Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Review Article

Screening and Analysis of Skin Cancer Treatment Using Biocomponents of Plants Using Backpropagation Neural Networks: A Comprehensive Review

Author(s): Urvashi Soni, Jeetendra Kumar Gupta, Kuldeep Singh* and Girdhar Khandelwal

Volume 20, Issue 6, 2024

Published on: 31 October, 2023

Page: [555 - 568] Pages: 14

DOI: 10.2174/0115733947263006231020185402

Price: $65

Abstract

In recent years, the use of natural compounds derived from plants for the treatment of skin cancer has gained significant attention due to their potential therapeutic effects and minimal side effects. This review focuses on the innovative approach of utilizing biocomponents sourced from plants in combination with backpropagation neural networks (BPNN) for the screening and analysis of skin cancer treatments. The integration of plant-derived compounds and AI-driven algorithms holds promise for enhancing the precision and effectiveness of skin cancer therapies. The review begins by highlighting the escalating global burden of skin cancer and the limitations of conventional treatment approaches. With the rise in concerns about the adverse effects of synthetic drugs, researchers have turned their attention towards exploring the therapeutic potential of plant-derived biocomponents. These natural compounds are known for their rich bioactive constituents that exhibit anti-cancer properties, making them suitable candidates for skin cancer treatment. One of the key challenges in harnessing the potential of plant-derived compounds is the need for accurate screening and analysis of their effects. This is where backpropagation neural networks, a type of artificial neural network, comes into play. These networks can process complex data and recognize intricate patterns, enabling them to predict the efficacy of various biocomponents in combating skin cancer. The review delves into the functioning of BPNN and its applications in drug discovery and treatment evaluation. Furthermore, the review explores several case studies that demonstrate the successful integration of plant-derived compounds with BPNN in the context of skin cancer treatment. These studies provide evidence of how this synergistic approach can lead to improved treatment outcomes by minimizing adverse effects and maximizing therapeutic benefits. The methodology section discusses the steps involved in training the neural network using relevant datasets and optimizing its performance for accurate predictions. While the integration of plant-derived compounds and BPNN shows great promise, the review also addresses the existing challenges and limitations. These include the need for comprehensive and standardized datasets, potential biases in training data, and the complexity of neural network architectures. The regulatory considerations surrounding plant-based therapies are also discussed, highlighting the importance of rigorous testing and validation.

Keywords: Skin cancer, plant-derived biocomponents, backpropagation neural networks, alternative treatment, cancer therapeutics, in vitro experiments, medicinal plants.

Graphical Abstract
[1]
Skin cancer as a major public health problem. In: The Surgeon General’s Call to Action to Prevent Skin Cancer. Washington, (DC): US Department of Health and Human Services 2014.
[2]
Dildar M, Akram S, Irfan M, et al. Skin cancer detection: A review using deep learning techniques. Int J Environ Res Public Health 2021; 18(10): 5479.
[http://dx.doi.org/10.3390/ijerph18105479] [PMID: 34065430]
[3]
Ng C, Yen H, Hsiao HY, Su SC. Phytochemicals in skin cancer prevention and treatment: An updated review. Int J Mol Sci 2018; 19(4): 941.
[http://dx.doi.org/10.3390/ijms19040941] [PMID: 29565284]
[4]
Das K, Cockerell CJ, Patil A, et al. Machine learning and its application in skin cancer. Int J Environ Res Public Health 2021; 18(24): 13409.
[http://dx.doi.org/10.3390/ijerph182413409] [PMID: 34949015]
[5]
Aljohani K. Automatic classification of melanoma skin cancer with deep convolutional neural networks. AI 2022; 3(2): 512-25.
[6]
Khan T, Ali M, Khan A, et al. Anticancer plants: A review of the active phytochemicals, applications in animal models, and regulatory aspects. Biomolecules 2019; 10(1): 47.
[http://dx.doi.org/10.3390/biom10010047] [PMID: 31892257]
[7]
Sasidharan S, Chen Y, Saravanan D, Sundram KM, Yoga Latha L. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr J Tradit Complement Altern Med 2011; 8(1): 1-10.
[PMID: 22238476]
[8]
Othman L, Sleiman A, Abdel-Massih RM. Antimicrobial activity of polyphenols and alkaloids in middle eastern plants. Front Microbiol 2019; 10(MAY): 911.
[http://dx.doi.org/10.3389/fmicb.2019.00911] [PMID: 31156565]
[9]
Hassan M, Watari H, Abualmaaty A, Ohba Y, Sakuragi N. Apoptosis and molecular targeting therapy in cancer. Biomed Res Int 2014; 2014
[http://dx.doi.org/10.1155/2014/150845]
[10]
Mouloodi S, Rahmanpanah H, Gohari S, Burvill C, Davies HMS. Feedforward backpropagation artificial neural networks for predicting mechanical responses in complex nonlinear structures: A study on a long bone. J Mech Behav Biomed Mater 2022; 128: 105079.
[http://dx.doi.org/10.1016/j.jmbbm.2022.105079] [PMID: 35114570]
[11]
Montesinos López OA, Montesinos López A, Crossa J. Fundamentals of artificial neural networks and deep learning. In: Multivar Stat Mach Learn Methods Genomic Predict. 2022; pp. 379-425.
[http://dx.doi.org/10.1007/978-3-030-89010-0_10]
[12]
Weston A, Harris CC. Multistage carcinogenesis. In: Kufe DW, Pollock RE, Weichselbaum RR, Eds. Holland-Frei Cancer Medicine. (6th ed.), Hamilton, ON: BC Decker 2003.
[13]
Basu A. DNA damage, mutagenesis and cancer. Int J Mol Sci 2018; 19(4): 970.
[http://dx.doi.org/10.3390/ijms19040970] [PMID: 29570697]
[14]
Klaunig JE. Carcinogenesis. In: An Introd to Interdiscip Toxicol From Mol to Man. 2020; pp. 97-110.
[15]
Cooper GM. Tumor suppressor genesThe Cell: A Molecular Approach. (2nd edition.), Sunderland, MA: Sinauer Associates 2000.
[16]
Nishida N, Yano H, Nishida T, Kamura T, Kojiro M. Angiogenesis in cancer. Vasc Health Risk Manag 2006; 2(3): 213-9.
[http://dx.doi.org/10.2147/vhrm.2006.2.3.213] [PMID: 17326328]
[17]
Krakhmal NV, Zavyalova MV, Denisov EV, Vtorushin SV, Perelmuter VM. Cancer invasion: Patterns and mechanisms. Acta Nat (Engl Ed) 2015; 7(2): 17-28.
[http://dx.doi.org/10.32607/20758251-2015-7-2-17-28] [PMID: 26085941]
[18]
Seyfried TN, Huysentruyt LC. On the origin of cancer metastasis. Crit Rev Oncog 2013; 18(1-2): 43-73.
[http://dx.doi.org/10.1615/CritRevOncog.v18.i1-2.40] [PMID: 23237552]
[19]
Cooper GM. The development and causes of cancer. In: The Cell: A Molecular Approach. (2nd edition.), Sunderland, MA: Sinauer Associates 2000.
[20]
Brenner M, Hearing VJ. The protective role of melanin against UV damage in human skin. Photochem Photobiol 2008; 84(3): 539-49.
[http://dx.doi.org/10.1111/j.1751-1097.2007.00226.x] [PMID: 18435612]
[21]
Katiyar SK. Grape seed proanthocyanidines and skin cancer prevention: Inhibition of oxidative stress and protection of immune system. Mol Nutr Food Res 2008; 52(SUPPL. 1)
[22]
Ciążyńska M, Olejniczak-Staruch I, Sobolewska-Sztychny D, Narbutt J, Skibińska M, Lesiak A. Ultraviolet radiation and chronic inflammation—molecules and mechanisms involved in skin carcinogenesis: A narrative review. Life (Basel) 2021; 11(4): 326.
[http://dx.doi.org/10.3390/life11040326] [PMID: 33917793]
[23]
Alemzadeh-Ansari MH, Izadi M, Jonaidi-Jafari N, Pourazizi M, Hoseinpourfard MJ. Photokeratitis induced by ultraviolet radiation in travelers: A major health problem. J Postgrad Med 2018; 64(1): 40-6.
[http://dx.doi.org/10.4103/jpgm.JPGM_52_17] [PMID: 29067921]
[24]
Amaro-Ortiz A, Yan B, D’Orazio J. Ultraviolet radiation, aging and the skin: prevention of damage by topical cAMP manipulation. Molecules 2014; 19(5): 6202-19.
[http://dx.doi.org/10.3390/molecules19056202] [PMID: 24838074]
[25]
Gabros S, Nessel TA, Zito PM. Sunscreens and photoprotection. In: StatPearls. Treasure Island, FL: StatPearls Publishing 2023.
[26]
Cherrie JW, Nioi A, Wendelboe-Nelson C, et al. Exposure to Solar UV During Outdoor Construction Work in Britain. Ann Work Expo Health 2021; 65(2): 176-82.
[http://dx.doi.org/10.1093/annweh/wxaa028] [PMID: 32155239]
[27]
Zink A, Wurstbauer D, Rotter M, Wildner M, Biedermann T. Do outdoor workers know their risk of NMSC? Perceptions, beliefs and preventive behaviour among farmers, roofers and gardeners. J Eur Acad Dermatol Venereol 2017; 31(10): 1649-54.
[http://dx.doi.org/10.1111/jdv.14281] [PMID: 28414878]
[28]
Ali Z, Yousaf N, Larkin J. Melanoma epidemiology, biology and prognosis. Eur J Cancer, Suppl 2013; 11(2): 81-91.
[http://dx.doi.org/10.1016/j.ejcsup.2013.07.012] [PMID: 26217116]
[29]
Umar SA, Tasduq SA. Ozone layer depletion and emerging public health concerns - an update on epidemiological perspective of the ambivalent effects of ultraviolet radiation exposure. Front Oncol 2022; 12: 866733.
[http://dx.doi.org/10.3389/fonc.2022.866733] [PMID: 35359420]
[30]
Wheless L, Jacks S, Mooneyham Potter KA, Leach BC, Cook J. Skin cancer in organ transplant recipients: More than the immune system. J Am Acad Dermatol 2014; 71(2): 359-65.
[http://dx.doi.org/10.1016/j.jaad.2014.02.039] [PMID: 24725477]
[31]
Bouwes Bavinck JN, Feltkamp M, Struijk L, ter Schegget J. Human papillomavirus infection and skin cancer risk in organ transplant recipients. J Investig Dermatol Symp Proc 2001; 6(3): 207-11.
[http://dx.doi.org/10.1046/j.0022-202x.2001.00048.x] [PMID: 11924829]
[32]
Liu Y, Sheikh MS. Melanoma: Molecular pathogenesis and therapeutic management. Mol Cell Pharmacol 2014; 6(3): 228.
[PMID: 25745537]
[33]
Davis LE, Shalin SC, Tackett AJ. Current state of melanoma diagnosis and treatment. Cancer Biol Ther 2019; 20(11): 1366-79.
[http://dx.doi.org/10.1080/15384047.2019.1640032] [PMID: 31366280]
[34]
Wang F, Liu J, An Q, et al. Aloe extracts inhibit skin inflammatory responses by regulating nf-κb, erk, and jnk signaling pathways in an LPS-Induced RAW264.7 macrophages model. Clin Cosmet Investig Dermatol 2023; 16: 267-78.
[http://dx.doi.org/10.2147/CCID.S391741] [PMID: 36742263]
[35]
Mokra D, Joskova M, Mokry J. Therapeutic effects of green tea polyphenol (‒)-epigallocatechin-3-gallate (EGCG) in relation to molecular pathways controlling inflammation, oxidative stress, and apoptosis. Int J Mol Sci 2022; 24(1): 340.
[http://dx.doi.org/10.3390/ijms24010340]
[36]
Sharifi-Rad J, Rayess YE, Rizk AA, et al. Turmeric and its major compound curcumin on health: Bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front Pharmacol 2020; 11: 01021.
[http://dx.doi.org/10.3389/fphar.2020.01021] [PMID: 33041781]
[37]
Gupta SC, Prasad S, Tyagi AK, Kunnumakkara AB, Aggarwal BB. Neem (Azadirachta indica): An indian traditional panacea with modern molecular basis. Phytomedicine 2017; 34: 14-20.
[http://dx.doi.org/10.1016/j.phymed.2017.07.001] [PMID: 28899496]
[38]
Rashan L, Hakkim FL, Idrees M, et al. Boswellia Gum Resin and Essential Oils: Potential Health Benefits − An Evidence Based Review. Int J Nutr Pharmacol Neurol Dis 2019; 9(2): 53-71.
[http://dx.doi.org/10.4103/ijnpnd.ijnpnd_11_19]
[39]
Kula M, Krauze-Baranowska M. Rubus occidentalis: The black raspberry—its potential in the prevention of cancer. Nutr Cancer 2016; 68(1): 18-28.
[http://dx.doi.org/10.1080/01635581.2016.1115095] [PMID: 26699735]
[40]
Sahardi NFNM, Makpol S. Ginger (Zingiber officinale Roscoe) in the prevention of ageing and degenerative diseases: Review of current evidence. Evid Based Complement Alternat Med 2019; 2019: 5054395.
[http://dx.doi.org/10.1155/2019/5054395]
[41]
Fallah M, Davoodvandi A, Nikmanzar S, et al. Silymarin (milk thistle extract) as a therapeutic agent in gastrointestinal cancer. Biomed Pharmacother 2021; 142: 112024.
[http://dx.doi.org/10.1016/j.biopha.2021.112024] [PMID: 34399200]
[42]
Bylka W, Znajdek-Awiżeń P, Studzińska-Sroka E, Brzezińska M. Centella asiatica in cosmetology. Postepy Dermatol Alergol 2013; 1(1): 46-9.
[http://dx.doi.org/10.5114/pdia.2013.33378] [PMID: 24278045]
[43]
Lee SG, Brownmiller CR, Lee SO, Kang HW. Anti-inflammatory and antioxidant effects of anthocyanins of Trifolium pratense (Red Clover) in lipopolysaccharide-stimulated RAW-267.4 macrophages. Nutrients 2020; 12(4): 1089.
[http://dx.doi.org/10.3390/nu12041089] [PMID: 32326385]
[44]
Zhou DD, Li J, Xiong RG, et al. Bioactive compounds, health benefits and food applications of grape. Foods 2022; 11(18): 2755.
[http://dx.doi.org/10.3390/foods11182755] [PMID: 36140883]
[45]
Niknam S, Tofighi Z, Faramarzi MA, et al. Polyherbal combination for wound healing: Matricaria chamomilla L. and Punica granatum L. Daru 2021; 29(1): 133-45.
[http://dx.doi.org/10.1007/s40199-021-00392-x] [PMID: 33966255]
[46]
Silva D, Ferreira MS, Sousa-Lobo JM, Cruz MT, Almeida IF. Anti-inflammatory activity of calendula officinalis L. flower extract. Cosmetics 2021; 8(2): 31.
[http://dx.doi.org/10.3390/cosmetics8020031]
[47]
Piazza S, Martinelli G, Magnavacca A, et al. Unveiling the ability of witch hazel (Hamamelis virginiana L.) bark extract to impair keratinocyte inflammatory cascade typical of atopic eczema. Int J Mol Sci 2022; 23(16): 9279.
[http://dx.doi.org/10.3390/ijms23169279] [PMID: 36012541]
[48]
Hannan MA, Rahman MA, Sohag AAM, et al. Black Cumin (Nigella sativa L.): A Comprehensive Review on Phytochemistry, Health Benefits, Molecular Pharmacology, and Safety. Nutrients 2021; 13(6): 1784.
[http://dx.doi.org/10.3390/nu13061784] [PMID: 34073784]
[49]
Wu X, Li Q, Feng Y, Ji Q. Antitumor research of the active ingredients from traditional chinese medical plant polygonum cuspidatum. Evid Based Complement Alternat Med 2018; 2018: 2313021.
[http://dx.doi.org/10.1155/2018/2313021]
[50]
Patel S, Goyal A. Recent developments in mushrooms as anticancer therapeutics: a review. 3 Biotech 2012; 2(1): 1.
[51]
Almatroodi SA, Alsahli MA, Rahmani AH. Berberine: An important emphasis on its anticancer effects through modulation of various cell signaling pathways. Molecules 2022; 27(18): 5889.
[http://dx.doi.org/10.3390/molecules27185889] [PMID: 36144625]
[52]
Sandoval M, Okuhama NN, Zhang XJ, et al. Anti-inflammatory and antioxidant activities of cat’s claw (Uncaria tomentosa and Uncaria guianensis) are independent of their alkaloid content. Phytomedicine 2002; 9(4): 325-37.
[http://dx.doi.org/10.1078/0944-7113-00117] [PMID: 12120814]
[53]
Tuli HS, Garg VK, Mehta JK, et al. Licorice (Glycyrrhiza glabra L.)-derived phytochemicals target multiple signaling pathways to confer oncopreventive and oncotherapeutic effects. OncoTargets Ther 2022; 15: 1419-48.
[http://dx.doi.org/10.2147/OTT.S366630] [PMID: 36474507]
[54]
Sharma P, McClees S, Afaq F. Pomegranate for prevention and treatment of cancer: An update. Molecules 2017; 22(1): 177.
[http://dx.doi.org/10.3390/molecules22010177] [PMID: 28125044]
[55]
Shang A, Cao SY, Xu XY, et al. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods 2019; 8(7): 246.
[http://dx.doi.org/10.3390/foods8070246] [PMID: 31284512]
[56]
Devi JR, Thangam EB. Mechanisms of anticancer activity of sulforaphane from Brassica oleracea in HEp-2 human epithelial carcinoma cell line. Asian Pac J Cancer Prev 2012; 13(5): 2095-100.
[http://dx.doi.org/10.7314/APJCP.2012.13.5.2095] [PMID: 22901176]
[57]
Di Napoli A, Zucchetti P. A comprehensive review of the benefits of Taraxacum officinale on human health. Bull Natl Res Cent 2021; 45(1): 110.
[http://dx.doi.org/10.1186/s42269-021-00567-1]
[58]
Li Y, Wang Y, Wu Y, et al. Echinacea pupurea extracts promote murine dendritic cell maturation by activation of JNK, p38 MAPK and NF-κB pathways. Dev Comp Immunol 2017; 73: 21-6.
[http://dx.doi.org/10.1016/j.dci.2017.03.002] [PMID: 28263837]
[59]
Samarghandian S, Borji A. Anticarcinogenic effect of saffron (Crocus sativus L.) and its ingredients. Pharmacognosy Res 2014; 6(2): 99-107.
[http://dx.doi.org/10.4103/0974-8490.128963] [PMID: 24761112]
[60]
Iwamoto LH, Vendramini-Costa DB, Monteiro PA, et al. Anticancer and anti-inflammatory activities of a standardized dichloromethane ex-tract from piper umbellatum L. leaves. Evid Based Complement Alternat Med 2015; 2015: 948737.
[http://dx.doi.org/10.1155/2015/948737] [PMID: 25713595]
[61]
Krebs S, Omer TN, Omer B. Wormwood (Artemisia absinthium) suppresses tumour necrosis factor alpha and accelerates healing in patients with Crohn’s disease – A controlled clinical trial. Phytomedicine 2010; 17(5): 305-9.
[http://dx.doi.org/10.1016/j.phymed.2009.10.013] [PMID: 19962291]
[62]
Kim S, Kim N, Jeong J, et al. Anti-cancer effect of panax ginseng and its metabolites: From traditional medicine to modern drug discovery. Processes (Basel) 2021; 9(8): 1344.
[http://dx.doi.org/10.3390/pr9081344]
[63]
Narayanan S, Ruma D, Gitika B, et al. Antioxidant activities of seabuckthorn (Hippophae rhamnoides) during hypoxia induced oxidative stress in glial cells. Mol Cell Biochem 2005; 278(1-2): 9-14.
[http://dx.doi.org/10.1007/s11010-005-7636-2] [PMID: 16180083]
[64]
Shara M, Stohs SJ. Efficacy and safety of white willow bark (Salix alba) extracts. Phytother Res 2015; 29(8): 1112-6.
[http://dx.doi.org/10.1002/ptr.5377] [PMID: 25997859]
[65]
Novelli M, Masiello P, Beffy P, Menegazzi M. Protective role of St. John’s wort and its components hyperforin and hypericin against diabetes through inhibition of inflammatory signaling: evidence from in vitro and in vivo studies. Int J Mol Sci 2020; 21(21): 8108.
[http://dx.doi.org/10.3390/ijms21218108] [PMID: 33143088]
[66]
Kim WS, Choi WJ, Lee S, et al. Anti-inflammatory, antioxidant and antimicrobial effects of artemisinin extracts from Artemisia annua L. Korean J Physiol Pharmacol 2014; 19(1): 21-7.
[http://dx.doi.org/10.4196/kjpp.2015.19.1.21] [PMID: 25605993]
[67]
Finamore A, Palmery M, Bensehaila S, Peluso I. Antioxidant, immunomodulating, and microbial-modulating activities of the sustainable and Ecofriendly spirulina. Oxid Med Cell Longev 2017; 2017(3247528)
[http://dx.doi.org/10.1155/2017/3247528] [PMID: 28182098]
[68]
Cirmi S, Ferlazzo N, Lombardo G, et al. Chemopreventive agents and inhibitors of cancer hallmarks: May citrus offer new perspectives? Nutrients 2016; 8(11): 698.
[http://dx.doi.org/10.3390/nu8110698] [PMID: 27827912]
[69]
Meng X, Li Y, Li S, et al. Dietary sources and bioactivities of melatonin. Nutrients 2017; 9(4): 367.
[http://dx.doi.org/10.3390/nu9040367] [PMID: 28387721]
[70]
Zoi V, Galani V, Lianos GD, Voulgaris S, Kyritsis AP, Alexiou GA. The role of curcumin in cancer treatment. Biomedicines 2021; 9(9): 1086.
[http://dx.doi.org/10.3390/biomedicines9091086] [PMID: 34572272]
[71]
Farhan M. Green tea catechins: nature’s way of preventing and treating cancer. Int J Mol Sci 2022; 23(18): 10713.
[http://dx.doi.org/10.3390/ijms231810713] [PMID: 36142616]
[72]
Sánchez M, González-Burgos E, Iglesias I, Gómez-Serranillos MP. Pharmacological update properties of Aloe vera and its major active constituents. Molecules 2020; 25(6): 1324.
[http://dx.doi.org/10.3390/molecules25061324] [PMID: 32183224]
[73]
Diniz LRL, Calado LL, Duarte ABS, de Sousa DP. Centella asiatica and its metabolite asiatic acid: wound healing effects and therapeutic potential. Metabolites 2023; 13(2): 276.
[http://dx.doi.org/10.3390/metabo13020276] [PMID: 36837896]
[74]
Yoon G, Lee MH, Kwak AW, et al. Podophyllotoxin isolated from podophyllum peltatum induces g2/m phase arrest and mitochondrial-mediated apoptosis in esophageal squamous cell carcinoma cells. Forests 2020; 11(1): 8.
[http://dx.doi.org/10.3390/f11010008]
[75]
Ahmed MB, Islam SU, Alghamdi AAA, Kamran M, Ahsan H, Lee YS. Phytochemicals as chemo-preventive agents and signaling molecule modulators: Current role in cancer therapeutics and inflammation. Int J Mol Sci 2022; 23(24): 15765.
[http://dx.doi.org/10.3390/ijms232415765] [PMID: 36555406]
[76]
Tohme S, Simmons RL, Tsung A. Surgery for cancer: A trigger for metastases. Cancer Res 2017; 77(7): 1548-52.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1536] [PMID: 28330928]
[77]
McKenna DB, Marioni JC, Lee RJ, Prescott RJ, Doherty VR. A comparison of dermatologists’, surgeons’ and general practitioners’ surgical management of cutaneous melanoma. Br J Dermatol 2004; 151(3): 636-44.
[http://dx.doi.org/10.1111/j.1365-2133.2004.06065.x] [PMID: 15377351]
[78]
Bobircă F, Tebeică T, Pumnea A, et al. The characteristics of sentinel lymph node biopsy in cutaneous melanoma and the particularities for elderly patients—experience of a single clinic. Diagnostics (Basel) 2023; 13(5): 926.
[http://dx.doi.org/10.3390/diagnostics13050926] [PMID: 36900069]
[79]
Henriksen T, Dahlback A, Larsen SHH, Moan J. Ultraviolet radiation and skin cancer. Effect of an ozone layer depletion. Photochem Photobiol 1990; 51(5): 579-82.
[http://dx.doi.org/10.1111/j.1751-1097.1990.tb01968.x] [PMID: 2367555]
[80]
Sari YA, Hapsani AG, Adinugroho S, Hakim L, Mutrofin S. Preprocessing of skin images and feature selection for early stage of melanoma detection using color feature extraction. International Journal of Artificial Intelligence Research 2021; 4(2): 95.
[http://dx.doi.org/10.29099/ijair.v4i2.165]
[81]
Liu X, Song L, Liu S, Zhang Y. A review of deep-learning-based medical image segmentation methods. Sustainability (Basel) 2021; 13(3): 1224.
[http://dx.doi.org/10.3390/su13031224]
[82]
Arivazhagan N, Mukunthan MA, Sundaranarayana D, Shankar A, Vinoth Kumar S, Kesavan R, et al. Analysis of skin cancer and patient healthcare using data mining techniques. Comput Intell Neurosci 2022; 2022
[http://dx.doi.org/10.1155/2022/2250275]
[83]
Masood A, Al-Jumaily AA. Computer aided diagnostic support system for skin cancer: A review of techniques and algorithms. Int J Biomed Imaging 2013; 2013
[http://dx.doi.org/10.1155/2013/323268]
[84]
Reddy U, Dhanalakshmi P, Reddy P. Image segmentation technique using SVM classifier for detection of medical disorders. Ingénierie des systèmes d information 2019; 24(2): 173-6.
[http://dx.doi.org/10.18280/isi.240207]
[85]
Lieber CA, Majumder SK, Ellis DL, Billheimer DD, Mahadevan-Jansen A. In vivo nonmelanoma skin cancer diagnosis using Raman microspectroscopy. Lasers Surg Med 2008; 40(7): 461-7.
[http://dx.doi.org/10.1002/lsm.20653] [PMID: 18727020]
[86]
Rodger C, Dent G, Watkinson J, Smith WE. Surface-enhanced resonance Raman scattering and near-infrared Fourier transform Raman scattering as in situ probes of ink jet dyes printed on paper. Appl Spectrosc 2000; 54(11): 1567-76.
[http://dx.doi.org/10.1366/0003702001948817]
[87]
Santos CFG. Dos , Papa JP. Avoiding overfitting: A survey on regularization methods for convolutional neural networks. ACM Comput Surv 2022; 54(10 s)
[http://dx.doi.org/10.1145/3510413]
[88]
Saiko G. Feasibility of Skin Water Content Imaging Using CMOS Sensors. Sensors (Basel) 2023; 23(2): 919.
[http://dx.doi.org/10.3390/s23020919] [PMID: 36679716]
[89]
Fatima N, Baqri SSR, Alsulimani A, et al. Phytochemicals from Indian Ethnomedicines: Promising Prospects for the Management of Oxidative Stress and Cancer. Antioxidants 2021; 10(10): 1606.
[http://dx.doi.org/10.3390/antiox10101606] [PMID: 34679741]
[90]
Musial C, Kuban-Jankowska A, Gorska-Ponikowska M. Beneficial properties of green tea catechins. Int J Mol Sci 2020; 21(5): 1744.
[http://dx.doi.org/10.3390/ijms21051744] [PMID: 32143309]
[91]
Ko JH, Sethi G, Um JY, et al. The role of resveratrol in cancer therapy. Int J Mol Sci 2017; 18(12): 2589.
[http://dx.doi.org/10.3390/ijms18122589] [PMID: 29194365]
[92]
Maan AA, Nazir A, Khan MKI, et al. The therapeutic properties and applications of Aloe vera: A review. J Herb Med 2018; 12: 1-10.
[http://dx.doi.org/10.1016/j.hermed.2018.01.002]
[93]
Dias DA, Urban S, Roessner U. A historical overview of natural products in drug discovery. Metabolites 2012; 2(2): 303-36.
[http://dx.doi.org/10.3390/metabo2020303] [PMID: 24957513]
[94]
Veeresham C. Natural products derived from plants as a source of drugs. J Adv Pharm Technol Res 2012; 3(4): 200-1.
[http://dx.doi.org/10.4103/2231-4040.104709] [PMID: 23378939]
[95]
Chinembiri T, du Plessis L, Gerber M, Hamman J, du Plessis J. Review of natural compounds for potential skin cancer treatment. Molecules 2014; 19(8): 11679-721.
[http://dx.doi.org/10.3390/molecules190811679] [PMID: 25102117]
[96]
Dehelean CA, Marcovici I, Soica C, et al. Plant-derived anticancer compounds as new perspectives in drug discovery and alternative therapy. Molecules 2021; 26(4): 1109.
[http://dx.doi.org/10.3390/molecules26041109] [PMID: 33669817]
[97]
Gilad Y, Gellerman G, Lonard DM, O’Malley BW. Drug combination in cancer treatment—from cocktails to conjugated combinations. Cancers (Basel) 2021; 13(4): 669.
[http://dx.doi.org/10.3390/cancers13040669] [PMID: 33562300]
[98]
Martino E, Casamassima G, Castiglione S, et al. Vinca alkaloids and analogues as anti-cancer agents: Looking back, peering ahead. Bioorg Med Chem Lett 2018; 28(17): 2816-26.
[http://dx.doi.org/10.1016/j.bmcl.2018.06.044] [PMID: 30122223]
[99]
Bates D, Eastman A. Microtubule destabilising agents: far more than just antimitotic anticancer drugs. Br J Clin Pharmacol 2017; 83(2): 255-68.
[http://dx.doi.org/10.1111/bcp.13126] [PMID: 27620987]
[100]
Fanale D, Bronte G, Passiglia F, et al. Stabilizing versus destabilizing the microtubules: a double-edge sword for an effective cancer treatment option? Anal Cell Pathol (Amst) 2015; 2015: 690916.
[http://dx.doi.org/10.1155/2015/690916]
[101]
Kienle GS, Glockmann A, Schink M, Kiene H. Viscum album L. extracts in breast and gynaecological cancers: a systematic review of clinical and preclinical research. J Exp Clin Cancer Res 2009; 28(1): 79.
[http://dx.doi.org/10.1186/1756-9966-28-79] [PMID: 19519890]
[102]
Shanafelt TD, Call TG, Zent CS, et al. Phase 2 trial of daily, oral polyphenon E in patients with asymptomatic, Rai stage 0 to II chronic lymphocytic leukemia. Cancer 2013; 119(2): 363-70.
[http://dx.doi.org/10.1002/cncr.27719] [PMID: 22760587]
[103]
Spallone G, Botti E, Costanzo A. Targeted therapy in nonmelanoma skin cancers. Cancers (Basel) 2011; 3(2): 2255-73.
[http://dx.doi.org/10.3390/cancers3022255] [PMID: 24212808]
[104]
Pal HC, Hunt KM, Diamond A, Elmets CA, Afaq F. Phytochemicals for the management of melanoma. Mini Rev Med Chem 2016; 16(12): 953-79.
[http://dx.doi.org/10.2174/1389557516666160211120157] [PMID: 26864554]
[105]
George BP, Chandran R, Abrahamse H. Role of phytochemicals in cancer chemoprevention: Insights. Antioxidants 2021; 10(9): 1455.
[http://dx.doi.org/10.3390/antiox10091455] [PMID: 34573087]
[106]
Choudhari AS, Mandave PC, Deshpande M, Ranjekar P, Prakash O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front Pharmacol 2020; 10: 1614.
[http://dx.doi.org/10.3389/fphar.2019.01614] [PMID: 32116665]
[107]
Batra P, Sharma AK. Anti-cancer potential of flavonoids: recent trends and future perspectives. 3 Biotech 2013; 3(6): 439.
[108]
Saunders C. The anti-proliferative effect of different tomato varieties on the human colon adenocarcinoma cells. Biosci Horizons 2009; 2(2): 172-9.
[http://dx.doi.org/10.1093/biohorizons/hzp020]
[109]
Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci 2016; 5: e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[110]
Sharma N, Dobhal MP, Joshi YC, Chahar MK. Flavonoids: A versatile source of anticancer drugs. Pharmacogn Rev 2011; 5(9): 1-12.
[http://dx.doi.org/10.4103/0973-7847.79093] [PMID: 22096313]
[111]
Tumpa PP, Kabir MA. An artificial neural network based detection and classification of melanoma skin cancer using hybrid texture features. Sensors International 2021; 2: 100128.
[http://dx.doi.org/10.1016/j.sintl.2021.100128]
[112]
Brinker TJ, Hekler A, Utikal JS, et al. Skin cancer classification using convolutional neural networks: Systematic review. J Med Internet Res 2018; 20(10): e11936.
[http://dx.doi.org/10.2196/11936] [PMID: 30333097]
[113]
Senthilkumar M. Use of artificial neural networks (ANNs) in colour measurement. Colour Meas Princ Adv Ind Appl 2010; pp. 125-46.
[http://dx.doi.org/10.1533/9780857090195.1.125]
[114]
Teuwen J, Moriakov N. Convolutional neural networks. Handb Med Image Comput Comput Assist Interv 2019; pp. 481-501.
[115]
Puig-Arnavat M, Bruno JC. Artificial neural networks for thermochemical conversion of biomass. Recent Adv Thermochem Convers Biomass 2015; pp. 133-56.
[http://dx.doi.org/10.1016/B978-0-444-63289-0.00005-3]
[116]
Han J, Kamber M, Pei J. 9 - Classification: Advanced methods In: Data Mining (Third Edition). 2012; pp. 393-442.
[117]
Whittington JCR, Bogacz R. Theories of error back propagation in the brain. Trends Cogn Sci 2019; 23(3): 235-50.
[http://dx.doi.org/10.1016/j.tics.2018.12.005] [PMID: 30704969]
[118]
Christiansen NH, Voie PET, Winther O, Høgsberg J. Comparison of neural network error measures for simulation of slender marine structures. J Appl Math 2014; 2014
[119]
Xu Y, Liu X, Cao X, et al. Artificial intelligence: A powerful paradigm for scientific research. Innovation 2021; 2(4): 100179.
[http://dx.doi.org/10.1016/j.xinn.2021.100179] [PMID: 34877560]
[120]
What is a neural network and its types? Available from: https://www.spiceworks.com/tech/artificialintelligence/articles/what-is-a-neural-network/ (Accessed on: 2023 Jun 9).
[121]
Sarker IH. Deep learning: A comprehensive overview on techniques, taxonomy, applications and research directions. SN Computer Science 2021; 2(6): 420.
[http://dx.doi.org/10.1007/s42979-021-00815-1] [PMID: 34426802]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy