Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Label-free and Colorimetric Sensitive Detection of SNPs Based on Catalytic Beacon and RNase Cleavage Reaction

Author(s): Zhaojiang Yu* and Chunxue Zhao

Volume 19, Issue 10, 2023

Published on: 07 November, 2023

Page: [714 - 720] Pages: 7

DOI: 10.2174/0115734110271250231102104743

Price: $65

Abstract

Background: Single nucleotide polymorphisms (SNPs) are important hallmarks in various pathological activities, especially genetic and inherited diseases, and detecting them with accuracy, high throughput and low cost becomes increasingly necessary.

Methods: Herein, we have developed a new label-free and sensitive detection method for SNPs assay. Due to its favorable traits, the method presents an excellent performance. Briefly, the peroxidase- mimicking catalytic activity of G-quadruplex-hemin DNAzymes ensures label-free and colorimetric SNPs detection. At the same time, the RNA enzyme of the specific cleavage action can easily achieve the recycling of RNA enzyme and signal amplification.

Results: In this study, the P-hemin DNAzyme with target DNA could catalyze the H2O2-mediated oxidation of ABTS to cause an observed color change compared to mutant DNA. The sensitivity and detection range of the DNA biosensor was achieved through the signal amplification program of special binding and cleavage of RNase H. A linear dependence of the absorbance at 420 nm on the concentrations between 0.5 and 50 nM was obtained (R2=0.965), and the detection limit was 8.76 nM.

Conclusion: A new strategy for signal amplification process based on RNase cleavage reaction and Catalytic Beacon was constructed. Collectively, the developed SNPs assay might be extended to a broad range of clinical early diagnosis and treatment of genetic diseases.

Keywords: Label-free, colorimetric, SNPs, catalytic beacon, RNase cleavage reaction, signal amplification detection.

Graphical Abstract
[1]
Strausberg, R.L.; Buetow, K.H.; Emmert-Buck, M.R.; Klausner, R.D. The Cancer Genome Anatomy Project: Building an annotated gene index. Trends Genet., 2000, 16(3), 103-106.
[http://dx.doi.org/10.1016/S0168-9525(99)01937-X] [PMID: 10689348]
[2]
Liu, Y.; Huang, K.; Wang, Y.; Hu, E.; Wei, B.; Song, Z.; Zou, Y.; Ge, L.; Chen, L.; Li, W. Integration of SNP disease association, eQTL, and enrichment analyses to identify risk SNPs and susceptibility genes in chronic obstructive pulmonary disease. BioMed Res. Int., 2020, 2020, 1-11.
[http://dx.doi.org/10.1155/2020/3854196] [PMID: 33457407]
[3]
Zhang, H.; He, Y.; He, X.; Wang, L.; Jin, T.; Yuan, D. Three SNPs of FCRL3 and one SNP of MTMR3 are associated with immunoglobulin A nephropathy risk. Immunobiology, 2020, 225(1), 151869.
[http://dx.doi.org/10.1016/j.imbio.2019.11.004] [PMID: 31780315]
[4]
Imyanitov, E.N. Gene polymorphisms, apoptotic capacity and cancer risk. Hum. Genet., 2009, 125(3), 239-246.
[http://dx.doi.org/10.1007/s00439-009-0636-7] [PMID: 19214578]
[5]
Mavura, M.Y.; Huang, F.W. How cancer risk SNPs may contribute to prostate cancer disparities. Cancer Res., 2021, 81(14), 3764-3765.
[http://dx.doi.org/10.1158/0008-5472.CAN-21-1146] [PMID: 34266915]
[6]
Watters, R.J.; Verdelis, K.; Lucas, P.C.; Jiang, S.; Chen, Y.; Lu, F.; Martin, B.M.; Lukashova, L.; Pecar, G.; Morales-Restrepo, A.; Hankins, M.; Zhu, L.; Mittwede, P.; Hartmaier, R.J.; Alexander, P.G.; Tseng, G.C.; Weiss, K.R.; Galson, D.L.; Lee, A.V.; Lee, B.; Oesterreich, S. A novel mouse model for SNP in steroid receptor Co-Activator-1 reveals role in bone density and breast cancer metastasis. Endocrinology, 2021, 162(8), bqab094.
[http://dx.doi.org/10.1210/endocr/bqab094] [PMID: 33963375]
[7]
Guo, H.; Ahmed, M.; Zhang, F.; Yao, C.Q.; Li, S.; Liang, Y.; Hua, J.; Soares, F.; Sun, Y.; Langstein, J.; Li, Y.; Poon, C.; Bailey, S.D.; De-sai, K.; Fei, T.; Li, Q.; Sendorek, D.H.; Fraser, M.; Prensner, J.R.; Pugh, T.J.; Pomerantz, M.; Bristow, R.G.; Lupien, M.; Feng, F.Y.; Boutros, P.C.; Freedman, M.L.; Walsh, M.J.; He, H.H. Modulation of long noncoding RNAs by risk SNPs underlying genetic predisposi-tions to prostate cancer. Nat. Genet., 2016, 48(10), 1142-1150.
[http://dx.doi.org/10.1038/ng.3637] [PMID: 27526323]
[8]
McCarthy, J.J.; Hilfiker, R. The use of single-nucleotide polymorphism maps in pharmacogenomics. Nat. Biotechnol., 2000, 18(5), 505-508.
[http://dx.doi.org/10.1038/75360] [PMID: 10802616]
[9]
Risch, N.; Merikangas, K. The future of genetic studies of complex human diseases. Science, 1996, 273(5281), 1516-1517.
[http://dx.doi.org/10.1126/science.273.5281.1516] [PMID: 8801636]
[10]
Brookes, A.J. The essence of SNPs. Gene, 1999, 234(2), 177-186.
[http://dx.doi.org/10.1016/S0378-1119(99)00219-X] [PMID: 10395891]
[11]
Syvänen, A.C. Accessing genetic variation: Genotyping single nucleotide polymorphisms. Nat. Rev. Genet., 2001, 2(12), 930-942.
[http://dx.doi.org/10.1038/35103535] [PMID: 11733746]
[12]
Lu, C.H.; Wang, F.; Willner, I. Zn2+-ligation DNAzyme-driven enzymatic and nonenzymatic cascades for the amplified detection of DNA. J. Am. Chem. Soc., 2012, 134(25), 10651-10658.
[http://dx.doi.org/10.1021/ja3037838] [PMID: 22612395]
[13]
Cui, M.; Xiao, X.; Zhao, M.; Zheng, B. Detection of single nucleotide polymorphism by measuring extension kinetics with T7 exonuclease mediated isothermal amplification. Analyst, 2018, 143(1), 116-122.
[http://dx.doi.org/10.1039/C7AN00875A] [PMID: 29114669]
[14]
Xiao, Y.; Lou, X.; Uzawa, T.; Plakos, K.J.I.; Plaxco, K.W.; Soh, H.T. An electrochemical sensor for single nucleotide polymorphism de-tection in serum based on a triple-stem DNA probe. J. Am. Chem. Soc., 2009, 131(42), 15311-15316.
[http://dx.doi.org/10.1021/ja905068s] [PMID: 19807078]
[15]
Okamoto, A.; Kanatani, K.; Saito, I. Pyrene-labeled base-discriminating fluorescent DNA probes for homogeneous SNP] typing. J. Am. Chem. Soc., 2004, 126(15), 4820-4827.
[http://dx.doi.org/10.1021/ja039625y] [PMID: 15080686]
[16]
Kékedy-Nagy, L.; Sørensen, K.D.; Ferapontova, E.E. Picomolar sensitive and SNP-selective “Off-On” hairpin genosensor based on struc-ture-tunable redox indicator signals. Biosens. Bioelectron., 2018, 117, 444-449.
[http://dx.doi.org/10.1016/j.bios.2018.06.040] [PMID: 29975881]
[17]
Goodchild, S.A.; Gao, R.; Shenton, D.P.; McIntosh, A.J.S.; Brown, T.; Bartlett, P.N. Direct detection and discrimination of nucleotide pol-ymorphisms using anthraquinone labeled DNA probes. Front Chem., 2020, 8, 381.
[http://dx.doi.org/10.3389/fchem.2020.00381] [PMID: 32478035]
[18]
Dai, S.; Zhang, W.; Shao, S.; Tang, Y.; Shao, L.; Liu, T.; Cheng, G.; He, P.; Fang, Y. Design strategy for a novel electrochemically active–inactive switching molecular beacon based on Hemin for SNPs and insulin detection directly in homogenous solution. Talanta, 2018, 190, 313-320.
[http://dx.doi.org/10.1016/j.talanta.2018.08.018] [PMID: 30172515]
[19]
Liu, X.P.; Hou, J.L.; Liu, J.H. A novel single nucleotide polymorphism detection of a double-stranded DNA target by a ribonucleotide-carrying molecular beacon and thermostable RNase HII. Anal. Biochem., 2010, 398(1), 83-92.
[http://dx.doi.org/10.1016/j.ab.2009.10.042] [PMID: 19891952]
[20]
Zhang, X.; Li, Q.; Chao, Q.; Zhang, Y.; Sun, X.; Fan, G.C.; Song, Z.L.; Kong, R.; Luo, X. A protein enzyme-free strategy for fluorescence detection of single nucleotide polymorphisms using asymmetric MNAzymes. Anal. Chim. Acta, 2023, 1243, 340811.
[http://dx.doi.org/10.1016/j.aca.2023.340811] [PMID: 36697176]
[21]
Marín, A.G.; García-Mendiola, T.; Bernabeu, C.N.; Hernández, M.J.; Piqueras, J.; Pau, J.L.; Pariente, F.; Lorenzo, E. Gallium plasmonic nanoparticles for label-free DNA and single nucleotide polymorphism sensing. Nanoscale, 2016, 8(18), 9842-9851.
[http://dx.doi.org/10.1039/C6NR00926C] [PMID: 27120517]
[22]
Gerion, D.; Chen, F.; Kannan, B.; Fu, A.; Parak, W.J.; Chen, D.J.; Majumdar, A.; Alivisatos, A.P. Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays. Anal. Chem., 2003, 75(18), 4766-4772.
[http://dx.doi.org/10.1021/ac034482j] [PMID: 14674452]
[23]
Martorell, S.; Maquieira, Á.; Tortajada-Genaro, L.A. A genosensor for detecting single-point mutations in dendron chips after blocked recombinase polymerase amplification. Analyst, 2022, 147(10), 2180-2188.
[http://dx.doi.org/10.1039/D2AN00160H] [PMID: 35441629]
[24]
Chahin, N.; Uribe, L.A.; Debela, A.M.; Thorimbert, S.; Hasenknopf, B.; Ortiz, M.; Katakis, I.; O’Sullivan, C.K. Electrochemical primer extension based on polyoxometalate electroactive labels for multiplexed detection of single nucleotide polymorphisms. Biosens. Bioelectron., 2018, 117, 201-206.
[http://dx.doi.org/10.1016/j.bios.2018.06.014] [PMID: 29906767]
[25]
Liu, G.; Lin, Y. Electrochemical quantification of single-nucleotide polymorphisms using nanoparticle probes. J. Am. Chem. Soc., 2007, 129(34), 10394-10401.
[http://dx.doi.org/10.1021/ja070429r] [PMID: 17676734]
[26]
Song, Z.; Ang, W.L.; Sturala, J.; Mazanek, V.; Marvan, P.; Sofer, Z.; Ambrosi, A.; Ding, C.; Luo, X.; Bonanni, A. Functionalized germane-ne-based nanomaterials for the detection of single nucleotide polymorphism. ACS Appl. Nano Mater., 2021, 4(5), 5164-5175.
[http://dx.doi.org/10.1021/acsanm.1c00606]
[27]
Wolfe, M.G.; Ali, M.M.; Brennan, J.D. Enzymatic Litmus test for selective colorimetric detection of C–C single nucleotide polymor-phisms. Anal. Chem., 2019, 91(7), 4735-4740.
[http://dx.doi.org/10.1021/acs.analchem.9b00235] [PMID: 30869875]
[28]
Li, C.; Hu, J.; Luo, X.; Hu, J.; Zhang, C. Development of a single quantum dot-mediated FRET nanosensor for sensitive detection of sin-gle-nucleotide polymorphism in cancer cells. Anal. Chem., 2021, 93(43), 14568-14576.
[http://dx.doi.org/10.1021/acs.analchem.1c03675] [PMID: 34672523]
[29]
Deng, H.; Shen, W.; Gao, Z. Colorimetric detection of single nucleotide polymorphisms in the presence of 10-fold excess of a wild-type gene. Biosens. Bioelectron., 2015, 68, 310-315.
[http://dx.doi.org/10.1016/j.bios.2015.01.016] [PMID: 25596559]
[30]
Yan, L.; Deng, Z.; Shi, H.; Xie, B.; Gao, L. A method for SNP detection using MoS 2 @AuNPs and SYBR Green I in combination with enzyme digestion. New J. Chem., 2019, 43(47), 18571-18574.
[http://dx.doi.org/10.1039/C9NJ04319E]
[31]
Zhou, Q.Y.; Wang, L.J.; Liu, Y.; Zhong, X.Y.; Dong, J.H.; Zhou, Y.L.; Zhang, X.X. Ultrasensitive multiplex detection of single nucleotide polymorphisms based on short-chain hybridization combined with online preconcentration of capillary electrophoresis. Anal. Chem., 2020, 92(15), 10620-10626.
[http://dx.doi.org/10.1021/acs.analchem.0c01675] [PMID: 32643365]
[32]
Choi, W.; Park, E.; Bae, S.; Choi, K.H.; Han, S.; Son, K.H.; Lee, D.Y.; Cho, I.J.; Seong, H.; Hwang, K.S.; Nam, J.M.; Choi, J.; Lee, H.; Choi, N. Multiplex SNP genotyping using SWITCH: Sequence‐specific nanoparticle with interpretative toehold‐mediated sequence decod-ing in hydrogel. Small, 2022, 18(8), 2105538.
[http://dx.doi.org/10.1002/smll.202105538] [PMID: 34923738]
[33]
Farzan, V.M.; Markelov, M.L.; Skoblov, A.Y.; Shipulin, G.A.; Zatsepin, T.S. Specificity of SNP detection with molecular beacons is im-proved by stem and loop separation with spacers. Analyst, 2017, 142(6), 945-950.
[http://dx.doi.org/10.1039/C6AN02441F] [PMID: 28220155]
[34]
Gao, H.L.; Wang, M.; Wu, Z.Q.; Wang, C.; Wang, K.; Xia, X.H. Morpholino-functionalized nanochannel array for label-free single nucleo-tide polymorphisms detection. Anal. Chem., 2015, 87(7), 3936-3941.
[http://dx.doi.org/10.1021/ac504830e] [PMID: 25734499]
[35]
Gao, Y.; He, Z.; He, X.; Zhang, H.; Weng, J.; Yang, X.; Meng, F.; Luo, L.; Tang, B.Z. Dual-color emissive AIEgen for specific and label-free double-stranded DNA recognition and single-nucleotide polymorphisms detection. J. Am. Chem. Soc., 2019, 141(51), 20097-20106.
[http://dx.doi.org/10.1021/jacs.9b09239] [PMID: 31721575]
[36]
Zhang, W.; Li, J.; Salena, B.; Li, Y. A DNA switch for detecting single nucleotide polymorphism within a long DNA sequence under dena-turing conditions. Chemistry, 2020, 26(3), 592-596.
[http://dx.doi.org/10.1002/chem.201903536] [PMID: 31475757]
[37]
Crouch, R.J.; Ribonuclease, H. From discovery to 3D structure. New Biol., 1990, 2(9), 771-777.
[PMID: 2177653]
[38]
Ohtani, N.; Haruki, M.; Morikawa, M.; Kanaya, S. Molecular diversities of RNases H. J. Biosci. Bioeng., 1999, 88(1), 12-19.
[http://dx.doi.org/10.1016/S1389-1723(99)80168-6] [PMID: 16232566]
[39]
Ohtani, N.; Haruki, M.; Morikawa, M.; Crouch, R.J.; Itaya, M.; Kanaya, S. Identification of the genes encoding Mn2+-dependent RNase HII and Mg2+-dependent RNase HIII from Bacillus subtilis: Classification of RNases H into three families. Biochemistry, 1999, 38(2), 605-618.
[http://dx.doi.org/10.1021/bi982207z] [PMID: 9888800]
[40]
Hou, J.; Liu, X.; Pei, D.; Liu, J. RNase HII from Chlamydia pneumoniae discriminates mismatches incorporation into DNA-rN1-DNA/DNA duplexes. Biochem. Biophys. Res. Commun., 2007, 356(4), 988-992.
[http://dx.doi.org/10.1016/j.bbrc.2007.03.075] [PMID: 17397801]
[41]
Li, T.; Li, B.; Wang, E.; Dong, S. G-quadruplex-based DNAzyme for sensitive mercury detection with the naked eye. Chem. Commun., 2009, 3551-3553(24), 3551-3553.
[http://dx.doi.org/10.1039/b903993g] [PMID: 19521604]
[42]
Li, J.; Yao, J.; Zhong, W. Membrane blotting for rapid detection of mercury(ii) in water. Chem. Commun., 2009, 4962-4964(33), 4962-4964.
[http://dx.doi.org/10.1039/b910251e] [PMID: 19668816]
[43]
Travascio, P.; Witting, P.K.; Mauk, A.G.; Sen, D. The peroxidase activity of a hemin--DNA oligonucleotide complex: Free radical damage to specific guanine bases of the DNA. J. Am. Chem. Soc., 2001, 123(7), 1337-1348.
[http://dx.doi.org/10.1021/ja0023534] [PMID: 11456705]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy