Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Research Article

High Prevalence of a c.5979dupA Variant in the Dysferlin Gene (DYSF) in Individuals from a Semiarid Region of Brazil

Author(s): Isabella A. Motta, Maria L.A. Gouveia, Ana P.M. Braga, Rafael S. Andrade, Mayra F.F. Montenegro, Sandra N. Gurgel, Keila M.F. Albuquerque, Priscilla A.N.G. Souto, Flávia P.B.F. Cardoso, Joseane S. Araujo, Mirella C.L. Pinheiro, Carlos E.P. da Silva, Pamella A.S. Gurgel, David Feder, Matheus M. Perez, Glaucia L. da Veiga, Beatriz C.A. Alves, Fernando L.A. Fonseca and Alzira A.S. Carvalho*

Volume 24, Issue 5, 2023

Published on: 25 October, 2023

Page: [330 - 335] Pages: 6

DOI: 10.2174/0113892029257856231013115036

Price: $65

Abstract

Background: Dysferlinopathies represent a group of limb girdle or distal muscular dystrophies with an autosomal-recessive inheritance pattern resulting from the presence of pathogenic variants in the dysferlin gene (DYSF).

Objective: In this work, we describe a population from a small city in Brazil carrying the c.5979dupA pathogenic variant of DYSF responsible for limb girdle muscular dystrophy type 2R and distal muscular dystrophy.

Methods: Genotyping analyses were performed by qPCR using customized probe complementary to the region with the duplication under analysis in the DYSF.

Results: A total of 104 individuals were examined. c.5979dupA was identified in 48 (46.15%) individuals. Twenty-three (22%) were homozygotes, among whom 13 (56.5%) were female. A total of 91.3% (21) of homozygous individuals had a positive family history, and seven (30.4%) reported consanguineous marriages. Twenty-five (24%) individuals were heterozygous (25.8±16 years) for the same variant, among whom 15 (60%) were female. The mean CK level was 697 IU for homozygotes, 140.5 IU for heterozygotes and 176 IU for wild-type homo-zygotes. The weakness distribution pattern showed 17.3% of individuals with a proximal pattern, 13% with a distal pattern and 69.6% with a mixed pattern. Fatigue was present in 15 homozygotes and one heterozygote.

Conclusion: The high prevalence of this variant in individuals from this small community can be explained by a possible founder effect associated with historical, geographical and cultural aspects.

Keywords: Dysferlin, limb girdle muscular dystrophy, miyoshi myopathy, distal myopathy, genetic testing, dysferlinopathy.

« Previous
Graphical Abstract
[1]
Nguyen, K.; Bassez, G.; Bernard, R.; Krahn, M.; Labelle, V.; Figarella-Branger, D.; Pouget, J.; Hammouda, E.H.; Béroud, C.; Urtizberea, A.; Eymard, B.; Leturcq, F.; Lévy, N. Dysferlin mutations in LGMD2B, Miyoshi myopathy, and atypical dysferlinopathies. Hum. Mutat., 2005, 26(2), 165.
[http://dx.doi.org/10.1002/humu.9355] [PMID: 16010686]
[2]
Anderson, L.V.B.; Davison, K. Multiplex Western blotting system for the analysis of muscular dystrophy proteins. Am. J. Pathol., 1999, 154(4), 1017-1022.
[http://dx.doi.org/10.1016/S0002-9440(10)65354-0] [PMID: 10233840]
[3]
Bashir, R.; Britton, S.; Strachan, T.; Keers, S.; Vafiadaki, E.; Lako, M.; Richard, I.; Marchand, S.; Bourg, N.; Argov, Z.; Sadeh, M.; Mahjneh, I.; Marconi, G.; Passos-Bueno, M.R. Moreira, E.de S.; Zatz, M.; Beckmann, J.S.; Bushby, K. A gene related to the C. elegans spermatogenesis factor fer-1 is mutated in patients with limb-girdle muscular dystrophy type 2B (LGMD2B). Nat. Genet., 1998, 20(1), 37-42.
[http://dx.doi.org/10.1038/1689] [PMID: 9731527]
[4]
Johnson, N.E.; Statland, J.M. The limb-girdle muscular dystrophies. Continuum, 2022, 28(6), 1698-1714.
[http://dx.doi.org/10.1212/CON.0000000000001178] [PMID: 36537976]
[5]
Straub, V.; Murphy, A.; Udd, B. Limb girdle muscular dystrophies: Nomenclature and reformed classification. In 229th ENMC workshop study group, Naarden, The Netherlands, (17-19 Mar 2017). Neuromuscul. Disord., 2018, 28(8), 702-710.
[http://dx.doi.org/10.1016/j.nmd.2018.05.007] [PMID: 30055862]
[6]
Illa, I.; Serrano-Munuera, C.; Gallardo, E.; Lasa, A.; Rojas-García, R.; Palmer, J.; Gallano, P.; Baiget, M.; Matsuda, C.; Brown, R.H. Distal anterior compartment myopathy: A dysferlin mutation causing a new muscular dystrophy phenotype. Ann. Neurol., 2001, 49(1), 130-134.
[http://dx.doi.org/10.1002/1531-8249(200101)49:1<130:AID-ANA22>3.0.CO;2-0] [PMID: 11198284]
[7]
Miyoshi, K.; Kawai, H.; Iwasa, M.; Kusaka, K.; Nishino, H. Autosomal recessive distal muscular dystrophy as a new type of progressive muscular dystrophy. Seventeen cases in eight families including an autopsied case. Brain, 1986, 109(1), 31-54.
[http://dx.doi.org/10.1093/brain/109.1.31] [PMID: 3942856]
[8]
Harris, E.; Bladen, C.L.; Mayhew, A.; James, M.; Bettinson, K.; Moore, U.; Smith, F.E.; Rufibach, L.; Cnaan, A.; Bharucha-Goebel, D.X.; Blamire, A.M.; Bravver, E.; Carlier, P.G.; Day, J.W.; Díaz-Manera, J.; Eagle, M.; Grieben, U.; Harms, M.; Jones, K.J.; Lochmüller, H.; Mendell, J.R.; Mori-Yoshimura, M.; Paradas, C.; Pegoraro, E.; Pestronk, A.; Salort-Campana, E.; Schreiber-Katz, O.; Semplicini, C.; Spuler, S.; Stojkovic, T.; Straub, V.; Takeda, S.; Rocha, C.T.; Walter, M.C.; Bushby, K. The Clinical Outcome Study for dysferlinopathy: An international multicenter study. Neurol. Genet., 2016, 2(4), e89.
[http://dx.doi.org/10.1212/NXG.0000000000000089] [PMID: 27602406]
[9]
Ivanova, A.; Smirnikhina, S.; Lavrov, A. Dysferlinopathies: Clinical and genetic variability. Clin. Genet., 2022, 102(6), 465-473.
[http://dx.doi.org/10.1111/cge.14216] [PMID: 36029111]
[10]
Argov, Z.; Sadeh, M.; Mazor, K.; Soffer, D.; Kahana, E.; Eisenberg, I.; Mitrani-Rosenbaum, S.; Richard, I.; Beckmann, J.; Keers, S.; Bashir, R.; Bushby, K.; Rosenmann, H. Muscular dystrophy due to dysferlin deficiency in Libyan Jews. Brain, 2000, 123(6), 1229-1237.
[http://dx.doi.org/10.1093/brain/123.6.1229] [PMID: 10825360]
[11]
Leshinsky-Silver, E.; Argov, Z.; Rozenboim, L.; Cohen, S.; Tzofi, Z.; Cohen, Y.; Wirguin, Y.; Dabby, R.; Lev, D.; Sadeh, M. Dysferlinopathy in the Jews of the Caucasus: A frequent mutation in the dysferlin gene. Neuromuscul. Disord., 2007, 17(11-12), 950-954.
[http://dx.doi.org/10.1016/j.nmd.2007.07.010] [PMID: 17825554]
[12]
Cotta, A.; Paim, J.F.; Carvalho, E.; da-Cunha-Júnior, A.L.; Navarro, M.M.; Valicek, J.; Menezes, M.M.; Nunes, S.V.; Xavier-Neto, R.; Baptista, Junior S.; Lima, L.R.; Takata, R.I.; Vargas, A.P. The relative frequency of common neuromuscular diagnoses in a reference center. Arq. Neuropsiquiatr., 2017, 75(11), 789-795.
[http://dx.doi.org/10.1590/0004-282x20170151] [PMID: 29236822]
[13]
Theadom, A.; Rodrigues, M.; Roxburgh, R.; Balalla, S.; Higgins, C.; Bhattacharjee, R.; Jones, K.; Krishnamurthi, R.; Feigin, V. Prevalence of muscular dystrophies: A systematic literature review. Neuroepidemiology, 2014, 43(3-4), 259-268.
[http://dx.doi.org/10.1159/000369343] [PMID: 25532075]
[14]
Lopes, F.R.L.; Monteiro, K.S.; Figueiredo, T.; Wanderley, T.C.; Pequeno, T.A.; Lima, S.; Santos, S. Reliability of information on people with disabilities gathered by community health workers in highly consanguineous communities of Northeastern Brazil. BMC Health Serv. Res., 2017, 17(1), 317.
[http://dx.doi.org/10.1186/s12913-017-2267-3] [PMID: 28464869]
[15]
Otto, P.A.; Lemes, R.B.; Farias, A.A.; Weller, M.; Lima, S.O.A.; Albino, V.A.; Marques-Alves, Y.K.; Pardono, E.; Bocangel, M.A.P.; Santos, S. The structure of first-cousin marriages in Brazil. Sci. Rep., 2020, 10(1), 15573.
[http://dx.doi.org/10.1038/s41598-020-72366-z] [PMID: 32968083]
[16]
Weller, M.; Tanieri, M.; Pereira, J.C.; Almeida, E.D.S.; Kok, F.; Santos, S. Consanguineous unions and the burden of disability: A population-based study in communities of Northeastern Brazil. Am. J. Hum. Biol., 2012, 24(6), 835-840.
[http://dx.doi.org/10.1002/ajhb.22328] [PMID: 23042425]
[17]
Brazilian Institute of Geography and Statistics (IBGE) Atlas Nacional, 2010. Available from: https://cidades.ibge.gov.br/brasil/pb/sao-mamede/historico (accessed on 7 August 2020).
[18]
Freire-Maia, N. Inbreeding in Brazil. Am. J. Hum. Genet., 1957, 9(4), 284-298.
[PMID: 13497997]
[19]
Santos, S.; Kok, F.; Weller, M.; Paiva, F.R.L.; Otto, P.A. Inbreeding levels in Northeast Brazil: Strategies for the prospecting of new genetic disorders. Genet. Mol. Biol., 2010, 33(2), 220-223.
[http://dx.doi.org/10.1590/S1415-47572010005000020] [PMID: 21637472]
[20]
Santos, S.; da Silva Pequeno, A.A.; Pessoa, A.; Galvão, C.R.; de Medeiros, J.L.; Mathias, W.; Kok, F. Increased prevalence of inherited neuromuscular disorders due to endogamy in Northeast Brazil: The need of community genetics services. J. Community Genet., 2014, 5(3), 199-203.
[PMID: 24277254]
[21]
Macedo-Souza, L.I.; Kok, F.; Santos, S.; Licinio, L.; Lezirovitz, K.; Cavaçana, N.; Bueno, C.; Amorim, S.; Pessoa, A.; Graciani, Z.; Ferreira, Á.; Prazeres, A.; de Melo, Á.N.; Otto, P.A.; Zatz, M. Spastic paraplegia, optic atrophy, and neuropathy: new observations, locus refinement, and exclusion of candidate genes. Ann. Hum. Genet., 2009, 73(3), 382-387.
[http://dx.doi.org/10.1111/j.1469-1809.2009.00507.x] [PMID: 19344448]
[22]
Leiden Muscular Dystrophy pages, Center for Human and Clinical Genetics, Leiden University Medical Center., Available from: http://www.dmd.nl./ (accessed on 7 August 2020).
[23]
IGSR. The International Genome Sample Resource.Providing ongoing support for the 1000 Genomes Project data., 2020. Available from: http://www.internationalgenome.org/data- portal/search? q=p.%20(Glu1994Argfs*3) (acessed on 7 May 2020).
[24]
OMIM® - Online Mendelian Inheritance in Man., 2020. Available from: https://www.omim.org/about (accessed on 7 August 2020).
[25]
NCBI: U.S National Library of Medicine. National Center for Biotechnology Information., Available from: http:www.ncbi.nlm. nih.gov/search/all/?term=p.+%28Glu1994Argfs*3%29 (accessed on 7 August 2020).
[26]
ClinVar. Available from: https://www.ncbi.nlm.nih.gov/clinvar accessed on 7 August 2020).
[27]
LOVD: Leiden Open Variation Database., Available from: https://www.lovd.nl (accessed on 7 August 2020).
[28]
HGMD Human Gene Mutation Database., Available from: http://www.hgmd.cf.ac.uk/ac/index.php (accessed on 7 August 2020).
[29]
gnomAD: Genome Aggregation Database., Available from: https://gnomad.broadinstitute.org (accessed on 7 August 2020).
[30]
ABraOM Brazilian genomic variants., Available from: http://abraom.ib.usp.br (accessed on 7 August 2020).
[31]
Anderson, L.V.B.; Harrison, R.M.; Pogue, R.; Vafiadaki, E.; Pollitt, C.; Davison, K.; Moss, J.A.; Keers, S.; Pyle, A.; Shaw, P.J.; Mahjneh, I.; Argov, Z.; Greenberg, C.R.; Wrogemann, K.; Bertorini, T.; Goebel, H.H.; Beckmann, J.S.; Bashir, R.; Bushby, K.M.D. Secondary reduction in calpain 3 expression in patients with limb girdle muscular dystrophy type 2B and Miyoshi myopathy (primary dysferlinopathies). Neuromuscul. Disord., 2000, 10(8), 553-559.
[http://dx.doi.org/10.1016/S0960-8966(00)00143-7] [PMID: 11053681]
[32]
Cagliani, R.; Fortunato, F.; Giorda, R.; Rodolico, C.; Bonaglia, M.C.; Sironi, M.; D’Angelo, M.G.; Prelle, A.; Locatelli, F.; Toscano, A.; Bresolin, N.; Comi, G.P. Molecular analysis of LGMD-2B and MM patients: identification of novel DYSF mutations and possible founder effect in the Italian population. Neuromuscul. Disord., 2003, 13(10), 788-795.
[http://dx.doi.org/10.1016/S0960-8966(03)00133-0] [PMID: 14678801]
[33]
Zhang, H.; Li, Y.; Cheng, Q.; Chen, X.; Yu, Q.; Li, Z. Abnormal expression of dysferlin in blood monocytes supports primary dysferlinopathy in patients confirmed by genetic analyses. Front. Neurol., 2021, 11, 540098.
[http://dx.doi.org/10.3389/fneur.2020.540098] [PMID: 33613410]
[34]
Krahn, M.; Béroud, C.; Labelle, V.; Nguyen, K.; Bernard, R.; Bassez, G.; Figarella-Branger, D.; Fernandez, C.; Bouvenot, J.; Richard, I.; Ollagnon-Roman, E.; Bevilacqua, J.A.; Salvo, E.; Attarian, S.; Chapon, F.; Pellissier, J.F.; Pouget, J.; Hammouda, E.H.; Laforêt, P.; Urtizberea, J.A.; Eymard, B.; Leturcq, F.; Lévy, N. Analysis of the DYSF mutational spectrum in a large cohort of patients. Hum. Mutat., 2009, 30(2), E345-E375.
[http://dx.doi.org/10.1002/humu.20910] [PMID: 18853459]
[35]
Lo, H.P.; Cooper, S.T.; Evesson, F.J.; Seto, J.T.; Chiotis, M.; Tay, V.; Compton, A.G.; Cairns, A.G.; Corbett, A.; MacArthur, D.G.; Yang, N.; Reardon, K.; North, K.N. Limb–girdle muscular dystrophy: Diagnostic evaluation, frequency and clues to pathogenesis. Neuromuscul. Disord., 2008, 18(1), 34-44.
[http://dx.doi.org/10.1016/j.nmd.2007.08.009] [PMID: 17897828]
[36]
Nallamilli, B.R.R.; Chakravorty, S.; Kesari, A.; Tanner, A.; Ankala, A.; Schneider, T.; da Silva, C.; Beadling, R.; Alexander, J.J.; Askree, S.H.; Whitt, Z.; Bean, L.; Collins, C.; Khadilkar, S.; Gaitonde, P.; Dastur, R.; Wicklund, M.; Mozaffar, T.; Harms, M.; Rufibach, L.; Mittal, P.; Hegde, M. Genetic landscape and novel disease mechanisms from a large LGMD cohort of 4656 patients. Ann. Clin. Transl. Neurol., 2018, 5(12), 1574-1587.
[http://dx.doi.org/10.1002/acn3.649] [PMID: 30564623]
[37]
Family education, Available from: https://www.familyeducation. com/baby-names/surname (accessed on 7 May 2020).
[38]
Mieli, N. Old “new Christians” in the backlands of Paraíba. Lusófona Magazine of Science of Religions, 2008, 13-14, 539-5523.
[39]
Blay, E.A. Gender, resistance and identity: Jewish immigrants in Brazil. Tempo Soc. Rev. Sociol., 2009, 21(2), 235-258.
[http://dx.doi.org/10.1590/S0103-20702009000200011]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy