Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

CTTN和FGF2联合RNAi通过Ras/ERK信号通路调控肝癌细胞迁移、侵袭及G1/S转变

卷 24, 期 8, 2024

发表于: 29 November, 2023

页: [791 - 803] 页: 13

弟呕挨: 10.2174/0115680096254722231025110912

价格: $65

conference banner
摘要

背景:大多数肝细胞癌(HCC)患者死于快速进展和远处转移。基因治疗是HCC治疗的一个很有前途的选择,但有效的靶向方法仍然有限。 目的:CTTN/ contactn在肌动蛋白聚合和调节细胞骨架重塑中起关键作用。然而,CTTN在HCC中的相互作用网络尚不清楚。 方法:siRNA被设计用于CTTN沉默,Affymetrix基因芯片测序获得HCC细胞系SMMC-7721中CTTN敲除后的基因谱。利用qRT-PCR技术鉴定CTTN可能的相互作用基因。检测CTTN和成纤维细胞生长因子2 (FGF2)联合RNA干扰(RNAi)对HCC的抑制作用。 结果:共筛选出1717个显著改变基因,鉴定出12个潜在的CTTN相互作用基因。验证了CTTN与FGF2的相互作用,CTTN与FGF2的联合RNAi实现了协同效应,比单独敲除CTTN或FGF2更能抑制HCC细胞的迁移、侵袭和G1/S转变。机制上,CTTN和FGF2的联合RNAi调节了Ras/ERK信号通路。此外,CTTN和FGF2联合RNAi后,EMT上皮标志物E-cadherin上调,间质标志物Vimentin和细胞周期蛋白Cyclin D1下调。此外,qRT-PCR和免疫组化染色显示,CTTN和FGF2在转移性HCC组织中均高表达。 结论:CTTN和FGF2的联合RNAi可能是一种新的、有前途的HCC侵袭转移干预策略。

关键词: CTTN, FGF2,迁移,侵袭,G1/S转换,Ras/ERK。

图形摘要
[1]
Shen, B.; Shi, J.P.; Zhu, Z.X.; He, Z.D.; Liu, S.Y.; Shi, W.; Zhang, Y.X.; Ying, H.Y.; Wang, J.; Xu, R.F.; Fang, F.; Chang, H.X.; Chen, Z.; Zhang, N.N. EGFR inhibition overcomes resistance to FGFR4 inhibition and potentiates FGFR4 inhibitor therapy in hepatocellular carcinoma. Mol Cancer Ther., 2023, 22(12), 1479-1492.http://dx.doi.org/10.1158/1535-7163.MCT-23-0096 PMID:37710057
[2]
Ringelhan, M.; Pfister, D.; O’Connor, T.; Pikarsky, E.; Heikenwalder, M. The immunology of hepatocellular carcinoma. Nat. Immunol., 2018, 19(3), 222-232.
[http://dx.doi.org/10.1038/s41590-018-0044-z] [PMID: 29379119]
[3]
Gong, Q.Z.; Xiao, D.; Gong, G.Y.; Xu, J.; Wen, X.D.; Feng, F.; Qu, W. EH-42: A novel small molecule induces apoptosis and inhibits migration and invasion of human hepatoma cells through suppressing STAT3 signaling pathway. Curr. Cancer Drug Targets, 2019, 19(7), 583-593.
[http://dx.doi.org/10.2174/1568009619666181226094814] [PMID: 30585547]
[4]
Wang, K.; Shang, F.; Chen, D.; Cao, T.; Wang, X.; Jiao, J.; He, S.; Liang, X. Protein liposomes-mediated targeted acetylcholinesterase gene delivery for effective liver cancer therapy. J. Nanobiotechnology, 2021, 19(1), 31.
[http://dx.doi.org/10.1186/s12951-021-00777-9] [PMID: 33482834]
[5]
Cao, M.; Gao, Y.; Zhan, M.; Qiu, N.; Piao, Y.; Zhou, Z.; Shen, Y. Glycyrrhizin acid and glycyrrhetinic acid modified polyethyleneimine for targeted DNA delivery to hepatocellular carcinoma. Int. J. Mol. Sci., 2019, 20(20), 5074.
[http://dx.doi.org/10.3390/ijms20205074] [PMID: 31614879]
[6]
Abdel-Mohsen, H.T.; Abdullaziz, M.A.; El Kerdawy, A.M.; Ragab, F.A.F.; Flanagan, K.J.; Mahmoud, A.E.E.; Ali, M.M.; El Diwani, H.I.; Senge, M.O. Targeting receptor tyrosine kinase VEGFR-2 in Hepatocellular Cancer: Rational design, synthesis and biological evaluation of 1,2-disubstituted benzimidazoles. Molecules, 2020, 25(4), 770.
[http://dx.doi.org/10.3390/molecules25040770] [PMID: 32053964]
[7]
Wang, Y.; Zhao, Y.; Li, M.; Hou, H.; Jian, Z.; Li, W.; Li, P.; Ma, F.; Liu, M.; Liu, H.; Xue, H. Conversion of primary liver cancer after targeted therapy for liver cancer combined with AFP-targeted CAR T-cell therapy: A case report. Front. Immunol., 2023, 14, 1180001.
[http://dx.doi.org/10.3389/fimmu.2023.1180001] [PMID: 37256142]
[8]
Bouitbir, J.; Panajatovic, M.V.; Krähenbühl, S. Mitochondrial toxicity associated with imatinib and sorafenib in isolated rat heart fibers and the cardiomyoblast H9c2 cell line. Int. J. Mol. Sci., 2022, 23(4), 2282.
[http://dx.doi.org/10.3390/ijms23042282] [PMID: 35216404]
[9]
Lin, Z.; Niu, Y.; Wan, A.; Chen, D.; Liang, H.; Chen, X.; Sun, L.; Zhan, S.; Chen, L.; Cheng, C.; Zhang, X.; Bu, X.; He, W.; Wan, G. RNAm6 A methylation regulates sorafenib resistance in liver cancer through FOXO 3-mediated autophagy. EMBO J., 2020, 39(12), e103181.
[http://dx.doi.org/10.15252/embj.2019103181] [PMID: 32368828]
[10]
Yamaguchi, H.; Condeelis, J. Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim Biophys Acta, 2007, 1773(5), 642-652.
[http://dx.doi.org/10.1016/j.bbamcr.2006.07.001] [PMID: 16926057]
[11]
Thiery, J.P.; Acloque, H.; Huang, R.Y.J.; Nieto, M.A. Epithelial-mesenchymal transitions in development and disease. Cell, 2009, 139(5), 871-890.
[http://dx.doi.org/10.1016/j.cell.2009.11.007] [PMID: 19945376]
[12]
Weed, S.A.; Karginov, A.V.; Schafer, D.A.; Weaver, A.M.; Kinley, A.W.; Cooper, J.A.; Parsons, J.T. Cortactin localization to sites of actin assembly in lamellipodia requires interactions with F-actin and the Arp2/3 complex. J. Cell Biol., 2000, 151(1), 29-40.
[http://dx.doi.org/10.1083/jcb.151.1.29] [PMID: 11018051]
[13]
Uruno, T.; Liu, J.; Zhang, P.; Fan, Y.; Egile, C.; Li, R.; Mueller, S.C.; Zhan, X. Activation of Arp2/3 complex-mediated actin polymerization by cortactin. Nat. Cell Biol., 2001, 3(3), 259-266.
[http://dx.doi.org/10.1038/35060051] [PMID: 11231575]
[14]
Yuan, B.Z.; Zhou, X.; Zimonjic, D.B.; Durkin, M.E.; Popescu, N.C. Amplification and overexpression of the EMS 1 oncogene, a possible prognostic marker, in human hepatocellular carcinoma. J. Mol. Diagn., 2003, 5(1), 48-53.
[http://dx.doi.org/10.1016/S1525-1578(10)60451-5] [PMID: 12552080]
[15]
Li, Y.; Fu, Y.; Hu, X.; Sun, L.; Tang, D.; Li, N.; Peng, F.; Fan, X. The HBx–CTTN interaction promotes cell proliferation and migration of hepatocellular carcinoma via CREB1. Cell Death Dis., 2019, 10(6), 405.
[http://dx.doi.org/10.1038/s41419-019-1650-x] [PMID: 31138777]
[16]
Zhou, J.; Chen, L.; Zhang, Y.; Wu, Y.; Wang, G.; He, S.; Guo, Z.; Wei, Y. Synergistic effect of EMS1-shRNA and sorafenib on proliferation, migration, invasion and endocytosis of SMMC-7721. J. Mol. Histol., 2014, 45(2), 205-216.
[http://dx.doi.org/10.1007/s10735-013-9543-2] [PMID: 24127012]
[17]
Hou, Y.; Zou, Q.; Ge, R.; Shen, F.; Wang, Y. The critical role of CD133+CD44+/high tumor cells in hematogenous metastasis of liver cancers. Cell Res., 2012, 22(1), 259-272.
[http://dx.doi.org/10.1038/cr.2011.139] [PMID: 21862973]
[18]
Mashiko, T.; Masuoka, Y.; Nakano, A.; Tsuruya, K.; Hirose, S.; Hirabayashi, K.; Kagawa, T.; Nakagohri, T. Intussusception due to hematogenous metastasis of hepatocellular carcinoma to the small intestine: A case report. World J. Gastroenterol., 2020, 26(42), 6698-6705.
[http://dx.doi.org/10.3748/wjg.v26.i42.6698] [PMID: 33268957]
[19]
Nakanishi, K.; Sakamoto, M.; Yamasaki, S.; Todo, S.; Hirohashi, S. Akt phosphorylation is a risk factor for early disease recurrence and poor prognosis in hepatocellular carcinoma. Cancer, 2005, 103(2), 307-312.
[http://dx.doi.org/10.1002/cncr.20774] [PMID: 15593087]
[20]
Llovet, J.M.; Bruix, J. Molecular targeted therapies in hepatocellular carcinoma. Hepatology, 2008, 48(4), 1312-1327.
[http://dx.doi.org/10.1002/hep.22506] [PMID: 18821591]
[21]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[http://dx.doi.org/10.1016/S0092-8674(00)81683-9] [PMID: 10647931]
[22]
Tunduguru, R.; Zhang, J.; Aslamy, A.; Salunkhe, V.A.; Brozinick, J.T.; Elmendorf, J.S.; Thurmond, D.C. The actin-related p41ARC subunit contributes to p21-activated kinase-1 (PAK1)–mediated glucose uptake into skeletal muscle cells. J. Biol. Chem., 2017, 292(46), 19034-19043.
[http://dx.doi.org/10.1074/jbc.M117.801340] [PMID: 28972183]
[23]
Siton, O.; Ideses, Y.; Albeck, S.; Unger, T.; Bershadsky, A.D.; Gov, N.S.; Bernheim-Groswasser, A. Cortactin releases the brakes in actin- based motility by enhancing WASP-VCA detachment from Arp2/3 branches. Curr. Biol., 2011, 21(24), 2092-2097.
[http://dx.doi.org/10.1016/j.cub.2011.11.010] [PMID: 22169534]
[24]
Tegtmeyer, N.; Harrer, A.; Rottner, K.; Backert, S. Helicobacter pylori CagA induces cortactin y-470 phosphorylation-dependent gastric epithelial cell scattering via Abl, Vav2 and Rac1 activation. Cancers., 2021, 13(16), 4241.
[http://dx.doi.org/10.3390/cancers13164241] [PMID: 34439396]
[25]
Tehrani, S.; Tomasevic, N.; Weed, S.; Sakowicz, R.; Cooper, J.A. Src phosphorylation of cortactin enhances actin assembly. Proc. Natl. Acad. Sci., 2007, 104(29), 11933-11938.
[http://dx.doi.org/10.1073/pnas.0701077104] [PMID: 17606906]
[26]
Martini, V.; Gattazzo, C.; Frezzato, F.; Trimarco, V.; Pizzi, M.; Chiodin, G.; Severin, F.; Scomazzon, E.; Guzzardo, V.; Saraggi, D.; Raggi, F.; Martinello, L.; Facco, M.; Visentin, A.; Piazza, F.; Brunati, A.M.; Semenzato, G.; Trentin, L. Cortactin, a Lyn substrate, is a checkpoint molecule at the intersection of BCR and CXCR4 signalling pathway in chronic lymphocytic leukaemia cells. Br. J. Haematol., 2017, 178(1), 81-93.
[http://dx.doi.org/10.1111/bjh.14642] [PMID: 28419476]
[27]
Hu, P.H.; Pan, L.H.; Wong, P.T.Y.; Chen, W.H.; Yang, Y.Q.; Wang, H.; Xiang, J.J.; Xu, M. 125 I-labeled anti-bFGF monoclonal antibody inhibits growth of hepatocellular carcinoma. World J. Gastroenterol., 2016, 22(21), 5033-5041.
[http://dx.doi.org/10.3748/wjg.v22.i21.5033] [PMID: 27275095]
[28]
Allahmoradi, H.; Asghari, S.M.; Ahmadi, A.; Assareh, E.; Nazari, M. Anti-tumor and anti-metastatic activity of the FGF2 118–126 fragment dependent on the loop structure. Biochem. J., 2022, 479(12), 1285-1302.
[http://dx.doi.org/10.1042/BCJ20210830] [PMID: 35638868]
[29]
Jin, X.; Chen, H.; Li, D.; Li, A.; Wang, W.; Gu, W. Design, synthesis, and anticancer evaluation of novel quinoline derivatives of ursolic acid with hydrazide, oxadiazole, and thiadiazole moieties as potent MEK inhibitors. J Enzyme Inhib. Med. Chem., 2019, 34(1), 955-972.
[http://dx.doi.org/10.1080/14756366.2019.1605364]
[30]
Wang, Z.; Li, X.; Li, Q.; Zhou, J. Targeting CXCL5 in pancreatic cancer cells inhibits cancer xenograft growth by reducing proliferation and inhibiting EMT progression. Dig. Dis. Sci., 2023, 68(3), 841-851.
[http://dx.doi.org/10.1007/s10620-022-07529-1] [PMID: 35650416]
[31]
Wang, Y.; Li, Y.; Wang, L.; Chen, B.; Zhu, M.; Ma, C.; Mu, C.; Tao, A.; Li, S.; Luo, L.; Ma, P.; Ji, S.; Lan, T. Cinnamaldehyde suppressed EGF-induced EMT process and inhibits ovarian cancer progression through PI3K/AKT pathway. Front. Pharmacol., 2022, 13, 779608.
[http://dx.doi.org/10.3389/fphar.2022.779608] [PMID: 35645793]
[32]
Kowalczyk, M.M.; Barańska, M.; Fendler, W.; Borkowska, E.M.; Kobos, J.; Borowiec, M.; Pietruszewska, W. G870A polymorphic variants of CCND1 gene and cyclin D1 protein expression as prognostic markers in laryngeal lesions. Diagnostics., 2022, 12(5), 1059.
[http://dx.doi.org/10.3390/diagnostics12051059] [PMID: 35626215]
[33]
Milman, T.; Eiger-Moscovich, M.; Henry, R.K.; Ida, C.M.; Ruben, M.; Shields, C.L.; Lally, S.E.; Penne, R.B.; Stefanyszyn, M.A.; Bilyk, J.R.; Rapuano, C.J.; Rabinowitz, M.; Eagle, R.C., Jr Cyclin D1 expression and molecular genetic findings in periocular histiocytoses and neoplasms of macrophage-dendritic cell lineage. Am. J. Ophthalmol., 2022, 242, 36-51.
[http://dx.doi.org/10.1016/j.ajo.2022.05.009] [PMID: 35594918]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy