Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Research Article

Identification of Two Novel Pathogenic Variants of the ATM Gene in the Iranian-Azeri Turkish Ethnic Group by Applying Whole Exome Sequencing

Author(s): Amir-Reza Dalal Amandi, Neda Jabbarpour, Shadi Shiva and Mortaza Bonyadi*

Volume 24, Issue 6, 2023

Published on: 22 November, 2023

Page: [345 - 353] Pages: 9

DOI: 10.2174/0113892029268949231104165301

Price: $65

Abstract

Background: The ATM gene encodes a multifunctional kinase involved in important cellular functions, such as checkpoint signaling and apoptosis, in response to DNA damage. Bi-allelic pathogenic variants in this gene cause Ataxia Telangiectasia (AT), while carriers of ATM pathogenic variants are at increased risk of cancer depending on the pathogenicity of the variant they carry. Identifying pathogenic variants can aid in the management of the disease in carriers.

Methods: Whole-exome sequencing (WES) was performed on three unrelated patients from the Iranian-Azeri Turkish ethnic group referred to a genetic center for analysis. WES was also conducted on 400 individuals from the same ethnic group to determine the frequencies of all ATM variants. Blood samples were collected from the patients and their family members for DNA extraction, and PCR-Sanger sequencing was performed to confirm the WES results.

Results: The first proband with AT disease had two novel compound heterozygote variants (c.2639-2A>T, c.8708delC) in the ATM gene revealed by WES analysis, which was potentially/- likely pathogenic. The second proband with bi-lateral breast cancer had a homozygous pathogenic variant (c.6067G>A) in the ATM gene identified by WES analysis. The third case with a family history of cancer had a heterozygous synonymous pathogenic variant (c.7788G>A) in the ATM gene found by WES analysis. Sanger sequencing confirmed the WES results, and bioinformatics analysis of the mutated ATM RNA and protein structure added evidence for the potential pathogenicity of the novel variants. WES analysis of the cohort revealed 38 different variants, including a variant (rs1800057, ATM:c.3161C>G, p.P1054R) associated with prostate cancer that had a higher frequency in our cohort.

Conclusion: Genetic analysis of three unrelated families with ATM-related disorders discovered two novel pathogenic variants. A homozygous missense pathogenic variant was identified in a woman with bi-lateral breast cancer, and a synonymous but pathogenic variant was found in a family with a history of different cancers.

Keywords: ATM gene, breast cancer, whole exome sequencing, c.2639-2A>T, c.8708delC, c.6067G>A, c.7788G>A.

Graphical Abstract
[1]
Lavin, M.F. Ataxia-telangiectasia: From a rare disorder to a paradigm for cell signalling and cancer. Nat. Rev. Mol. Cell Biol., 2008, 9(10), 759-769.
[http://dx.doi.org/10.1038/nrm2514] [PMID: 18813293]
[2]
Prokopcova, J.; Kleibl, Z.; Banwell, C.M.; Pohlreich, P. The role of ATM in breast cancer development. Breast Cancer Res. Treat., 2007, 104(2), 121-128.
[http://dx.doi.org/10.1007/s10549-006-9406-6] [PMID: 17061036]
[3]
Woelke, S.; Valesky, E.; Bakhtiar, S.; Pommerening, H.; Pfeffermann, L.M.; Schubert, R.; Zielen, S. Treatment of granulomas in patients with ataxia telangiectasia. Front. Immunol., 2018, 9, 2000.
[http://dx.doi.org/10.3389/fimmu.2018.02000] [PMID: 30279689]
[4]
Palazzo, R.P.; Jardim, L.B.; Bacellar, A.; de Oliveira, F.R.; Maraslis, F.T.; Pereira, C.H.J.; da Silva, J.; Maluf, S.W. DNA damage and repair in individuals with ataxia-telangiectasia and their parents. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2018, 836(Pt B), 122-126.
[http://dx.doi.org/10.1016/j.mrgentox.2018.06.007] [PMID: 30442337]
[5]
Fotopoulos, G.; Syrigos, K.; Saif, M.W. Genetic factors affecting patient responses to pancreatic cancer treatment. Ann. Gastroenterol., 2016, 29(4), 466-476.
[http://dx.doi.org/10.20524/aog.2016.0056] [PMID: 27708512]
[6]
Badalzadeh, M.; Bavani, MS.; Alizadeh, Z.; Mirmoghtadaei, M.; Shakerian, L.; Bahram, S. Clinical characterization and mutation analysis of 13 iranian ataxiatelangiectasia patients: Introducing three novel mutations. Research Sq., 2023.
[7]
Bernstein, J.L.; Concannon, P. ATM, radiation, and the risk of second primary breast cancer. Int. J. Radiat. Biol., 2017, 93(10), 1121-1127.
[http://dx.doi.org/10.1080/09553002.2017.1344363] [PMID: 28627265]
[8]
Karamat, U.; Ejaz, S.; Hameed, Y. In silico analysis of the multi-omics data identified the ataxia telangiectasia mutated gene as a potential biomarker of breast invasive carcinoma. Genet. Test. Mol. Biomarkers, 2021, 25(4), 263-275.
[http://dx.doi.org/10.1089/gtmb.2020.0249] [PMID: 33877897]
[9]
Tian, Y.; Tang, L.; Yi, P.; Pan, Q.; Han, Y.; Shi, Y.; Rao, S.; Tan, S.; Xia, L.; Lin, J.; Oyang, L.; Tang, Y.; Liang, J.; Luo, X.; Liao, Q.; Wang, H.; Zhou, Y. MiRNAs in radiotherapy resistance of nasopharyngeal carcinoma. J. Cancer, 2020, 11(13), 3976-3985.
[http://dx.doi.org/10.7150/jca.42734] [PMID: 32328201]
[10]
Maréchal, A.; Zou, L. DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb. Perspect. Biol., 2013, 5(9), a012716.
[http://dx.doi.org/10.1101/cshperspect.a012716] [PMID: 24003211]
[11]
Sokolenko, A.P.; Bogdanova, N.; Kluzniak, W.; Preobrazhenskaya, E.V.; Kuligina, E.S.; Iyevleva, A.G.; Aleksakhina, S.N.; Mitiushkina, N.V.; Gorodnova, T.V.; Bessonov, A.A.; Togo, A.V.; Lubiński, J.; Cybulski, C.; Jakubowska, A.; Dörk, T.; Imyanitov, E.N. Double heterozygotes among breast cancer patients analyzed for BRCA1, CHEK2, ATM, NBN/NBS1, and BLM germ-line mutations. Breast Cancer Res. Treat., 2014, 145(2), 553-562.
[http://dx.doi.org/10.1007/s10549-014-2971-1] [PMID: 24800916]
[12]
Prokopcova, J.; Kleibl, Z.; Banwell, C.M.; Pohlreich, P. The role of ATM in breast cancer development. Breast Cancer Res. Treat., , 2007104(2), 121-128.
[13]
Mei, L.; zhang, J.; He, K.; zhang, J. Ataxia telangiectasia and Rad3-related inhibitors and cancer therapy: where we stand. J. Hematol. Oncol., 2019, 12(1), 43.
[14]
Moslemi, M.; Vafaei, M.; Khani, P.; Soheili, M.; Nedaeinia, R.; Manian, M.; Moradi, Y.; Sohrabi, E. The prevalence of ataxia telangiectasia mutated (ATM) variants in patients with breast cancer patients: A systematic review and meta-analysis. Cancer Cell Int., 2021, 21(1), 474.
[http://dx.doi.org/10.1186/s12935-021-02172-8] [PMID: 34493284]
[15]
Jette, N.R.; Kumar, M.; Radhamani, S.; Arthur, G.; Goutam, S.; Yip, S.; Kolinsky, M.; Williams, G.J.; Bose, P.; Lees-Miller, S.P. ATM-deficient cancers provide new opportunities for precision oncology. Cancers, 2020, 12(3), 687.
[http://dx.doi.org/10.3390/cancers12030687] [PMID: 32183301]
[16]
Savitsky, K.; Bar-Shira, A.; Gilad, S.; Rotman, G.; Ziv, Y.; Vanagaite, L.; Tagle, D.A.; Smith, S.; Uziel, T.; Sfez, S.; Ashkenazi, M.; Pecker, I.; Frydman, M.; Harnik, R.; Patanjali, S.R.; Simmons, A.; Clines, G.A.; Sartiel, A.; Gatti, R.A.; Chessa, L.; Sanal, O.; Lavin, M.F.; Jaspers, N.G.J.; Taylor, A.M.R.; Arlett, C.F.; Miki, T.; Weissman, S.M.; Lovett, M.; Collins, F.S.; Shiloh, Y. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science, 1995, 268(5218), 1749-1753.
[http://dx.doi.org/10.1126/science.7792600] [PMID: 7792600]
[17]
Nissenkorn, A.; Levy-Shraga, Y.; Banet-Levi, Y.; Lahad, A.; Sarouk, I.; Modan-Moses, D. Endocrine abnormalities in ataxia telangiectasia: Findings from a national cohort. Pediatr. Res., 2016, 79(6), 889-894.
[http://dx.doi.org/10.1038/pr.2016.19] [PMID: 26891003]
[18]
Rothblum-Oviatt, C.; Wright, J.; Lefton-Greif, M.A.; McGrath-Morrow, S.A.; Crawford, T.O.; Lederman, H.M. Ataxia telangiectasia: A review. Orphanet J. Rare Dis., 2016, 11(1), 159.
[http://dx.doi.org/10.1186/s13023-016-0543-7] [PMID: 27884168]
[19]
Stewart, E.; Prayle, A.P.; Tooke, A.; Pasalodos, S.; Suri, M.; Bush, A.; Bhatt, J.M. Growth and nutrition in children with ataxia telangiectasia. Arch. Dis. Child., 2016, 101(12), 1137-1141.
[http://dx.doi.org/10.1136/archdischild-2015-310373] [PMID: 27573920]
[20]
van Os, N.J.H.; Roeleveld, N.; Weemaes, C.M.R.; Jongmans, M.C.J.; Janssens, G.O.; Taylor, A.M.R.; Hoogerbrugge, N.; Willemsen, M.A.A.P. Health risks for ataxia‐telangiectasia mutated heterozygotes: A systematic review, meta‐analysis and evidence‐based guideline. Clin. Genet., 2016, 90(2), 105-117.
[http://dx.doi.org/10.1111/cge.12710] [PMID: 26662178]
[21]
Petley, E.; Yule, A.; Alexander, S.; Ojha, S.; Whitehouse, W.P. The natural history of ataxia-telangiectasia (A-T): A systematic review. PLoS One, 2022, 17(3), e0264177.
[http://dx.doi.org/10.1371/journal.pone.0264177] [PMID: 35290391]
[22]
Rajoor, U.G.; Kashinakunti, M.D. Progressive ataxia in an 11 year child : A case report. Indian J. Public Health Res. Dev., 2013, 4(1), 208.
[23]
Liu, X.L.; Wang, T.; Huang, X.J.; Zhou, H.Y.; Luan, X.H.; Shen, J.Y.; Chen, S.D.; Cao, L. Novel ATM mutations with ataxia-telangiectasia. Neurosci. Lett., 2016, 611, 112-115.
[http://dx.doi.org/10.1016/j.neulet.2015.11.036] [PMID: 26628246]
[24]
Taylor, A.M.R.; Byrd, P.J. Molecular pathology of ataxia telangiectasia. J. Clin. Pathol., 2005, 58(10), 1009-1015.
[http://dx.doi.org/10.1136/jcp.2005.026062] [PMID: 16189143]
[25]
Perlman, S.L.; Boder Deceased, E.; Sedgewick, R.P.; Gatti, R.A. Ataxia-telangiectasia. Handb. Clin. Neurol., 2012, 103, 307-332.
[http://dx.doi.org/10.1016/B978-0-444-51892-7.00019-X] [PMID: 21827897]
[26]
Hoche, F.; Seidel, K.; Theis, M.; Vlaho, S.; Schubert, R.; Zielen, S.; Kieslich, M. Neurodegeneration in ataxia telangiectasia: What is new? What is evident? Neuropediatrics, 2012, 43(3), 119-129.
[http://dx.doi.org/10.1055/s-0032-1313915] [PMID: 22614068]
[27]
Amirifar, P.; Ranjouri, M.R.; Yazdani, R.; Abolhassani, H.; Aghamohammadi, A. Ataxia‐telangiectasia: A review of clinical features and molecular pathology. Pediatr. Allergy Immunol., 2019, 30(3), 277-288.
[http://dx.doi.org/10.1111/pai.13020] [PMID: 30685876]
[28]
Dahl, E.S.; Aird, K.M. Ataxia-telangiectasia mutated modulation of carbon metabolism in cancer. Front. Oncol., 2017, 7, 291.
[http://dx.doi.org/10.3389/fonc.2017.00291] [PMID: 29238697]
[29]
Hettiarachchi, D.; Panchal, H.; Pathirana, B.A.P.S.; Rathnayaka, P.D.; Padeniya, A.; Lai, P.S.; Dissanayake, V.H.W. Six Novel ATM gene variants in Sri Lankan patients with ataxia telangiectasia. Case Rep. Genet., 2020, 2020, 1-7.
[http://dx.doi.org/10.1155/2020/6630300] [PMID: 33376610]
[30]
Mandola, A.B.; Reid, B.; Sirror, R.; Brager, R.; Dent, P.; Chakroborty, P.; Bulman, D.E.; Roifman, C.M. Ataxia telangiectasia diagnosed on newborn screening–case cohort of 5 years’ experience. Front. Immunol., 2019, 10, 2940.
[http://dx.doi.org/10.3389/fimmu.2019.02940] [PMID: 31921190]
[31]
Renwick, A.; Thompson, D.; Seal, S.; Kelly, P.; Chagtai, T.; Ahmed, M.; North, B.; Jayatilake, H.; Barfoot, R.; Spanova, K.; McGuffog, L.; Evans, D.G.; Eccles, D.; Easton, D.F.; Stratton, M.R.; Rahman, N. ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat. Genet., 2006, 38(8), 873-875.
[http://dx.doi.org/10.1038/ng1837] [PMID: 16832357]
[32]
Min, A. Loss of ATM promotes growth and metastasis of mammary tumors. Oncogene, 2017, 36(37), 5175-5185.
[33]
Shiloh, Y. ATM and related protein kinases: Safeguarding genome integrity. Nat. Rev. Cancer, 2003, 3(3), 155-168.
[http://dx.doi.org/10.1038/nrc1011] [PMID: 12612651]
[34]
Li, H.; Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics, 2010, 26(5), 589-595.
[http://dx.doi.org/10.1093/bioinformatics/btp698] [PMID: 20080505]
[35]
Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N. The Sequence Alignment/Map format and SAMtools. Bioinformatics, 2009, 25(16), 2078-2079.
[36]
Yang, H.; Wang, K. Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR. Nat. Protoc., 2015, 10(10), 1556-1566.
[http://dx.doi.org/10.1038/nprot.2015.105] [PMID: 26379229]
[37]
Online Mendelian Inheritance in Man. OMIM®. Johns Hopkins University, Baltimore, MD. MIM Number: *610467: 01/08/2016. 2016. Available from: https://omim.org/ (accessed 07/03/2022).
[38]
Kopanos, C.; Tsiolkas, V.; Kouris, A.; Chapple, C.E.; Albarca Aguilera, M.; Meyer, R.; Massouras, A. VarSome: The human genomic variant search engine. Bioinformatics, 2019, 35(11), 1978-1980.
[http://dx.doi.org/10.1093/bioinformatics/bty897] [PMID: 30376034]
[39]
Schwarz, J.M.; Cooper, D.N.; Schuelke, M.; Seelow, D. Pathogenic variantTaster2: Pathogenic variant prediction for the deep-sequencing age. Nat. Methods, 2014, 11(4), 361-362.
[http://dx.doi.org/10.1038/nmeth.2890] [PMID: 24681721]
[40]
Adzhubei, IA.; Schmidt, S.; Peshkin, L.; Ramensky, VE.; Gerasimova, A.; Bork, P. A method and server for predicting damaging missense mutations. Nat Methods, 2010, 7(4), 248-249.
[41]
Sabarinathan, R.; Tafer, H.; Seemann, S.E.; Hofacker, I.L.; Stadler, P.F.; Gorodkin, J. The RNAsnp web server: Predicting SNP effects on local RNA secondary structure. Nucleic Acids Res., 2013, 41(W1), W475-W479.
[http://dx.doi.org/10.1093/nar/gkt291] [PMID: 23630321]
[42]
Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; Lepore, R.; Schwede, T. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res., 2018, 46(W1), W296-W303.
[http://dx.doi.org/10.1093/nar/gky427] [PMID: 29788355]
[43]
Pertea, M.; Lin, X.; Salzberg, S.L. GeneSplicer: A new computational method for splice site prediction. Nucleic Acids Res., 2001, 29(5), 1185-1190.
[http://dx.doi.org/10.1093/nar/29.5.1185] [PMID: 11222768]
[44]
Reese, M.G.; Eeckman, F.H.; Kulp, D.; Haussler, D. Improved splice site detection in Genie. J. Comput. Biol., 1997, 4(3), 311-323.
[http://dx.doi.org/10.1089/cmb.1997.4.311] [PMID: 9278062]
[45]
Eng, L.; Coutinho, G.; Nahas, S.; Yeo, G.; Tanouye, R.; Babaei, M.; Dörk, T.; Burge, C.; Gatti, R.A. Nonclassical splicing mutations in the coding and noncoding regions of the ATM Gene: Maximum entropy estimates of splice junction strengths. Hum. Mutat., 2004, 23(1), 67-76.
[http://dx.doi.org/10.1002/humu.10295] [PMID: 14695534]
[46]
Mangone, F.R.; Miracca, E.C.; Feilotter, H.E.; Mulligan, L.M.; Nagai, M.A. ATM gene mutations in sporadic breast cancer patients from Brazil. Springerplus, 2015, 4(1), 23.
[http://dx.doi.org/10.1186/s40064-015-0787-z] [PMID: 25625042]
[47]
Teraoka, S.N.; Telatar, M.; Becker-Catania, S.; Liang, T.; Önengüt, S.; Tolun, A.; Chessa, L.; Sanal, Ö.; Bernatowska, E.; Gatti, R.A.; Concannon, P. Splicing defects in the ataxia-telangiectasia gene, ATM: Underlying mutations and consequences. Am. J. Hum. Genet., 1999, 64(6), 1617-1631.
[http://dx.doi.org/10.1086/302418] [PMID: 10330348]
[48]
National Library of Medicine, National Center for Biotechnology Information. Available from: https://www.ncbi.nlm.nih.gov/clinvar/ (accessed 08/26/2022).
[49]
Yu, Y.; Choi, K.; Wu, J.; Andreassen, P.R.; Dexheimer, P.J.; Keddache, M.; Brems, H.; Spinner, R.J.; Cancelas, J.A.; Martin, L.J.; Wallace, M.R.; Legius, E.; Vogel, K.S.; Ratner, N. NF1 patient missense variants predict a role for ATM in modifying neurofibroma initiation. Acta Neuropathol., 2020, 139(1), 157-174.
[http://dx.doi.org/10.1007/s00401-019-02086-w] [PMID: 31664505]
[50]
Meyer, A.; Wilhelm, B.; Dörk, T.; Bremer, M.; Baumann, R.; Karstens, J.H.; Machtens, S. ATM missense variant P1054R predisposes to prostate cancer. Radiother. Oncol., 2007, 83(3), 283-288.
[http://dx.doi.org/10.1016/j.radonc.2007.04.029] [PMID: 17502119]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy