Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

In Silico Pharmacokinetics, Molecular Docking and Molecular Dynamics Simulation Studies of Nucleoside Analogs for Drug Discovery- A Mini Review

Author(s): Sarkar M.A. Kawsar*, Nasrin S. Munia, Supriyo Saha and Yasuhiro Ozeki

Volume 24, Issue 11, 2024

Published on: 10 November, 2023

Page: [1070 - 1088] Pages: 19

DOI: 10.2174/0113895575258033231024073521

Price: $65

Abstract

Nucleoside analogs have been widely used as antiviral, antitumor, and antiparasitic agents due to their ability to inhibit nucleic acid synthesis. Adenosine, cytidine, guanosine, thymidine and uridine analogs such as didanosine, vidarabine, remdesivir, gemcitabine, lamivudine, acyclovir, abacavir, zidovusine, stavudine, and idoxuridine showed remarkable anticancer and antiviral activities. In our previously published articles, our main intention was to develop newer generation nucleoside analogs with acylation-induced modification of the hydroxyl group and showcase their biological potencies. In the process of developing nucleoside analogs, in silico studies play an important role and provide a scientific background for biological data. Molecular interactions between drugs and receptors followed by assessment of their stability in physiological environments, help to optimize the drug development process and minimize the burden of unwanted synthesis. Computational approaches, such as DFT, FMO, MEP, ADMET prediction, PASS prediction, POM analysis, molecular docking, and molecular dynamics simulation, are the most popular tools to culminate all preclinical study data and deliver a molecule with maximum bioactivity and minimum toxicity. Although clinical drug trials are crucial for providing dosage recommendations, they can only indirectly provide mechanistic information through researchers for pathological, physiological, and pharmacological determinants. As a result, in silico approaches are increasingly used in drug discovery and development to provide mechanistic information of clinical value. This article portrays the current status of these methods and highlights some remarkable contributions to the development of nucleoside analogs with optimized bioactivity.

Keywords: Nucleoside, molecular docking, molecular dynamics simulation, POM, pharmacophore, anticancer and antiviral activities.

Graphical Abstract
[1]
Mahmoud, S.; Hasabelnaby, S.; Hammad, S.; Sakr, T. Antiviral nucleoside and nucleotide analogs: A review. J. Adv. Pharm. Educ. Res., 2008, 2, 73.
[2]
Amarapurkar, D.N. Telbivudine: A new treatment for chronic hepatitis B. World J. Gastroenterol., 2007, 13(46), 6150-6155.
[http://dx.doi.org/10.3748/wjg.v13.i46.6150] [PMID: 18069753]
[3]
Langley, D.R.; Walsh, A.W.; Baldick, C.J.; Eggers, B.J.; Rose, R.E.; Levine, S.M.; Kapur, A.J.; Colonno, R.J.; Tenney, D.J. Inhibition of hepatitis B virus polymerase by entecavir. J. Virol., 2007, 81(8), 3992-4001.
[http://dx.doi.org/10.1128/JVI.02395-06] [PMID: 17267485]
[4]
Koczor, C.A.; Lewis, W. Nucleoside reverse transcriptase inhibitor toxicity and mitochondrial DNA. Expert Opin. Drug Metab. Toxicol., 2010, 6(12), 1493-1504.
[http://dx.doi.org/10.1517/17425255.2010.526602] [PMID: 20929279]
[5]
Deming, P.; Arora, S. Taribavirin in the treatment of hepatitis C. Expert Opin. Investig. Drugs, 2011, 20(10), 1435-1443.
[http://dx.doi.org/10.1517/13543784.2011.606214] [PMID: 21854301]
[6]
De Clercq, E. Anti-HIV drugs: 25 compounds approved within 25 years after the discovery of HIV. Int. J. Antimicrob. Agents, 2009, 33(4), 307-320.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.10.010] [PMID: 19108994]
[7]
Akhtar, R.; Yousaf, M.; Zahoor, A.F.; Naqvi, S.A.R.; Abbas, N. Synthesis of lamivudine (3TC) and its derivatives. Phosphorus Sulfur Silicon Relat. Elem., 2017, 192(9), 989-1001.
[http://dx.doi.org/10.1080/10426507.2017.1321648]
[8]
Xiao, J.H. Q, Y.; Xiong, Q. Nucleosides, a valuable chemical marker for quality control in traditional Chinese medicine Cordyceps. Recent Pat. Biotechnol., 2013, 7(2), 153-166.
[http://dx.doi.org/10.2174/1872208311307020007] [PMID: 24001090]
[9]
Eyer, L.; Nencka, R.; Huvarová, I.; Palus, M.; Joao Alves, M.; Gould, E.A.; De Clercq, E.; Růžek, D Nucleoside inhibitors of Zika virus. J. Infect. Dis., 2016, 214(5), 707-711.
[http://dx.doi.org/10.1093/infdis/jiw226] [PMID: 27234417]
[10]
Taylor, R.; Kotian, P.; Warren, T.; Panchal, R.; Bavari, S.; Julander, J.; Dobo, S.; Rose, A.; El-Kattan, Y.; Taubenheim, B.; Babu, Y.; Sheridan, W.P. BCX4430 – A broad-spectrum antiviral adenosine nucleoside analog under development for the treatment of Ebola virus disease. J. Infect. Public Health, 2016, 9(3), 220-226.
[http://dx.doi.org/10.1016/j.jiph.2016.04.002] [PMID: 27095300]
[11]
Veel Pilay, K.P.; Jasamai, M.; Thayan, R.; Santhanam, J.; Syed Hassan, S.; Yap, W.B. Nucleoside analogs as potential antiviral agents for dengue virus infections. Med. Chem. Res., 2017, 26(7), 1382-1387.
[http://dx.doi.org/10.1007/s00044-017-1863-4]
[12]
Yamaguchi, M.; Matsuda, A.; Ichikawa, S. Synthesis of isoxazolidine-containing uridine derivatives as caprazamycin analogues. Org. Biomol. Chem., 2015, 13(4), 1187-1197.
[http://dx.doi.org/10.1039/C4OB02142H] [PMID: 25428330]
[13]
Connolly, G.P.; Duley, J.A. Uridine and its nucleotides: Biological actions, therapeutic potentials. Trends Pharmacol. Sci., 1999, 20(5), 218-225.
[http://dx.doi.org/10.1016/S0165-6147(99)01298-5] [PMID: 10354618]
[14]
Dobolyi, A.; Juhász, G.; Kovács, Z.; Kardos, J. Uridine function in the central nervous system. Curr. Top. Med. Chem., 2011, 11(8), 1058-1067.
[http://dx.doi.org/10.2174/156802611795347618] [PMID: 21401495]
[15]
Liu, Z.; Chen, X.; Li, Z.; Ye, W.; Ding, H.; Li, P.; Aung, L.H.H. Role of RNA oxidation in neurodegenerative diseases. Int. J. Mol. Sci., 2020, 21(14), 5022.
[http://dx.doi.org/10.3390/ijms21145022] [PMID: 32708667]
[16]
Sato, Y.; Utsumi, K.; Maruyama, T.; Kimura, T.; Yamamoto, I.; Richman, D.D. Synthesis and hypnotic and anti-human immunodeficiency virus-1 activities of N3-substituted 2′--deoxy-2′-fluorouridines. Chem. Pharm. Bull., 1994, 42(3), 595-598.
[http://dx.doi.org/10.1248/cpb.42.595] [PMID: 8004706]
[17]
Cakir, A.; Ocalan Esmerce, B.; Aydin, B.; Koc, C.; Cansev, M.; Gulec Suyen, G.; Kahveci, N. Effects of uridine administration on hippocampal matrix metalloproteinases and their endogenous inhibitors in REM sleep-deprived rats. Brain Res., 2022, 1793, 148039.
[http://dx.doi.org/10.1016/j.brainres.2022.148039] [PMID: 35932811]
[18]
Njoku, D. Drug-induced hepatotoxicity: Metabolic, genetic and immunological basis. Int. J. Mol. Sci., 2014, 15(4), 6990-7003.
[http://dx.doi.org/10.3390/ijms15046990] [PMID: 24758937]
[19]
Strasser, S.; Maier, S.; Leisser, C.; Saiko, P.; Madlener, S.; Bader, Y.; Bernhaus, A.; Gueorguieva, M.; Richter, S.; Mader, R.M.; Wesierska-Gadek, J.; Schott, H.; Szekeres, T.; Fritzer-Szekeres, M.; Krupitza, G. 5-FdUrd–araC heterodinucleoside re-establishes sensitivity in 5-FdUrd- and AraC-resistant MCF-7 breast cancer cells overexpressing ErbB2. Differentiation, 2006, 74(9-10), 488-498.
[http://dx.doi.org/10.1111/j.1432-0436.2006.00082.x] [PMID: 17177846]
[20]
Ghosh, D. Ed.; Nutraceuticals in brain health and beyond; Academic Press, 2020.
[21]
Ison, G.; Beaver, J.A.; McGuinn, W.D., Jr; Palmby, T.R.; Dinin, J.; Charlab, R.; Marathe, A.; Jin, R.; Liu, Q.; Chen, X.H.; Ysern, X.; Stephens, O.; Bai, G.; Wang, Y.; Dorff, S.E.; Cheng, J.; Tang, S.; Sridhara, R.; Pierce, W.; McKee, A.E.; Ibrahim, A.; Kim, G.; Pazdur, R. FDA approval: Uridine triacetate for the treatment of patients following fluorouracil or capecitabine overdose or exhibiting early-onset severe toxicities following administration of these drugs. Clin. Cancer Res., 2016, 22(18), 4545-4549.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0638] [PMID: 27401247]
[22]
Kawsar, S.M.A.; Mamun, S.M.A.; Rahman, M.S.; Yasumitsu, H.; Ozeki, Y. In vitro antibacterial and antifungal effects of a 30 kDa D-galactoside-specific lectin from the demosponge, Halichondria okadai. Int. J. Biol. Life Sci., 2011, 6, 31.
[23]
Kawsar, S.M.A.; Islam, M.; Jesmin, S.; Manchur, M.A.; Hasan, I.; Rajia, S. Evaluation of the antimicrobial activity and cytotoxic effect of some uridine derivatives. Int. J. Biosci., 2018, 12, 211.
[24]
Chen, X.; Wiemer, A.J.; Hohl, R.J.; Wiemer, D.F. Stereoselective synthesis of the 5′-hydroxy-5′-phosphonate derivatives of cytidine and cytosine arabinoside. J. Org. Chem., 2002, 67(26), 9331-9339.
[http://dx.doi.org/10.1021/jo020483k] [PMID: 12492335]
[25]
Rana, K.M.; Ferdous, J.; Kawsar, M.A.; Hosen, A. Ribose moieties acylation and characterization of some cytidine analogs. J. Siberian Federal Univ. Chem., 2020, 13, 465-478.
[http://dx.doi.org/10.17516/1998-2836-0199]
[26]
Ferraris, D.; Duvall, B.; Delahanty, G.; Mistry, B.; Alt, J.; Rojas, C.; Rowbottom, C.; Sanders, K.; Schuck, E.; Huang, K.C.; Redkar, S.; Slusher, B.B.; Tsukamoto, T. Design, synthesis, and pharmacological evaluation of fluorinated tetrahydrouridine derivatives as inhibitors of cytidine deaminase. J. Med. Chem., 2014, 57(6), 2582-2588.
[http://dx.doi.org/10.1021/jm401856k] [PMID: 24520856]
[27]
Gromova, O.A.; Torshin, I.Y.; Grishina, T.R.; Demidov, V.I.; Bogacheva, T.E. Molecular and clinical aspects of the action of cytidine diphosphocholine on cognitive functions. Neurosci. Behav. Physiol., 2022, 52(3), 347-355.
[http://dx.doi.org/10.1007/s11055-022-01247-x]
[28]
Marin, D.; Teijeiro, C. Differential pulse polarographic determination of the antineoplastic agent cytarabine and its isomer the nucleoside cytidine. J. Electroanal. Chem., 1992, 343(3), 417-424.
[http://dx.doi.org/10.1016/0022-0728(92)85103-A]
[29]
Stresemann, C.; Lyko, F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int. J. Cancer, 2008, 123(1), 8-13.
[http://dx.doi.org/10.1002/ijc.23607] [PMID: 18425818]
[30]
Bartolucci, S.; Estenoz, M.; de Franciscis, V.; Carpinelli, P.; Colucci, G.L.; Tocco, G.A.; Rossi, M. Effect of cytidine analogs on cell growth and differentiation on a human neuroblastoma line. Cell Biophys., 1989, 15(1-2), 67-77.
[http://dx.doi.org/10.1007/BF02991580] [PMID: 2476228]
[31]
Harris, K.; Brabant, W.; Styrchak, S.; Gall, A.; Daifuku, R. KP-1212/1461, a nucleoside designed for the treatment of HIV by viral mutagenesis. Antiviral Res., 2005, 67(1), 1-9.
[http://dx.doi.org/10.1016/j.antiviral.2005.03.004] [PMID: 15890415]
[32]
Ptasińska, S.; Denifl, S.; Gohlke, S.; Scheier, P.; Illenberger, E.; Märk, T.D. Decomposition of thymidine by low-energy electrons: Implications for the molecular mechanisms of single-strand breaks in DNA. Angew. Chem. Int. Ed., 2006, 45(12), 1893-1896.
[http://dx.doi.org/10.1002/anie.200503930] [PMID: 16506258]
[33]
Månsson, E.P.; De Camillis, S.; Castrovilli, M.C.; Galli, M.; Nisoli, M.; Calegari, F.; Greenwood, J.B. Ultrafast dynamics in the DNA building blocks thymidine and thymine initiated by ionizing radiation. Phys. Chem. Chem. Phys., 2017, 19(30), 19815-19821.
[http://dx.doi.org/10.1039/C7CP02803B] [PMID: 28657621]
[34]
Yan, Z.; Qiao, B.; Zhang, H.; Wang, Y.; Gou, W. Effectiveness of telbivudine antiviral treatment in patients with hepatitis B virus associated glomerulonephritis. Medicine, 2018, 97(31), e11716.
[http://dx.doi.org/10.1097/MD.0000000000011716] [PMID: 30075577]
[35]
Shealy, Y.F.; O’Dell, C.A.; Shannon, W.M.; Arnett, G. Carbocyclic analogs of 5-substituted uracil nucleosides. Synthesis and antiviral activity. J. Med. Chem., 1983, 26(2), 156-161.
[http://dx.doi.org/10.1021/jm00356a008] [PMID: 6298423]
[36]
Hurst, M.; Noble, S. Stavudine. Drugs, 1999, 58(5), 919-949.
[http://dx.doi.org/10.2165/00003495-199958050-00012] [PMID: 10595868]
[37]
Rabasseda, X. Brivudine: A herpes virostatic with rapid antiviral activity and once-daily dosing. Drugs Today, 2003, 39(5), 359-371.
[http://dx.doi.org/10.1358/dot.2003.39.5.740221] [PMID: 12861349]
[38]
Singh, R.K.; Yadav, D.; Rai, D.; Kumari, G.; Pannecouque, C.; De Clercq, E. Synthesis, structure–activity relationship and antiviral activity of 3′-N,N-dimethylamino-2′,3′-dideoxythymidine and its prodrugs. Eur. J. Med. Chem., 2010, 45(9), 3787-3793.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.028] [PMID: 20538384]
[39]
Chowdhury, S.A.; Bhuiyan, M.M.R.; Ozeki, Y.; Kawsar, S.M.A. Simple and rapid synthesis of some nucleoside derivatives: Structural and spectral characterization. Curr. Chem. Lett., 2016, 5, 83-92.
[http://dx.doi.org/10.5267/j.ccl.2015.12.001]
[40]
Guinan, M.; Benckendorff, C.; Smith, M.; Miller, G.J. Recent advances in the chemical synthesis and evaluation of anticancer nucleoside analogues. Molecules, 2020, 25(9), 2050.
[http://dx.doi.org/10.3390/molecules25092050] [PMID: 32354007]
[41]
Rachakonda, S.; Cartee, L. Challenges in antimicrobial drug discovery and the potential of nucleoside antibiotics. Curr. Med. Chem., 2004, 11(6), 775-793.
[http://dx.doi.org/10.2174/0929867043455774] [PMID: 15032731]
[42]
Yu, R.Z.; Grundy, J.S.; Geary, R.S. Clinical pharmacokinetics of second generation antisense oligonucleotides. Expert Opin. Drug Metab. Toxicol., 2013, 9(2), 169-182.
[http://dx.doi.org/10.1517/17425255.2013.737320] [PMID: 23231725]
[43]
Herdewijn, P.; Balzarini, J.; Baba, M.; Pauwels, R.; Van Aerschot, A.; Janssen, G.; De Clercq, E. Synthesis and anti-HIV activity of different sugar-modified pyrimidine and purine nucleosides. J. Med. Chem., 1988, 31(10), 2040-2048.
[http://dx.doi.org/10.1021/jm00118a033] [PMID: 3172142]
[44]
Herdewijn, P. Ed.; Modified nucleosides: In biochemistry, biotechnology and medicine; John Wiley & Sons, 2008.
[http://dx.doi.org/10.1002/9783527623112]
[45]
Saha, S.; Banerjee, S.; Ganguly, S. Molecular docking studies of some novel hydroxamic acid derivatives. Int. J. Chemtech Res., 2010, 2, 932.
[46]
Kabir, A.K.M.S.; Kawsar, S.M.A.; Bhuiyan, M.M.R.; Islam, M.R.; Rahman, M.S. Biological evaluation of some mannopyranoside derivatives. Bull. Pure Appl. Sci., 2004, 23, 83.
[47]
Li, N.; Smith, T.J.; Zong, M.H. Biocatalytic transformation of nucleoside derivatives. Biotechnol. Adv., 2010, 28(3), 348-366.
[http://dx.doi.org/10.1016/j.biotechadv.2010.01.006] [PMID: 20138980]
[48]
Novosjolova, I.; Bizdēna, Ē.; Turks, M. Synthesis and applications of azolylpurine and azolylpurine nucleoside derivatives. Eur. J. Org. Chem., 2015, 2015(17), 3629-3649.
[http://dx.doi.org/10.1002/ejoc.201403527]
[49]
Kawsar, S.M.A.; Matsumoto, R.; Fujii, Y.; Matsuoka, H.; Masuda, N.; Chihiro, I.; Yasumitsu, H.; Kanaly, R.A.; Sugawara, S.; Hosono, M.; Nitta, K.; Ishizaki, N.; Dogasaki, C.; Hamako, J.; Matsui, T.; Ozeki, Y. Cytotoxicity and glycan-binding profile of a D-galactose-binding lectin from the eggs of a Japanese sea hare (Aplysia kurodai). Protein J., 2011, 30(7), 509-519.
[http://dx.doi.org/10.1007/s10930-011-9356-7] [PMID: 21953532]
[50]
Oka, N.; Yamamoto, M.; Sato, T.; Wada, T. Solid-phase synthesis of stereoregular oligodeoxyribonucleoside phosphorothioates using bicyclic oxazaphospholidine derivatives as monomer units. J. Am. Chem. Soc., 2008, 130(47), 16031-16037.
[http://dx.doi.org/10.1021/ja805780u] [PMID: 18980312]
[51]
Cosgrove, S.C.; Miller, G.J. Advances in biocatalytic and chemoenzymatic synthesis of nucleoside analogues. Expert Opin. Drug Discov., 2022, 17(4), 355-364.
[http://dx.doi.org/10.1080/17460441.2022.2039620] [PMID: 35133222]
[52]
Kawsar, S.M.A.; Ara, H.A.; Uddin, S.A.; Hossain, M.K.; Chowdhury, S.A.; Sanaullah, A.F.M.; Manchur, M.A.; Hasan, I.; Ogawa, Y.; Fujii, Y.; Koide, Y.; Ozeki, Y. Chemically modified uridine molecules incorporating acyl residues to enhance antibacterial and cytotoxic activities. Int. J. Org. Chem., 2015, 5(4), 232-245.
[http://dx.doi.org/10.4236/ijoc.2015.54023]
[53]
de Clercq, E. Milestones in the discovery of antiviral agents: Nucleosides and nucleotides. Acta Pharm. Sin. B, 2012, 2(6), 535-548.
[http://dx.doi.org/10.1016/j.apsb.2012.10.001]
[54]
Devi, S.R.; Jesmin, S.; Rahman, M.; Manchur, M.A.; Fujii, Y.; Ozeki, Y.; Kawsar, S.M.A. Microbial efficacy and two step synthesis of uridine derivatives with spectral characterization. ACTA Pharmaceut. Sci., 2019, 57(1), 47.
[http://dx.doi.org/10.23893/1307-2080.APS.05704]
[55]
Islam, M.; Ariı̇fuzzaman, A.; Rahman, M.; Rahman, M.A.; Kawsar, S.M.A.K Novel methyl 4,6-O-benzylidene-α-D-glucopyranoside derivatives: Synthesis, structural characterization and evaluation of antibacterial activities. Hacettepe J. Biol. Chem., 2019, 47(2), 153-164.
[http://dx.doi.org/10.15671/hjbc.622038]
[56]
Mahmud, S.; Biswas, S.; Kumar Paul, G.; Mita, M.A.; Afrose, S.; Robiul Hasan, M.; Sharmin Sultana Shimu, M.; Uddin, M.A.R.; Salah Uddin, M.; Zaman, S.; Kaderi Kibria, K.M.; Arif Khan, M.; Bin Emran, T.; Abu Saleh, M. Antiviral peptides against the main protease of SARS-CoV-2: A molecular docking and dynamics study. Arab. J. Chem., 2021, 14(9), 103315.
[http://dx.doi.org/10.1016/j.arabjc.2021.103315] [PMID: 34909064]
[57]
Watts, J.K. Locked nucleic acid: Tighter is different. Chem. Commun., 2013, 49(50), 5618-5620.
[http://dx.doi.org/10.1039/c3cc40340h] [PMID: 23682352]
[58]
Mahmoud, S.; Hasabelnaby, S.; Hammad, S.F.; Sakr, T.M. Antiviral nucleoside and nucleotide analogs; A review. J. Adv. Pharm. Educ. Res., 2018, 2, 73.
[59]
Bhat, A.R.; Dongre, R.S.; Almalki, F.A.; Berredjem, M.; Aissaoui, M.; Touzani, R.; Hadda, T.B.; Akhter, M.S. Synthesis, biological activity and POM/DFT/docking analyses of annulated pyrano[2,3-d]pyrimidine derivatives: Identification of antibacterial and antitumor pharmacophore sites. Bioorg. Chem., 2021, 106, 104480.
[http://dx.doi.org/10.1016/j.bioorg.2020.104480] [PMID: 33279245]
[60]
Judge, V.; Narasimhan, B.; Ahuja, M.; Sriram, D.; Yogeeswari, P.; De Clercq, E.; Pannecouque, C.; Balzarini, J. Synthesis, antimycobacterial, antiviral, antimicrobial activity and QSAR studies of N(2)-acyl isonicotinic acid hydrazide derivatives. Med. Chem., 2013, 9(1), 53-76.
[http://dx.doi.org/10.2174/157340613804488404] [PMID: 22762163]
[61]
Hamuy, R.; Berman, B. Topical antiviral agents for herpes simplex virus infections. Drugs Today, 1998, 34(12), 1013-1025.
[http://dx.doi.org/10.1358/dot.1998.34.12.487486] [PMID: 14743269]
[62]
Murata, D.; Endo, Y.; Obata, T.; Sakamoto, K.; Syouji, Y.; Kadohira, M.; Matsuda, A.; Sasaki, T. A crucial role of uridine/cytidine kinase 2 in antitumor activity of 3′-ethynyl nucleosides. Drug Metab. Dispos., 2004, 32(10), 1178-1182.
[http://dx.doi.org/10.1124/dmd.104.000737] [PMID: 15280220]
[63]
Kawsar, S.M.A.; Hosen, M.A.; Fujii, Y.; Ozeki, Y. Thermochemical, DFT, molecular docking and pharmacokinetic studies of methyl β-D-galactopyranoside esters. SDRP J. Computat. Chem. Mol. Model., 2020, 4(4), 452-462.
[http://dx.doi.org/10.25177/JCCMM.4.4.RA.10663]
[64]
Wu, F.; Zhou, Y.; Li, L.; Shen, X.; Chen, G.; Wang, X.; Liang, X.; Tan, M.; Huang, Z. Computational approaches in preclinical studies on drug discovery and development. Front Chem., 2020, 8, 726.
[http://dx.doi.org/10.3389/fchem.2020.00726] [PMID: 33062633]
[65]
Kawsar, S.M.A.; Kumer, A. Computational investigation of methyl α-d-glucopyranoside derivatives as inhibitor against bacteria, fungi and COVID-19 (SARS-2). J. Chil. Chem. Soc., 2021, 66(2), 5206-5214.
[http://dx.doi.org/10.4067/S0717-97072021000205206]
[66]
De Ruyck, J.; Brysbaert, G.; Blossey, R.; Lensink, M.F. Molecular docking as a popular tool in drug design, an in-silico travel. Adv. App. Bioinfor. Chem, 2016.
[67]
Hassan, A.; Askar, A.; Nossier, E.; Naglah, A.; Moustafa, G.; Al-Omar, M. Antibacterial evaluation, in silico characters and molecular docking of Schiff bases derived from 5-aminopyrazoles. Molecules, 2019, 24(17), 3130.
[http://dx.doi.org/10.3390/molecules24173130] [PMID: 31466322]
[68]
Bora, N.; Nath Jha, A. An integrative approach using systems biology, mutational analysis with molecular dynamics simulation to challenge the functionality of a target protein. Chem. Biol. Drug Des., 2019, 93(6), 1050-1060.
[http://dx.doi.org/10.1111/cbdd.13502] [PMID: 30891955]
[69]
Ouassaf, M.; Belaidi, S.; Chtita, S.; Lanez, T.; Abul, Q.F.; Md Amiruddin, H. Combined molecular docking and dynamics simulations studies of natural compounds as potent inhibitors against SARS-CoV-2 main protease. J. Biomol. Struct. Dyn., 2021, 19, 1.
[PMID: 34315340]
[70]
Gao, Y.; Chen, Y.; Tian, Y.; Zhao, Y.; Wu, F.; Luo, X.; Ju, X.; Liu, G. In silico study of 3-hydroxypyrimidine-2,4-diones as inhibitors of HIV RT-associated RNase H using molecular docking, molecular dynamics, 3D-QSAR, and pharmacophore models. New J. Chem., 2019, 43(43), 17004-17017.
[http://dx.doi.org/10.1039/C9NJ03353J]
[71]
Jacobson, K.A.; Costanzi, S.; Ivanov, A.A.; Tchilibon, S.; Besada, P.; Gao, Z.G.; Maddileti, S.; Harden, T.K. Structure activity and molecular modeling analyses of ribose- and base-modified uridine 55′-triphosphate analogues at the human P2Y2 and P2Y4 receptors. Biochem. Pharmacol., 2006, 71(4), 540-549.
[http://dx.doi.org/10.1016/j.bcp.2005.11.010] [PMID: 16359641]
[72]
Azeem, S.M.; Muwonge, A.N.; Thakkar, N.; Lam, K.W.; Frey, K.M. Structure-based methods to predict mutational resistance to diarylpyrimidine non-nucleoside reverse transcriptase inhibitors. J. Mol. Graph. Model., 2018, 79, 133-139.
[http://dx.doi.org/10.1016/j.jmgm.2017.10.023] [PMID: 29156381]
[73]
Hayakawa, H.; Ashizawa, H.; Tanaka, H.; Miyasaka, T. Introduction of an alkyl group into the sugar portion of uracilnucleosides by the use of Gilman reagents. Chem. Pharm. Bull., 1990, 38(2), 355-360.
[http://dx.doi.org/10.1248/cpb.38.355]
[74]
Hui, X.P.; Chu, C.H.; Zhang, Z.Y.; Wang, Q.; Zhang, Q. Synthesis and antibacterial activities of 1,3,4-oxadiazole derivatives containing 5-methylisoxazole moiety. ChemInform, 2002, 34.
[75]
Bektaş, H.; Karaali, N.; Şahin, D.; Demirbaş, A.; Karaoglu, Ş.A.; Demirbaş, N. Synthesis and antimicrobial activities of some new 1,2,4-triazole derivatives. Molecules, 2010, 15(4), 2427-2438.
[http://dx.doi.org/10.3390/molecules15042427] [PMID: 20428053]
[76]
Arifuzzaman, M.; Islam, M.M.; Rahman, M.M.; Rahman, M.A.; Kawsar, S.M.A. An efficient approach to the synthesis of thymidine derivatives containing various acyl groups: Characterization and antibacterial activities. ACTA Pharmaceut. Sci., 2018, 56(4), 7.
[http://dx.doi.org/10.23893/1307-2080.APS.05622]
[77]
Gupta, R.; Paul, S.; Gupta, A.K.; Kachroo, P.L.; Bani, S. Cheminform abstract: synthesis and biological activities of some 2-substituted phenyl-3-(3-alkyl/aryl-5,6-dihydro-s-triazolo[3,4-b][1,3,4]thiadiazol-6-yl)indoles. ChemInform, 1998, 29(5)
[http://dx.doi.org/10.1002/chin.199805128]
[78]
Lien, E.J.; Guo, Z.R.; Li, R.L.; Su, C.T. Use of dipole moment as a parameter in drug-receptor interaction and quantitative structure activity relationship studies. J. Pharm. Sci., 1982, 71(6), 641-655.
[http://dx.doi.org/10.1002/jps.2600710611] [PMID: 7097526]
[79]
El-Farargy, A.; Ghoneim, A. Synthesis of some purine nucleoside derivatives with expected biological activity. Curr. Org. Chem., 2009, 13(18), 1842-1847.
[http://dx.doi.org/10.2174/138527209789630488]
[80]
Wagner, D.; Verheyden, J.P.H.; Moffatt, J.G. Preparation and synthetic utility of some organotin derivatives of nucleosides. J. Org. Chem., 1974, 39(1), 24-30.
[http://dx.doi.org/10.1021/jo00915a005]
[81]
Maguire, A.R.; Hladezuk, I.; Ford, A. New methods for the synthesis of N-benzoylated uridine and thymidine derivatives; a convenient method for N-debenzoylation. Carbohydr. Res., 2002, 337(4), 369-372.
[http://dx.doi.org/10.1016/S0008-6215(01)00325-1] [PMID: 11841817]
[82]
Mitsunobu, O.; Kimura, J.; Fujisawa, Y. Studies on nucleosides and nucleotides. II. Selective acylation of 5′-hydroxyl group of thymidine. Bull. Chem. Soc. Jpn., 1972, 45(1), 245-247.
[http://dx.doi.org/10.1246/bcsj.45.245]
[83]
Bulbul, M.Z.H.; Chowdhury, T.S.; Misbah, M.M.H.; Ferdous, J.; Dey, S.; Hasan, I.; Fujii, Y.; Ozeki, Y.; Kawsar, S.M.A. Synthesis of new series of pyrimidine nucleoside derivatives bearing the acyl moieties as potential antimicrobial agents. Pharmacia, 2021, 68(1), 23-34.
[http://dx.doi.org/10.3897/pharmacia.68.e56543]
[84]
Prakash, T.P. An overview of sugar-modified oligonucleotides for antisense therapeutics. Chem. Biodivers., 2011, 8(9), 1616-1641.
[http://dx.doi.org/10.1002/cbdv.201100081] [PMID: 21922654]
[85]
Kabir, A.K.M.S.; Kawsar, S.M.A.; Bhuiyan, M.M.R.; Hossain, S.; Rahman, M.S. Biological evaluation of some uridine derivatives. Chittagong Univ. J. Sci., 2003, 27, 105.
[86]
Kabir, A.K.M.S.; Kawsar, S.M.A.; Bhuiyan, M.M.R.; Rahman, M.S.; Chowdhury, M.E. Antimicrobial screening studies of some derivatives of methyl α-D-glucopyranoside. Pak. J. Sci. Ind. Res., 2009, 52, 138.
[87]
Rahman, M.; Islam, M.; Arifuzzaman, M.; Ferdous, J.; Rahman, M.A.; Hasan, I.; Asaduzzaman, A.K.M.; Kawsar, S.M.A. Two steps synthesis of uracil-1-β-D-ribofuranoside esters: Characterization, antibacterial and anticancer activities. J. Bang. Chem. Soc., 2019, 30, 46.
[88]
Jordheim, L.P.; Durantel, D.; Zoulim, F.; Dumontet, C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat. Rev. Drug Discov., 2013, 12(6), 447-464.
[http://dx.doi.org/10.1038/nrd4010] [PMID: 23722347]
[89]
Anowar Hosen, M.; Sultana Munia, N.; Al-Ghorbani, M.; Baashen, M.; Almalki, F.A.; Ben Hadda, T.; Ali, F.; Mahmud, S.; Abu Saleh, M.; Laaroussi, H.; Kawsar, S.M.A. Synthesis, antimicrobial, molecular docking and molecular dynamics studies of lauroyl thymidine analogs against SARS-CoV-2: POM study and identification of the pharmacophore sites. Bioorg. Chem., 2022, 125, 105850.
[http://dx.doi.org/10.1016/j.bioorg.2022.105850] [PMID: 35533581]
[90]
De Clercq, E.; Li, G. Approved antiviral drugs over the past 50 years. Clin. Microbiol. Rev., 2016, 29(3), 695-747.
[http://dx.doi.org/10.1128/CMR.00102-15] [PMID: 27281742]
[91]
Alam, A.; Anowar Hosen, M.; Hosen, A.; Fujii, Y.; Ozeki, Y.; Kawsar, S.M.A. Synthesis, characterization, and molecular docking against a receptor protein FimH of Escherichia coli (4XO8) of thymidine derivatives. J. Mex. Chem. Soc., 2021, 65(2), 256.
[http://dx.doi.org/10.29356/jmcs.v65i2.1464]
[92]
Alam, A.; Hosen, M.A.; Islam, M.; Ferdous, J.; Fujii, Y.; Ozeki, Y.; Kawsar, S.M.A. Synthesis, antibacterial and cytotoxicity assessment of modified uridine molecules. Curr. Adv. Chem. Biochem, 2021, 6, 114-129.
[http://dx.doi.org/10.9734/bpi/cacb/v6/8670D]
[93]
Maowa, J.; Alam, A.; Rana, K.M.; Dey, S.; Hosen, A.; Fujii, Y.; Hasan, I.; Ozeki, Y.; Kawsar, S.M.A. Synthesis, characterization, synergistic antimicrobial properties and molecular docking of sugar modified uridine derivatives. An. Univ. Ovidius Constanta Ser. Chim., 2021, 32(1), 6-21.
[http://dx.doi.org/10.2478/auoc-2021-0002]
[94]
Singh, S.; Bhattarai, D.; Veeraswamy, G.; Choi, Y.; Lee, K. Nucleosides with modified sugar ring: Synthesis and biological activities. Curr. Org. Chem., 2016, 20(8), 856-897.
[http://dx.doi.org/10.2174/1385272819666150803235458]
[95]
Yasmin, F.; Amin, M.R.; Hosen, M.A.; Bulbul, M.Z.H.; Dey, S.; Kawsar, S.M.A. Monosaccharide derivatives: Synthesis, antimicrobial, PASS, antiviral and molecular docking studies against SARS-COV-2 Mpro inhibitors. Cellul. Chem. Technol., 2021, 55(5-6), 477-499.
[http://dx.doi.org/10.35812/CelluloseChemTechnol.2021.55.44]
[96]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A. M. Gaussian, Inc. Wallingford CT GaussView 5.0. Wallingford, E.U.A; 2016.
[97]
Kawsar, S.M.A.; Kumer, A.; Munia, N.S.; Hosen, M.A.; Chakma, U.; Akash, S. Chemical descriptors, PASS, molecular docking, molecular dynamics and ADMET predictions of glucopyranoside derivatives as inhibitors to bacteria and fungi growth. Organic Commun., 2022, 15(2), 184-203.
[http://dx.doi.org/10.25135/acg.oc.122.2203.2397]
[98]
Amin, M.R.; Yasmin, F.; Hosen, M.A.; Dey, S.; Mahmud, S.; Saleh, M.A.; Emran, T.B.; Hasan, I.; Fujii, Y.; Yamada, M.; Ozeki, Y.; Kawsar, S.M.A. Synthesis, antimicrobial, anticancer, PASS, molecular docking, molecular dynamic simulations and pharmacokinetic predictions of some methyl β-D-galactopyranoside analogs. Molecules, 2021, 26(22), 7016.
[http://dx.doi.org/10.3390/molecules26227016] [PMID: 34834107]
[99]
Grib, I.; Berredjem, M.; Rachedi, K.O.; Djouad, S.E.; Bouacida, S.; Bahadi, R.; Ouk, T.S.; Kadri, M.; Ben Hadda, T.; Belhani, B. Novel N-sulfonylphthalimides: Efficient synthesis, X-ray characterization, spectral investigations, POM analyses, DFT computations and antibacterial activity. J. Mol. Struct., 2020, 1217, 128423.
[http://dx.doi.org/10.1016/j.molstruc.2020.128423]
[100]
Amin, M.R.; Yasmin, F.; Dey, S.; Mahmud, S.; Saleh, M.A.; Emran, T.B.; Hasan, I.; Rajia, S.; Ogawa, Y.; Fujii, Y.; Yamada, M.; Ozeki, Y.; Kawsar, S.M.A. Methyl β-D-galactopyranoside esters as potential inhibitors for SARS-CoV-2 protease enzyme: Synthesis, antimicrobial, PASS, molecular docking, molecular dynamics simulations and quantum computations. Glycoconj. J., 2021, 38, 1.
[PMID: 35037163]
[101]
Shikano, Y.; Watanabe, H.C.; Nakanishi, K.M.; Ohnishi, Y. Post-Hartree–Fock method in quantum chemistry for quantum computer. Eur. Phys. J. Spec. Top., 2021, 230(4), 1037-1051.
[http://dx.doi.org/10.1140/epjs/s11734-021-00087-z]
[102]
van der Kamp, M.W.; Mulholland, A.J. Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology. Biochemistry, 2013, 52(16), 2708-2728.
[http://dx.doi.org/10.1021/bi400215w] [PMID: 23557014]
[103]
Thiel, W. Semiempirical quantum-chemical methods in computational chemistry.In: Theory and Applications of Computational Chemistry; Elsevier, 2005, p. 559.
[http://dx.doi.org/10.1016/B978-044451719-7/50064-0]
[104]
Paquet, E.; Viktor, H.L. Molecular dynamics, monte carlo simulations, and langevin dynamics: A computational review. BioMed Res. Int., 2015, 2015, 1-18.
[http://dx.doi.org/10.1155/2015/183918] [PMID: 25785262]
[105]
Gardelli, C.; Attenni, B.; Donghi, M.; Meppen, M.; Pacini, B.; Harper, S.; Di Marco, A.; Fiore, F.; Giuliano, C.; Pucci, V.; Laufer, R.; Gennari, N.; Marcucci, I.; Leone, J.F.; Olsen, D.B.; MacCoss, M.; Rowley, M.; Narjes, F. Phosphoramidate prodrugs of 2′-C-methylcytidine for therapy of hepatitis C virus infection. J. Med. Chem., 2009, 52(17), 5394-5407.
[http://dx.doi.org/10.1021/jm900447q] [PMID: 19725579]
[106]
Boojamra, C.G.; Parrish, J.P.; Sperandio, D.; Gao, Y.; Petrakovsky, O.V.; Lee, S.K.; Markevitch, D.Y.; Vela, J.E.; Laflamme, G.; Chen, J.M.; Ray, A.S.; Barron, A.C.; Sparacino, M.L.; Desai, M.C.; Kim, C.U.; Cihlar, T.; Mackman, R.L. Design, synthesis, and anti-HIV activity of 4′-modified carbocyclic nucleoside phosphonate reverse transcriptase inhibitors. Bioorg. Med. Chem., 2009, 17(4), 1739-1746.
[http://dx.doi.org/10.1016/j.bmc.2008.12.028] [PMID: 19179082]
[107]
Kumar, V.; Kishor, S.; Ramaniah, L.M. First-principles DFT study of cyclic and acyclic nucleoside phosphonates. Struct. Chem., 2014, 25(6), 1725-1732.
[http://dx.doi.org/10.1007/s11224-014-0441-3]
[108]
Sarmah, P.; Deka, R.C. Anticancer activity of nucleoside analogues: A density functional theory based QSAR study. J. Mol. Model., 2010, 16(3), 411-418.
[http://dx.doi.org/10.1007/s00894-009-0551-9] [PMID: 19626352]
[109]
Iannazzo, D.; Pistone, A.; Romeo, R.; Giofrè, S.V. Nanotechnology approaches for antiretroviral drugs delivery. J. AIDS HIV Infect., 2015, 1, 1.
[110]
Harismah, K.; Hajali, N.; Mirzaei, M.; Salarrezaei, E. Quantum processing of cytidine derivatives and evaluating their in silico interactions with the COVID-19 main protease. Main Group Chem., 2022, 21(1), 263-270.
[http://dx.doi.org/10.3233/MGC-210134]
[111]
Kumari, K.M.; Yamini, L.; Vijjulatha, M. 3D QSAR of pyrrolo pyrimidine and thieno pyrimidines as human thymidylate synthase inhibitors. E-J. Chem., 2012, 9(4), 1699-1710.
[http://dx.doi.org/10.1155/2012/201937]
[112]
Ghamsari, P.A.; Samadizadeh, M.; Mirzaei, M. Halogenated derivatives of cytidine: Structural analysis and binding affinity. J. Theor. Comput. Chem., 2020, 19(8), 2050033.
[http://dx.doi.org/10.1142/S0219633620500339]
[113]
Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem. Phys. Lett., 1989, 157(3), 200-206.
[http://dx.doi.org/10.1016/0009-2614(89)87234-3]
[114]
Cohen, N.; Benson, S.W. Estimation of heats of formation of organic compounds by additivity methods. Chem. Rev., 1993, 93(7), 2419-2438.
[http://dx.doi.org/10.1021/cr00023a005]
[115]
Rana, K.M.; Maowa, J.; Alam, A.; Dey, S.; Hosen, A.; Hasan, I.; Fujii, Y.; Ozeki, Y.; Kawsar, S.M.A. In silico DFT study, molecular docking, and ADMET predictions of cytidine analogs with antimicrobial and anticancer properties. In silico Pharmacol., 2021, 9(1), 42.
[http://dx.doi.org/10.1007/s40203-021-00102-0] [PMID: 34295612]
[116]
Maowa, J.; Hosen, M.A.; Alam, A.; Rana, K.M.; Fujii, Y.; Ozeki, Y.; Kawsar, S.M.A. Pharmacokinetics and molecular docking studies of uridine derivatives as SARS-CoV-2 Mpro inhibitors. Phys. Chem. Res., 2021, 9, 385.
[117]
Zhou, C.; Chattopadhyaya, J. The synthesis of therapeutic locked nucleos(t)ides. Curr. Opin. Drug Discov. Devel., 2009, 12(6), 876-898.
[PMID: 19894196]
[118]
Alam, A.; Rana, K.M.; Hosen, M.A.; Dey, S.; Bezbaruah, B.; Kawsar, S.M.A. Modified thymidine derivatives as potential inhibitors of SARS-CoV: PASS, in vitro antimicrobial, physicochemical and molecular docking studies. Phys. Chem. Res, 2022, 10, 391.
[119]
Hosen, M.A.; Alam, A.; Islam, M.; Fujii, Y.; Ozeki, Y.; Kawsar, S.A. Geometrical optimization, PASS prediction, molecular docking, and in silico ADMET studies of thymidine derivatives against FimH adhesin of Escherichia coli. Izv. Him., 2021, 53, 327.
[120]
Mickle, T.; Nair, V. Anti-human immunodeficiency virus activities of nucleosides and nucleotides: Correlation with molecular electrostatic potential data. Antimicrob. Agents Chemother., 2000, 44(11), 2939-2947.
[http://dx.doi.org/10.1128/AAC.44.11.2939-2947.2000] [PMID: 11036004]
[121]
Tasi, G.; Pálinkó, I.; Nyerges, L.; Fejes, P.; Foerster, H. Calculation of electrostatic potential maps and atomic charges for large molecules. J. Chem. Inf. Comput. Sci., 1993, 33(3), 296-299.
[http://dx.doi.org/10.1021/ci00013a003]
[122]
Chidangil, S.; Mishra, P.C. Structure-activity relationship for some 2′3′-dideoxynucleoside anti-HIV drugs using molecular electrostatic potential mapping. J. Mol. Model., 1997, 3(4), 172-181.
[http://dx.doi.org/10.1007/s008940050029]
[123]
Kawsar, S.M.A. Hossaiı̇n, M.A. An optimization and pharmacokinetic studies of some thymidine derivatives. Turk. Computat. Theore. Chem., 2020, 4(2), 59-66.
[http://dx.doi.org/10.33435/tcandtc.718807]
[124]
Islam, S.; Hosen, M.A.; Ahmad, S. ul Qamar, M.T.; Dey, S.; Hasan, I.; Fujii, Y.; Ozeki, Y.; Kawsar, S.M.A. Synthesis, antimicrobial, anticancer activities, PASS prediction, molecular docking, molecular dynamics and pharmacokinetic studies of designed methyl α-D-glucopyranoside esters. J. Mol. Struct., 2022, 1260, 132761.
[http://dx.doi.org/10.1016/j.molstruc.2022.132761]
[125]
Ragno, R.; Artico, M.; De Martino, G.; La Regina, G.; Coluccia, A.; Di Pasquali, A.; Silvestri, R. Docking and 3-D QSAR studies on indolyl aryl sulfones. Binding mode exploration at the HIV-1 reverse transcriptase non-nucleoside binding site and design of highly active N-(2-hydroxyethyl)carboxamide and N-(2-hydroxyethyl)carbohydrazide derivatives. J. Med. Chem., 2005, 48(1), 213-223.
[http://dx.doi.org/10.1021/jm040854k] [PMID: 15634015]
[126]
Holec, A.D.; Mandal, S.; Prathipati, P.K.; Destache, C.J. Nucleotide reverse transcriptase inhibitors: A thorough review, present status and future perspective as HIV therapeutics. Curr. HIV Res., 2017, 15(6), 411-421.
[PMID: 29165087]
[127]
Shamsuddin, T.; Hosen, M.; Alam, M.; Emran, T.; Kawsar, S. Uridine derivatives: Antifungal, PASS outcomes, ADME/T, drug likeliness, molecular docking and binding energy calculations. Med. Sci., 2021, 10(4), 1373.
[http://dx.doi.org/10.5455/medscience.2021.05.175]
[128]
Kawsar, S.M.A.; Hosen, M.A.; Chowdhury, T.S.; Rana, K.M.; Fujii, Y.; Ozeki, Y. Thermochemical, PASS, molecular docking, drug-likeness and in silico ADMET prediction of cytidine derivatives against HIV-1 reverse transcriptase. Revista de Chimie, 2021, 72(3), 159-178.
[http://dx.doi.org/10.37358/RC.21.3.8446]
[129]
Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem., 2015, 58(9), 4066-4072.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00104] [PMID: 25860834]
[130]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[131]
McDonnell, A.M.; Dang, C.H. Basic review of the cytochrome p450 system. J. Adv. Pract. Oncol., 2013, 4(4), 263-268.
[PMID: 25032007]
[132]
Dowd, F.J.; Yagiela, J.A.; Johnson, B.; Mariotti, A.; Neidle, E.A. Pharmacology and therapeutics for dentistry-E-book; Elsevier, 2010.
[133]
Finch, A.; Pillans, P. P-glycoprotein and its role in drug-drug interactions. Aust. Prescr., 2014, 37(4), 137-139.
[http://dx.doi.org/10.18773/austprescr.2014.050]
[134]
Garrido, A.; Lepailleur, A.; Mignani, S.M.; Dallemagne, P.; Rochais, C. hERG toxicity assessment: Useful guidelines for drug design. Eur. J. Med. Chem., 2020, 195, 112290.
[http://dx.doi.org/10.1016/j.ejmech.2020.112290] [PMID: 32283295]
[135]
Cutinho, P.F.; Roy, J.; Anand, A.; Cheluvaraj, R.; Murahari, M.; Chimatapu, H.S.V. Design of metronidazole derivatives and flavonoids as potential non-nucleoside reverse transcriptase inhibitors using combined ligand- and structure-based approaches. J. Biomol. Struct. Dyn., 2020, 38(6), 1626-1648.
[PMID: 31046644]
[136]
Yates, M.K.; Seley-Radtke, K.L. The evolution of antiviral nucleoside analogues: A review for chemists and non-chemists. Part II: Complex modifications to the nucleoside scaffold. Antiviral Res., 2019, 162, 5-21.
[http://dx.doi.org/10.1016/j.antiviral.2018.11.016] [PMID: 30529089]
[137]
Sanguinetti, M.C.; Tristani-Firouzi, M. hERG potassium channels and cardiac arrhythmia. Nature, 2006, 440(7083), 463-469.
[http://dx.doi.org/10.1038/nature04710] [PMID: 16554806]
[138]
Afza, N.; Trivedi, P.; Bishnoi, A.; Parveen, S.; Kumar, S.; Banerjee, M. A convergent multicomponent synthesis, spectral analysis, molecular modelling and docking studies of novel 2H-pyrido[1,2-a]pyrimidine-2,4(3H)-dione derivatives as potential anti-cervical cancer agents. J. Mol. Struct., 2023, 1279, 134982.
[http://dx.doi.org/10.1016/j.molstruc.2023.134982]
[139]
Mahmud, S.; Biswas, S.; Paul, G.K.; Mita, M.A.; Promi, M.M.; Afrose, S.; Hasan, M.R.; Zaman, S.; Uddin, M.S.; Dhama, K.; Emran, T.B.; Saleh, M.A.; Simal-Gandara, J. Plant-based phytochemical screening by targeting main protease of sars-cov-2 to design effective potent inhibitors. Biology, 2021, 10(7), 589.
[http://dx.doi.org/10.3390/biology10070589] [PMID: 34206970]
[140]
M A., Kawsar; S., Hosen; M.A., Ahmad; S., El Bakri; Y., Laaroussi; H., Ben Hadda; T., Almalki; F.A., Ozeki; Y., Goumri-Said S. Potential SARS-CoV-2 RdRp inhibitors of cytidine derivatives: Molecular docking, molecular dynamic simulations, ADMET, and POM analyses for the identification of pharmacophore sites. PLoS One, 2022, 17(11), e0273256.
[http://dx.doi.org/10.1371/journal.pone.0273256] [PMID: 36441684]
[141]
Floor, M.; Li, K.; Estévez-Gay, M.; Agulló, L.; Muñoz-Torres, P.M.; Hwang, J.K.; Osuna, S.; Villà-Freixa, J. SBMOpenMM: A builder of structure-based models for openMM. J. Chem. Inf. Model., 2021, 61(7), 3166-3171.
[http://dx.doi.org/10.1021/acs.jcim.1c00122]
[142]
Isono, K. Nucleoside antibiotics: Structure, biological activity, and biosynthesis. J. Antibiot., 1988, 41(12), 1711-1739.
[http://dx.doi.org/10.7164/antibiotics.41.1711] [PMID: 3061990]
[143]
Schmidt, J.M.; Brueschweiler, R.; Ernst, R.R.; Dunbrack, R.L., Jr; Joseph, D.; Karplus, M. Molecular dynamics simulation of the proline conformational equilibrium and dynamics in antamanide using the CHARMM force field. J. Am. Chem. Soc., 1993, 115(19), 8747-8756.
[http://dx.doi.org/10.1021/ja00072a030]
[144]
Bertozzi, C.R.; Kiessling, L.L. Chemical glycobiology. Science, 2001, 291(5512), 2357-2364.
[http://dx.doi.org/10.1126/science.1059820] [PMID: 11269316]
[145]
Misbah, M.M.H.; Ferdous, J.; Bulbul, M.Z.H.; Chowdhury, T.S.; Dey, S.; Hasan, I.; Kawsar, S.M.A. Evaluation of MIC, MBC, MFC and anticancer activities of acylated methyl β-D-galactopyranoside esters. Int. J. Biosci., 2020, 16, 299.
[146]
Rauf, A.; Bawazeer, S.; Raza, M.; El-Sharkawy, E.; Rahman, H.; El-Esawy, M.; Uddin, G.; Siddiqui, B.S.; Kihalil, A.A.; Molnár, J.; Csonka, Á. Reversal of multidrug resistance and antitumor promoting activity of 3-oxo-6β-hydroxy-β-amyrin isolated from Pistacia integerrima. Biocell, 2021, 45, 139.
[http://dx.doi.org/10.32604/biocell.2021.013277]
[147]
Bechlem, K.; Aissaoui, M.; Belhani, B.; Rachedi, K.O.; Bouacida, S.; Bahadi, R.; Djouad, S.E.; Ben Mansour, R.; Bouaziz, M.; Almalki, F.; Ben Hadda, T.; Berredjem, M. Synthesis, X-ray crystallographic study and molecular docking of new α-sulfamidophosphonates: POM analyses of their cytotoxic activity. J. Mol. Struct., 2020, 1210, 127990.
[http://dx.doi.org/10.1016/j.molstruc.2020.127990]
[148]
Hasan, A.H.; Murugesan, S.; Amran, S.I.; Chander, S.; Alanazi, M.M.; Hadda, T.B.; Shakya, S.; Pratama, M.R.F.; Das, B.; Biswas, S.; Jamalis, J. Novel thiophene Chalcones-Coumarin as acetylcholinesterase inhibitors: Design, synthesis, biological evaluation, molecular docking, ADMET prediction and molecular dynamics simulation. Bioorg. Chem., 2022, 119, 105572.
[http://dx.doi.org/10.1016/j.bioorg.2021.105572] [PMID: 34971946]
[149]
Saleh, S.S. AL-Salihi, S.S.; Mohammed, I.A. Biological activity Study for some heterocyclic compounds and their impact on the gram positive and negative bacteria. Energy Procedia, 2019, 157, 296-306.
[http://dx.doi.org/10.1016/j.egypro.2018.11.194]
[150]
Chohan, Z.H.; Youssoufi, M.H.; Jarrahpour, A.; Ben Hadda, T. Identification of antibacterial and antifungal pharmacophore sites for potent bacteria and fungi inhibition: Indolenyl sulfonamide derivatives. Eur. J. Med. Chem., 2010, 45(3), 1189-1199.
[http://dx.doi.org/10.1016/j.ejmech.2009.11.029] [PMID: 20005022]
[151]
Rachedi, K.O.; Ouk, T.S.; Bahadi, R.; Bouzina, A.; Djouad, S.E.; Bechlem, K.; Zerrouki, R.; Ben Hadda, T.; Almalki, F.; Berredjem, M. Synthesis, DFT and POM analyses of cytotoxicity activity of α-amidophosphonates derivatives: Identification of potential antiviral O,O-pharmacophore site. J. Mol. Struct., 2019, 1197, 196-203.
[http://dx.doi.org/10.1016/j.molstruc.2019.07.053]
[152]
Ben Hadda, T.; Berredjem, M.; Almalki, F.A.; Rastija, V.; Jamalis, J.; Emran, T.B.; Abu-Izneid, T.; Esharkawy, E.; Rodriguez, L.C.; Alqahtani, A.M. How to face COVID-19: Proposed treatments based on remdesivir and hydroxychloroquine in the presence of zinc sulfate. Docking/DFT/POM structural analysis. J. Biomol. Struct. Dyn., 2022, 40(19), 9429-9442.
[http://dx.doi.org/10.1080/07391102.2021.1930161] [PMID: 34033727]
[153]
Berredjem, M.; Bouzina, A.; Bahadi, R.; Bouacida, S.; Rastija, V.; Djouad, S.E.; Sothea, T.O.; Almalki, F.A.; Hadda, T.B.; Aissaoui, M. Antitumor activity, X-Ray crystallography, in silico study of some-sulfamido-phosphonates. Identification of pharmacophore sites. J. Mol. Struct., 2022, 1250, 131886.
[http://dx.doi.org/10.1016/j.molstruc.2021.131886]
[154]
Mabkhot, Y.N.; Barakat, A.; Yousuf, S.; Choudhary, M.I.; Frey, W.; Ben Hadda, T.; Mubarak, M.S. Substituted thieno[2,3- b]thiophenes and related congeners: Synthesis, β-glucuronidase inhibition activity, crystal structure, and POM analyses. Bioorg. Med. Chem., 2014, 22(23), 6715-6725.
[http://dx.doi.org/10.1016/j.bmc.2014.08.014] [PMID: 25245672]
[155]
Hadda, T.B.; Deniz, F.S.S.; Orhan, I.E.; Zgou, H.; Rauf, A.; Mabkhot, Y.N.; Bennani, B.; Emam, D.R.; Kheder, N.A.; Asayari, A.; Muhsinah, A.B.; Maalik, A. Spiro heterocyclic compounds as potential anti-alzheimer agents (Part 2): Their metal chelation capacity, POM analyses and DFT studies. Med. Chem., 2021, 17(8), 834-843.
[http://dx.doi.org/10.2174/1573406416666200610185654] [PMID: 32520690]
[156]
Sheikh, J.; Hadda, T.B. Antibacterial, antifungal and antioxidant activity of some new water-soluble β-diketones. Med. Chem. Res., 2013, 22(2), 964-975.
[http://dx.doi.org/10.1007/s00044-012-0089-8]
[157]
Damaraju, V.L.; Damaraju, S.; Young, J.D.; Baldwin, S.A.; Mackey, J.; Sawyer, M.B.; Cass, C.E. Nucleoside anticancer drugs: The role of nucleoside transporters in resistance to cancer chemotherapy. Oncogene, 2003, 22(47), 7524-7536.
[http://dx.doi.org/10.1038/sj.onc.1206952] [PMID: 14576856]
[158]
Joshi, B.C.; Juyal, V.; Sah, A.N.; Saha, S. Computational investigation of geniposidic acid as an anticancer agent using molecular docking, molecular dynamic simulation, DFT calculation, and OSIRIS-Molinspiration profiling. Phy. Chem. Res., 2023, 11, 801.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy