung, F.; Kulasingam, V.; Diamandis, E.P.; Hoon, D.S.B.; Kinzler, K.; Pantel, K.; Alix-Panabières, C. Circulating tumor DNA as a cancer biomarker: Fact or fiction? Clin. Chem., 2016, 62(8), 1054-1060.
[http://dx.doi.org/10.1373/clinchem.2016.260331] [PMID: 27259816]
[26]
Malla, M.; Loree, J.M.; Kasi, P.M.; Parikh, A.R. Using circulating tumor DNA in colorectal cancer: Current and evolving practices. J. Clin. Oncol., 2022, 40(24), 2846-2857.
[http://dx.doi.org/10.1200/JCO.21.02615] [PMID: 35839443]
[27]
Campos-Carrillo, A.; Weitzel, J.N.; Sahoo, P.; Rockne, R.; Mokhnatkin, J.V.; Murtaza, M.; Gray, S.W.; Goetz, L.; Goel, A.; Schork, N.; Slavin, T.P. Circulating tumor DNA as an early cancer detection tool. Pharmacol. Ther., 2020, 207, 107458.
[http://dx.doi.org/10.1016/j.pharmthera.2019.107458] [PMID: 31863816]
[28]
Nakamura, Y.; Okamoto, W.; Kato, T.; Esaki, T.; Kato, K.; Komatsu, Y.; Yuki, S.; Masuishi, T.; Nishina, T.; Ebi, H.; Sawada, K.; Taniguchi, H.; Fuse, N.; Nomura, S.; Fukui, M.; Matsuda, S.; Sakamoto, Y.; Uchigata, H.; Kitajima, K.; Kuramoto, N.; Asakawa, T.; Olsen, S.; Odegaard, J.I.; Sato, A.; Fujii, S.; Ohtsu, A.; Yoshino, T. Circulating tumor DNA-guided treatment with pertuzumab plus trastuzumab for HER2-amplified metastatic colorectal cancer: A phase 2 trial. Nat. Med., 2021, 27(11), 1899-1903.
[http://dx.doi.org/10.1038/s41591-021-01553-w] [PMID: 34764486]
[29]
Grixti, J.M.; Ayers, D. Long noncoding RNAs and their link to cancer. Noncoding RNA Res., 2020, 5(2), 77-82.
[http://dx.doi.org/10.1016/j.ncrna.2020.04.003] [PMID: 32490292]
[30]
Lei, M.; Zheng, G.; Ning, Q.; Zheng, J.; Dong, D. Translation and functional roles of circular RNAs in human cancer. Mol. Cancer, 2020, 19(1), 30.
[http://dx.doi.org/10.1186/s12943-020-1135-7] [PMID: 32059672]
[31]
Zhang, P.; Wu, W.; Chen, Q.; Chen, M. Non-coding RNAs and their integrated networks. J. Integr. Bioinform., 2019, 16(3), 20190027.
[http://dx.doi.org/10.1515/jib-2019-0027] [PMID: 31301674]
[32]
Jothimani, G.; Pathak, S.; Dutta, S.; Duttaroy, A.K.; Banerjee, A. A comprehensive cancer-associated microRNA expression profiling and proteomic analysis of human umbilical cord mesenchymal stem cell-derived exosomes. Tissue Eng. Regen. Med., 2022, 19(5), 1013-1031.
[http://dx.doi.org/10.1007/s13770-022-00450-8] [PMID: 35511336]
[33]
Saus, E.; Brunet-Vega, A.; Iraola-Guzmán, S.; Pegueroles, C.; Gabaldón, T.; Pericay, C. Long non-coding RNAs as potential novel prognostic biomarkers in colorectal cancer. Front. Genet., 2016, 7, 54.
[http://dx.doi.org/10.3389/fgene.2016.00054] [PMID: 27148353]
[34]
Ruiz-Manriquez, L.M.; Estrada-Meza, C.; Benavides-Aguilar, J.A.; Ledesma-Pacheco, S.J.; Torres-Copado, A.; Serrano-Cano, F.I.; Bandyopadhyay, A.; Pathak, S.; Chakraborty, S.; Srivastava, A.; Sharma, A.; Paul, S. Phytochemicals mediated modulation of MICRORNAS and long non-coding RNAS in cancer prevention and therapy. Phytother. Res., 2022, 36(2), 705-729.
[http://dx.doi.org/10.1002/ptr.7338] [PMID: 34932245]
[35]
Wu, Z.H.; Wang, X.L.; Tang, H.M.; Jiang, T.; Chen, J.; Lu, S.; Qiu, G.Q.; Peng, Z.H.; Yan, D.W. Long non-coding RNA HOTAIR is a powerful predictor of metastasis and poor prognosis and is associated with epithelial-mesenchymal transition in colon cancer. Oncol. Rep., 2014, 32(1), 395-402.
[http://dx.doi.org/10.3892/or.2014.3186] [PMID: 24840737]
[36]
Pádua Alves, C.; Fonseca, A.S.; Muys, B.R.; Barros e Lima Bueno, R.; Bürger, M.C.; Souza, J.E.S.; Valente, V.; Zago, M.A.; Silva, W.A., Jr Brief report: The lincRNA Hotair is required for epithelial-to-mesenchymal transition and stemness maintenance of cancer cell lines. Stem Cells, 2013, 31(12), 2827-2832.
[http://dx.doi.org/10.1002/stem.1547] [PMID: 24022994]
[37]
Yang, M.H.; Hu, Z.Y.; Xu, C.; Xie, L.Y.; Wang, X.Y.; Chen, S.Y.; Li, Z.G. MALAT1 promotes colorectal cancer cell proliferation/migration/invasion via PRKA kinase anchor protein 9. Biochim. Biophys. Acta Mol. Basis Dis., 2015, 1852(1), 166-174.
[http://dx.doi.org/10.1016/j.bbadis.2014.11.013] [PMID: 25446987]
[38]
Chaudhary, R.; Gryder, B.; Woods, W.S.; Subramanian, M.; Jones, M.F.; Li, X.L.; Jenkins, L.M.; Shabalina, S.A.; Mo, M.; Dasso, M.; Yang, Y.; Wakefield, L.M.; Zhu, Y.; Frier, S.M.; Moriarity, B.S.; Prasanth, K.V.; Perez-Pinera, P.; Lal, A. Prosurvival long noncoding RNA PINCR regulates a subset of p53 targets in human colorectal cancer cells by binding to Matrin 3. eLife, 2017, 6, e23244.
[http://dx.doi.org/10.7554/eLife.23244] [PMID: 28580901]
[39]
Yin, D.; Liu, Z.; Zhang, E.; Kong, R.; Zhang, Z.; Guo, R. Decreased expression of long noncoding RNA MEG3 affects cell proliferation and predicts a poor prognosis in patients with colorectal cancer. Tumour Biol., 2015, 36(6), 4851-4859.
[http://dx.doi.org/10.1007/s13277-015-3139-2] [PMID: 25636452]
[40]
Xu, W.W.; Jin, J.; Wu, X.; Ren, Q.L.; Farzaneh, M. MALAT1-related signaling pathways in colorectal cancer. Cancer Cell Int., 2022, 22(1), 126.
[http://dx.doi.org/10.1186/s12935-022-02540-y] [PMID: 35305641]
[41]
Ye, L.; Ren, L.; Qiu, J.; Zhu, D.; Chen, T.; Chang, W.; Lv, S.; Xu, J. Aberrant expression of long noncoding RNAs in colorectal cancer with liver metastasis. Tumour Biol., 2015, 36(11), 8747-8754.
[http://dx.doi.org/10.1007/s13277-015-3627-4] [PMID: 26050227]
[42]
Ozawa, T.; Matsuyama, T.; Toiyama, Y.; Takahashi, N.; Ishikawa, T.; Uetake, H.; Yamada, Y.; Kusunoki, M.; Calin, G.; Goel, A. CCAT1 and CCAT2 long noncoding RNAs, located within the 8q.24.21 ‘gene desert’, serve as important prognostic biomarkers in colorectal cancer. Ann. Oncol., 2017, 28(8), 1882-1888.
[http://dx.doi.org/10.1093/annonc/mdx248] [PMID: 28838211]
[43]
Foßelteder, J.; Calin, G.A.; Pichler, M. Long non-coding RNA CCAT2 as a therapeutic target in colorectal cancer. Expert Opin. Ther. Targets, 2018, 22(12), 973-976.
[http://dx.doi.org/10.1080/14728222.2018.1541453] [PMID: 30365347]
[44]
Chen, Y.; Yu, X.; Xu, Y.; Shen, H. Identification of dysregulated lncRNAs profiling and metastasis-associated lncRNAs in colorectal cancer by genome-wide analysis. Cancer Med., 2017, 6(10), 2321-2330.
[http://dx.doi.org/10.1002/cam4.1168] [PMID: 28857495]
[45]
Talebi, A.; Akbari, A.; Mobini, G.R.; Ashtari, S.; Pourhoseingholi, M.A. Biological and clinical relevance of long non-coding RNA PCAT-1 in cancer, a systematic review and meta-analysis. Asian Pac. J. Cancer Prev., 2019, 20(3), 667-674.
[http://dx.doi.org/10.31557/APJCP.2019.20.3.667] [PMID: 30909662]
[46]
Qiao, L.; Liu, X.; Tang, Y.; Zhao, Z.; Zhang, J.; Liu, H. Knockdown of long non-coding RNA prostate cancer-associated ncRNA transcript 1 inhibits multidrug resistance and c-Myc-dependent aggressiveness in colorectal cancer Caco-2 and HT-29 cells. Mol. Cell. Biochem., 2018, 441(1-2), 99-108.
[http://dx.doi.org/10.1007/s11010-017-3177-8] [PMID: 28884413]
[47]
Silva-Fisher, J.M.; Dang, H.X.; White, N.M.; Strand, M.S.; Krasnick, B.A.; Rozycki, E.B.; Jeffers, G.G.L.; Grossman, J.G.; Highkin, M.K.; Tang, C.; Cabanski, C.R.; Eteleeb, A.; Mudd, J.; Goedegebuure, S.P.; Luo, J.; Mardis, E.R.; Wilson, R.K.; Ley, T.J.; Lockhart, A.C.; Fields, R.C.; Maher, C.A. Long non-coding RNA RAMS11 promotes metastatic colorectal cancer progression. Nat. Commun., 2020, 11(1), 2156.
[http://dx.doi.org/10.1038/s41467-020-15547-8] [PMID: 32358485]
[48]
Hennig, E.E.; Kluska, A.; Piątkowska, M.; Kulecka, M.; Bałabas, A.; Zeber-Lubecka, N.; Goryca, K.; Ambrożkiewicz, F.; Karczmarski, J.; Olesiński, T.; Zyskowski, Ł.; Ostrowski, J. GWAS links new variant in long non-coding RNA LINC02006 with colorectal cancer susceptibility. Biology (Basel), 2021, 10(6), 465.
[http://dx.doi.org/10.3390/biology10060465] [PMID: 34070617]
[49]
Malayaperumal, S.; Sriramulu, S.; Banerjee, A.; Pathak, S. Over- expression of MicroRNA-122 inhibits proliferation and induces apoptosis in colon cancer cells. MicroRNA, 2021, 9(5), 354-362.
[http://dx.doi.org/10.2174/2211536609666201209152228] [PMID: 33297929]
[50]
Ganesan, H.; Nandy, S.K.; Banerjee, A.; Pathak, S.; Zhang, H.; Sun, X.F. RNA-interference-mediated miR-122-based gene regulation in colon cancer, a structural in silico analysis. Int. J. Mol. Sci., 2022, 23(23), 15257.
[http://dx.doi.org/10.3390/ijms232315257] [PMID: 36499586]
[51]
Nassar, F.J.; Msheik, Z.S.; Itani, M.M.; Helou, R.E.; Hadla, R.; Kreidieh, F.; Bejjany, R.; Mukherji, D.; Shamseddine, A.; Nasr, R.R.; Temraz, S.N. Circulating miRNA as biomarkers for colorectal cancer diagnosis and liver metastasis. Diagnostics (Basel), 2021, 11(2), 341.
[http://dx.doi.org/10.3390/diagnostics11020341] [PMID: 33669508]
[52]
Imaoka, H.; Toiyama, Y.; Fujikawa, H.; Hiro, J.; Saigusa, S.; Tanaka, K.; Inoue, Y.; Mohri, Y.; Mori, T.; Kato, T.; Toden, S.; Goel, A.; Kusunoki, M. Circulating microRNA-1290 as a novel diagnostic and prognostic biomarker in human colorectal cancer. Ann. Oncol., 2016, 27(10), 1879-1886.
[http://dx.doi.org/10.1093/annonc/mdw279] [PMID: 27502702]
[53]
de Miguel Pérez, D.; Rodriguez Martínez, A.; Ortigosa Palomo, A.; Delgado Ureña, M.; Garcia Puche, J.L.; Robles Remacho, A.; Exposito Hernandez, J.; Lorente Acosta, J.A.; Ortega Sánchez, F.G.; Serrano, M.J. Extracellular vesicle-miRNAs as liquid biopsy biomarkers for disease identification and prognosis in metastatic colorectal cancer patients. Sci. Rep., 2020, 10(1), 3974.
[http://dx.doi.org/10.1038/s41598-020-60212-1] [PMID: 32132553]
[54]
Zhang, H.; Zhu, M.; Shan, X.; Zhou, X.; Wang, T.; Zhang, J.; Tao, J.; Cheng, W.; Chen, G.; Li, J.; Liu, P.; Wang, Q.; Zhu, W. A panel of seven-miRNA signature in plasma as potential biomarker for colorectal cancer diagnosis. Gene, 2019, 687, 246-254.
[http://dx.doi.org/10.1016/j.gene.2018.11.055] [PMID: 30458288]
[55]
Peng, X.; Wang, J.; Zhang, C.; Liu, K.; Zhao, L.; Chen, X.; Huang, G.; Lai, Y. A three-miRNA panel in serum as a noninvasive biomarker for colorectal cancer detection. Int. J. Biol. Markers, 2020, 35(3), 74-82.
[http://dx.doi.org/10.1177/1724600820950740] [PMID: 32914665]
[56]
Wu, C.W.; Ng, S.S.M.; Dong, Y.J.; Ng, S.C.; Leung, W.W.; Lee, C.W.; Wong, Y.N.; Chan, F.K.L.; Yu, J.; Sung, J.J.Y. Detection of miR-92a and miR-21 in stool samples as potential screening biomarkers for colorectal cancer and polyps. Gut, 2012, 61(5), 739-745.
[http://dx.doi.org/10.1136/gut.2011.239236] [PMID: 21930727]
[57]
Ahmed, F.E.; Ahmed, N.C.; Vos, P.W.; Bonnerup, C.; Atkins, J.N.; Casey, M.; Nuovo, G.J.; Naziri, W.; Wiley, J.E.; Mota, H.; Allison, R.R. Diagnostic microRNA markers to screen for sporadic human colon cancer in stool: I. Proof of principle. Cancer Genomics Proteomics, 2013, 10(3), 93-113.
[PMID: 23741026]
[58]
Datta, A.; Deng, S.; Gopal, V.; Yap, K.C.H.; Halim, C.E.; Lye, M.L.; Ong, M.S.; Tan, T.Z.; Sethi, G.; Hooi, S.C.; Kumar, A.P.; Yap, C.T. Cytoskeletal dynamics in epithelial-mesenchymal transition: Insights into therapeutic targets for cancer metastasis. Cancers (Basel), 2021, 13(8), 1882.
[http://dx.doi.org/10.3390/cancers13081882] [PMID: 33919917]
[59]
Zhang, N.; Hu, X.; Du, Y.; Du, J. The role of miRNAs in colorectal cancer progression and chemoradiotherapy. Biomed. Pharmacother., 2021, 134, 111099.
[http://dx.doi.org/10.1016/j.biopha.2020.111099] [PMID: 33338745]
[60]
Thiery, J.P.; Sleeman, J.P. Complex networks orchestrate epithelial–mesenchymal transitions. Nat. Rev. Mol. Cell Biol., 2006, 7(2), 131-142.
[http://dx.doi.org/10.1038/nrm1835] [PMID: 16493418]
[61]
Thiery, J.P.; Acloque, H.; Huang, R.Y.J.; Nieto, M.A. Epithelial-mesenchymal transitions in development and disease. Cell, 2009, 139(5), 871-890.
[http://dx.doi.org/10.1016/j.cell.2009.11.007] [PMID: 19945376]
[62]
Lemieux, É.; Bergeron, S.; Durand, V.; Asselin, C.; Saucier, C.; Rivard, N. Constitutively active MEK1 is sufficient to induce epithelial-to-mesenchymal transition in intestinal epithelial cells and to promote tumor invasion and metastasis. Int. J. Cancer, 2009, 125(7), 1575-1586.
[http://dx.doi.org/10.1002/ijc.24485] [PMID: 19462441]
[63]
Guarino, M. Epithelial–mesenchymal transition and tumour invasion. Int. J. Biochem. Cell Biol., 2007, 39(12), 2153-2160.
[http://dx.doi.org/10.1016/j.biocel.2007.07.011] [PMID: 17825600]
[64]
Jaca, A.; Govender, P.; Locketz, M.; Naidoo, R. The role of miRNA-21 and epithelial mesenchymal transition (EMT) process in colorectal cancer. J. Clin. Pathol., 2017, 70(4), 331-356.
[http://dx.doi.org/10.1136/jclinpath-2016-204031] [PMID: 27672217]
[65]
Kang, E.; Jung, S.C.; Nam, S.K.; Park, Y.; Seo, S.H.; Park, K.U.; Oh, H.K.; Kim, D.W.; Kang, S.B.; Lee, H.S. Tissue miR-200c-3p and circulating miR-1290 as potential prognostic biomarkers for colorectal cancer. Sci. Rep., 2022, 12(1), 2295.
[http://dx.doi.org/10.1038/s41598-022-06192-w] [PMID: 35145164]
[66]
Hur, K.; Toiyama, Y.; Schetter, A.J.; Okugawa, Y.; Harris, C.C.; Boland, C.R.; Goel, A. Identification of a metastasis-specific MicroRNA signature in human colorectal cancer. J. Natl. Cancer Inst., 2015, 107(3), dju492.
[http://dx.doi.org/10.1093/jnci/dju492] [PMID: 25663689]
[67]
Kanaan, Z.; Rai, S.N.; Eichenberger, M.R.; Barnes, C.; Dworkin, A.M.; Weller, C.; Cohen, E.; Roberts, H.; Keskey, B.; Petras, R.E.; Crawford, N.P.S.; Galandiuk, S. Differential MicroRNA expression tracks neoplastic progression in inflammatory bowel disease-associated colorectal cancer. Hum. Mutat., 2012, 33(3), 551-560.
[http://dx.doi.org/10.1002/humu.22021] [PMID: 22241525]
[68]
Cottonham, C.L.; Kaneko, S.; Xu, L. miR-21 and miR-31 converge on TIAM1 to regulate migration and invasion of colon carcinoma cells. J. Biol. Chem., 2010, 285(46), 35293-35302.
[http://dx.doi.org/10.1074/jbc.M110.160069] [PMID: 20826792]
[69]
Yu, J.; Li, X.; Zhong, C.; Li, D.; Zhai, X.; Hu, W.; Guo, C.; Yuan, Y.; Zheng, S. High-throughput proteomics integrated with gene microarray for discovery of colorectal cancer potential biomarkers. Oncotarget, 2016, 7(46), 75279-75292.
[http://dx.doi.org/10.18632/oncotarget.12143] [PMID: 27661117]
[70]
Imperiale, T.F.; Ransohoff, D.F.; Itzkowitz, S.H.; Levin, T.R.; Lavin, P.; Lidgard, G.P.; Ahlquist, D.A.; Berger, B.M. Multitarget stool DNA testing for colorectal-cancer screening. N. Engl. J. Med., 2014, 370(14), 1287-1297.
[http://dx.doi.org/10.1056/NEJMoa1311194] [PMID: 24645800]
[71]
Serna, G.; Ruiz-Pace, F.; Cecchi, F.; Fasani, R.; Jimenez, J.; Thyparambil, S.; Landolfi, S.; Elez, E.; Vivancos, A.; Hembrough, T.; Tabernero, J.; Dienstmann, R.; Nuciforo, P. Targeted multiplex proteomics for molecular prescreening and biomarker discovery in metastatic colorectal cancer. Sci. Rep., 2019, 9(1), 13568.
[http://dx.doi.org/10.1038/s41598-019-49867-7] [PMID: 31537838]
[72]
Yamamoto, T.; Kudo, M.; Peng, W.X.; Takata, H.; Takakura, H.; Teduka, K.; Fujii, T.; Mitamura, K.; Taga, A.; Uchida, E.; Naito, Z. Identification of aldolase A as a potential diagnostic biomarker for colorectal cancer based on proteomic analysis using formalin-fixed paraffin-embedded tissue. Tumour Biol., 2016, 37(10), 13595-13606.
[http://dx.doi.org/10.1007/s13277-016-5275-8] [PMID: 27468721]
[73]
Ang, C.S.; Rothacker, J.; Patsiouras, H.; Burgess, A.W.; Nice, E.C. Murine fecal proteomics: A model system for the detection of potential biomarkers for colorectal cancer. J. Chromatogr. A, 2010, 1217(19), 3330-3340.
[http://dx.doi.org/10.1016/j.chroma.2009.10.007] [PMID: 19875126]
[74]
Fijneman, R.J.A.; de Wit, M.; Pourghiasian, M.; Piersma, S.R.; Pham, T.V.; Warmoes, M.O.; Lavaei, M.; Piso, C.; Smit, F.; Delis-van Diemen, P.M.; van Turenhout, S.T.; Terhaar sive Droste, J.S.; Mulder, C.J.J.; Blankenstein, M.A.; Robanus-Maandag, E.C.; Smits, R.; Fodde, R.; van Hinsbergh, V.W.M.; Meijer, G.A.; Jimenez, C.R. Proximal fluid proteome profiling of mouse colon tumors reveals biomarkers for early diagnosis of human colorectal cancer. Clin. Cancer Res., 2012, 18(9), 2613-2624.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1937] [PMID: 22351690]
[75]
Wang, Y.; Shan, Q.; Hou, G.; Zhang, J.; Bai, J.; Lv, X.; Xie, Y.; Zhu, H.; Su, S.; Li, Y.; Zi, J.; Lin, L.; Han, W.; Zhao, X.; Wang, H.; Xu, N.; Wu, L.; Lou, X.; Liu, S. Discovery of potential colorectal cancer serum biomarkers through quantitative proteomics on the colonic tissue interstitial fluids from the AOM–DSS mouse model. J. Proteomics, 2016, 132, 31-40.
[http://dx.doi.org/10.1016/j.jprot.2015.11.013] [PMID: 26581642]
[76]
Fung, K.Y.C.; Tabor, B.; Buckley, M.J.; Priebe, I.K.; Purins, L.; Pompeia, C.; Brierley, G.V.; Lockett, T.; Gibbs, P.; Tie, J.; McMurrick, P.; Moore, J.; Ruszkiewicz, A.; Nice, E.; Adams, T.E.; Burgess, A.; Cosgrove, L.J. Blood-based protein biomarker panel for the detection of colorectal cancer. PLoS One, 2015, 10(3), e0120425.
[http://dx.doi.org/10.1371/journal.pone.0120425] [PMID: 25793510]
[77]
Yu, J.; Zhai, X.; Li, X.; Zhong, C.; Guo, C.; Yang, F.; Yuan, Y.; Zheng, S. Identification of MST1 as a potential early detection biomarker for colorectal cancer through a proteomic approach. Sci. Rep., 2017, 7(1), 14265.
[http://dx.doi.org/10.1038/s41598-017-14539-x] [PMID: 29079854]
[78]
Peltier, J.; Roperch, J.P.; Audebert, S.; Borg, J.P.; Camoin, L. Quantitative proteomic analysis exploring progression of colorectal cancer: Modulation of the serpin family. J. Proteomics, 2016, 148, 139-148.
[http://dx.doi.org/10.1016/j.jprot.2016.07.031] [PMID: 27492143]
[79]
Pathak, S.; Meng, W.J.; Zhang, H.; Gnosa, S.; Nandy, S.K.; Adell, G.; Holmlund, B.; Sun, X.F. Tafazzin protein expression is associated with tumorigenesis and radiation response in rectal cancer: A study of Swedish clinical trial on preoperative radiotherapy. PLoS One, 2014, 9(5), e98317.
[http://dx.doi.org/10.1371/journal.pone.0098317] [PMID: 24858921]
[80]
Yoshinaga, T.; Shigemitsu, T.; Nishimata, H.; Kitazono, M.; Hori, E.; Tomiyoshi, A.; Takei, T.; Yoshida, M. Angiopoietin-like protein 2 as a potential biomarker for colorectal cancer. Mol. Clin. Oncol., 2015, 3(5), 1080-1084.
[http://dx.doi.org/10.3892/mco.2015.577] [PMID: 26623054]
[81]
Sun, Y.; Long, H.; Sun, L.; Sun, X.; Pang, L.; Chen, J.; Yi, Q.; Liang, T.; Shen, Y. PGM5 is a promising biomarker and may predict the prognosis of colorectal cancer patients. Cancer Cell Int., 2019, 19(1), 253.
[http://dx.doi.org/10.1186/s12935-019-0967-y] [PMID: 31582909]
[82]
Chen, H.M.; Lin, C.C.; Chen, W.S.; Jiang, J.K.; Yang, S.H.; Chang, S.C.; Ho, C.L.; Yang, C.C.; Huang, S.C.; Chao, Y.; Liao, T.T.; Hwang, W.L.; Teng, H.W. Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) is a prognostic biomarker and associated with chemotherapy responsiveness in colorectal cancer. Int. J. Mol. Sci., 2021, 22(13), 6940.
[http://dx.doi.org/10.3390/ijms22136940] [PMID: 34203267]
[83]
Sun, Y.; Guo, Z.; Liu, X.; Yang, L.; Jing, Z.; Cai, M.; Zheng, Z.; Shao, C.; Zhang, Y.; Sun, H.; Wang, L.; Wang, M.; Li, J.; Tian, L.; Han, Y.; Zou, S.; Gao, J.; Zhao, Y.; Nan, P.; Xie, X.; Liu, F.; Zhou, L.; Sun, W.; Zhao, X. Noninvasive urinary protein signatures associated with colorectal cancer diagnosis and metastasis. Nat. Commun., 2022, 13(1), 2757.
[http://dx.doi.org/10.1038/s41467-022-30391-8] [PMID: 35589723]
[84]
Kalra, H.; Drummen, G.; Mathivanan, S. Focus on extracellular vesicles: Introducing the next small big thing. Int. J. Mol. Sci., 2016, 17(2), 170.
[http://dx.doi.org/10.3390/ijms17020170] [PMID: 26861301]
[85]
Kalluri, R. The biology and function of urine exosomes in bladder cancer. J. Clin. Invest., 2016, 4, 2362.
[86]
Azmi, A.S.; Bao, B.; Sarkar, F.H. Exosomes in cancer development, metastasis, and drug resistance: A comprehensive review. Cancer Metastasis Rev., 2013, 32(3-4), 623-642.
[http://dx.doi.org/10.1007/s10555-013-9441-9] [PMID: 23709120]
[87]
Evert, J.; Pathak, S.; Sun, X.F.; Zhang, H. A study on effect of oxaliplatin in MicroRNA expression in human colon cancer. J. Cancer, 2018, 9(11), 2046-2053.
[http://dx.doi.org/10.7150/jca.24474] [PMID: 29896290]
[88]
Weber, J.A.; Baxter, D.H.; Zhang, S.; Huang, D.Y.; Huang, K.H.; Lee, M.J.; Galas, D.J.; Wang, K. The microRNA spectrum in 12 body fluids. Clin. Chem., 2010, 56(11), 1733-1741.
[http://dx.doi.org/10.1373/clinchem.2010.147405] [PMID: 20847327]
[89]
Tang, Y.; Zhao, Y.; Song, X.; Song, X.; Niu, L.; Xie, L. Tumor-derived exosomal miRNA-320d as a biomarker for metastatic colorectal cancer. J. Clin. Lab. Anal., 2019, 33(9), e23004.
[http://dx.doi.org/10.1002/jcla.23004] [PMID: 31420913]
[90]
Liu, X.; Pan, B.; Sun, L.; Chen, X.; Zeng, K.; Hu, X.; Xu, T.; Xu, M.; Wang, S. Circulating exosomal miR-27a and miR-130a act as novel diagnostic and prognostic biomarkers of colorectal cancer. Cancer Epidemiol. Biomarkers Prev., 2018, 27(7), 746-754.
[http://dx.doi.org/10.1158/1055-9965.EPI-18-0067] [PMID: 29739748]
[91]
Pan, B.; Qin, J.; Liu, X.; He, B.; Wang, X.; Pan, Y.; Sun, H.; Xu, T.; Xu, M.; Chen, X.; Xu, X.; Zeng, K.; Sun, L.; Wang, S. Identification of serum exosomal hsa-circ-0004771 as a novel diagnostic biomarker of colorectal cancer. Front. Genet., 2019, 10, 1096.
[http://dx.doi.org/10.3389/fgene.2019.01096] [PMID: 31737058]
[92]
Dou, Y.; Cha, D.J.; Franklin, J.L.; Higginbotham, J.N.; Jeppesen, D.K.; Weaver, A.M.; Prasad, N.; Levy, S.; Coffey, R.J.; Patton, J.G.; Zhang, B. Circular RNAs are down-regulated in KRAS mutant colon cancer cells and can be transferred to exosomes. Sci. Rep., 2016, 6(1), 37982.
[http://dx.doi.org/10.1038/srep37982] [PMID: 27892494]
[93]
Xie, Y.; Li, J.; Li, P.; Li, N.; Zhang, Y.; Binang, H.; Zhao, Y.; Duan, W.; Chen, Y.; Wang, Y.; Du, L.; Wang, C. RNA-Seq profiling of serum exosomal circular RNAs reveals Circ-PNN as a potential biomarker for human colorectal cancer. Front. Oncol., 2020, 10, 982.
[http://dx.doi.org/10.3389/fonc.2020.00982] [PMID: 32626660]
[94]
Feng, W.; Gong, H.; Wang, Y.; Zhu, G.; Xue, T.; Wang, Y.; Cui, G. circIFT80 Functions as a ceRNA of miR-1236-3p to Promote Colorectal Cancer Progression. Mol. Ther. Nucleic Acids, 2019, 18, 375-387.
[http://dx.doi.org/10.1016/j.omtn.2019.08.024] [PMID: 31648103]
[95]
Zheng, R.; Zhang, K.; Tan, S.; Gao, F.; Zhang, Y.; Xu, W.; Wang, H.; Gu, D.; Zhu, L.; Li, S.; Chu, H.; Zhang, Z.; Liu, L.; Du, M.; Wang, M. Exosomal circLPAR1 functions in colorectal cancer diagnosis and tumorigenesis through suppressing BRD4 via METTL3–eIF3h interaction. Mol. Cancer, 2022, 21(1), 49.
[http://dx.doi.org/10.1186/s12943-021-01471-y] [PMID: 35164758]
[96]
Giese, M.A.; Hind, L.E.; Huttenlocher, A. Neutrophil plasticity in the tumor microenvironment. Blood, 2019, 133(20), 2159-2167.
[http://dx.doi.org/10.1182/blood-2018-11-844548] [PMID: 30898857]
[97]
Shang, A.; Gu, C.; Wang, W.; Wang, X.; Sun, J.; Zeng, B.; Chen, C.; Chang, W.; Ping, Y.; Ji, P.; Wu, J.; Quan, W.; Yao, Y.; Zhou, Y.; Sun, Z.; Li, D. Exosomal circPACRGL promotes progression of colorectal cancer via the miR-142-3p/miR-506-3p- TGF-β1 axis. Mol. Cancer, 2020, 19(1), 117.
[http://dx.doi.org/10.1186/s12943-020-01235-0] [PMID: 31901224]
[98]
Meng, W.J.; Pathak, S.; Zhang, X.; Adell, G.; Jarlsfelt, I.; Holmlund, B.; Wang, Z.Q.; Zhang, A.S.; Zhang, H.; Zhou, Z.G.; Sun, X.F. Expressions of mir-302a, mir-105, and mir-888 play critical roles in pathogenesis, radiotherapy, and prognosis on rectal cancer patients: A study from rectal cancer patients in a Swedish rectal cancer trial of preoperative radiotherapy to big database analyses. Front. Oncol., 2020, 10, 567042.
[http://dx.doi.org/10.3389/fonc.2020.567042] [PMID: 33123477]
[99]
Liu, N.; Jiang, F.; Chen, Z. A preliminary study on the pathogenesis of colorectal cancer by constructing a Hsa-circRNA-0067835-miRNA-mRNA regulatory network. OncoTargets Ther., 2021, 14, 4645-4658.
[http://dx.doi.org/10.2147/OTT.S319300] [PMID: 34511934]
[100]
Zhang, X.; Zhang, H.; Shen, B.; Sun, X-F. Novel MicroRNA biomarkers for colorectal cancer early diagnosis and 5-Fluorouracil chemotherapy resistance but not prognosis: A study from databases to AI-Assisted verifications. Cancers (Basel), 2020, 12(2), 341.
[http://dx.doi.org/10.3390/cancers12020341] [PMID: 32028703]
[101]
Yang, G.; Zhang, Y.; Yang, J. A five-microRNA signature as prognostic biomarker in colorectal cancer by bioinformatics analysis. Front. Oncol., 2019, 9, 1207.
[http://dx.doi.org/10.3389/fonc.2019.01207] [PMID: 31799184]
[102]
Bresalier, R.S.; Grady, W.M.; Markowitz, S.D.; Nielsen, H.J.; Batra, S.K.; Lampe, P.D. Biomarkers for early detection of colorectal cancer: The early detection research network, a framework for clinical translation. Cancer Epidemiol. Biomarkers Prev., 2020, 29(12), 2431-2440.
[http://dx.doi.org/10.1158/1055-9965.EPI-20-0234] [PMID: 32299850]
[103]
Oh, H.H.; Joo, Y.E. Novel biomarkers for the diagnosis and prognosis of colorectal cancer. Intest. Res., 2020, 18(2), 168-183.
[http://dx.doi.org/10.5217/ir.2019.00080] [PMID: 31766836]
[104]
Girigoswami, K.; Girigoswami, A. A review on the role of nanosensors in detecting cellular miRNA expression in colorectal cancer. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(1), 12-26.
[http://dx.doi.org/10.2174/1871530320666200515115723] [PMID: 32410567]
[105]
Zedan, A.H.; Hansen, T.F.; Assenholt, J.; Pleckaitis, M.; Madsen, J.S.; Osther, P.J.S. microRNA expression in tumour tissue and plasma in patients with newly diagnosed metastatic prostate cancer. Tumour Biol., 2018, 40(5), 1010428318775864.
[http://dx.doi.org/10.1177/1010428318775864] [PMID: 29775158]
[106]
Ravi, V.; Subramanian, K.; Sivasubramaniam, J.; Devaraj, D.V.; Ramanujam, S.A. Micro RNA as a potential biomarker for the diagnosis of neonatal sepsis – A review. J. Evol. Med. Dent. Sci., 2021, 10(6), 375-380.
[http://dx.doi.org/10.14260/jemds/2021/83]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy