Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

A Comprehensive Review on Chemistry and Biology of Tafamidis in Transthyretin Amyloidosis

Author(s): Monali B. Patil, Piyush Ghode* and Prashant Joshi*

Volume 24, Issue 6, 2024

Published on: 11 October, 2023

Page: [571 - 587] Pages: 17

DOI: 10.2174/0113895575241556231003055323

Price: $65

Abstract

Transthyretin amyloid cardiomyopathy and Transthyretin amyloid peripheral neuropathy are progressive disease conditions caused by Transthyretin amyloidosis (ATTR) fibril infiltration in the tissue. Transthyretin (TTR) protein misfolding and amyloid fibril deposits are pathological biomarkers of ATTR-related disorders. There are various treatment strategies targeting different stages in pathophysiology. One such strategy is TTR tetramer stabilization. Recently, a new TTR tetramer stabilizer, tafamidis, has been introduced that reduces the protein misfolding and amyloidosis and, consequently, disease progression in ATTR cardiomyopathy and peripheral neuropathy. This review will provide a comprehensive overview of the literature on tafamidis discovery, development, synthetic methods, pharmacokinetics, analytical methods and clinical trials. Overall, 7 synthetic methods, 5 analytical methods and 23 clinical trials have been summarized from the literature.

Keywords: Transthyretin amyloid cardiomyopathy, transthyretin amyloid peripheral neuropathy, tafamidis, synthetic methods, analytical techniques, pharmacokinetics and clinical trials.

Graphical Abstract
[1]
Amyloids, A. Putting a spin on electronics. Chem. Eng. News, 2010, 88(4), 30-32.
[http://dx.doi.org/10.1021/cen-v088n004.p030]
[2]
Breznitz, S.M.; O’Shea, R.P.; Allen, T.J. University commercialization strategies in the development of regional bioclusters. J. Prod. Innov. Manage., 2008, 25(2), 129-142.
[http://dx.doi.org/10.1111/j.1540-5885.2008.00290.x]
[3]
Grogan, K. FDA rejects Pfizer rare disease drug tafamidis; Pharma Times, 2012.
[4]
Said, G.; Grippon, S.; Kirkpatrick, P. Tafamidis. Nat. Rev. Drug Discov., 2012, 11(3), 185-186.
[http://dx.doi.org/10.1038/nrd3675] [PMID: 22378262]
[5]
Hussain, K.; Macrinici, V.; Wathen, L.; Balasubramanian, S.S.; Minga, I.; Gaznabi, S.; Kwak, E.; Wang, C.H.; Iqbal, S.H.; Pursnani, A.; Sarswat, N. Impact of tafamidis on survival in a real-world community-based cohort. Curr. Probl. Cardiol., 2022, 47(12), 101358.
[http://dx.doi.org/10.1016/j.cpcardiol.2022.101358] [PMID: 35995245]
[6]
Lockwood, P.A.; Le, V.H.; O’Gorman, M.T.; Patterson, T.A.; Sultan, M.B.; Tankisheva, E.; Wang, Q.; Riley, S. The bioequivalence of tafamidis 61-mg free acid capsules and tafamidis meglumine 4 × 20-mg capsules in healthy volunteers. Clin. Pharmacol. Drug Dev., 2020, 9(7), 849-854.
[http://dx.doi.org/10.1002/cpdd.789] [PMID: 32196976]
[7]
Cho, Y.; Baranczak, A.; Helmke, S.; Teruya, S.; Horn, E.M.; Maurer, M.S.; Kelly, J.W. Personalized medicine approach for optimizing the dose of tafamidis to potentially ameliorate wild-type transthyretin amyloidosis (cardiomyopathy). Amyloid, 2015, 22(3), 175-180.
[http://dx.doi.org/10.3109/13506129.2015.1063485] [PMID: 26193961]
[8]
Burton, A.; Castaño, A.; Bruno, M.; Riley, S.; Schumacher, J.; Sultan, M.B.; See Tai, S.; Judge, D.P.; Patel, J.K.; Kelly, J.W. Drug discovery and development in rare diseases: Taking a closer look at the tafamidis story. Drug Des. Devel. Ther., 2021, 15, 1225-1243.
[http://dx.doi.org/10.2147/DDDT.S289772] [PMID: 33776421]
[9]
Kholová, I.; Niessen, H.W. Amyloid in the cardiovascular system: A review. J. Clin. Pathol., 2005, 58(2), 125-133.
[http://dx.doi.org/10.1136/jcp.2004.017293] [PMID: 15677530]
[10]
Dasari, A.K.R.; Hung, I.; Gan, Z.; Lim, K.H. Two distinct aggregation pathways in transthyretin misfolding and amyloid formation. Biochim. Biophys. Acta. Proteins Proteomics, 2019, 1867(3), 344-349.
[http://dx.doi.org/10.1016/j.bbapap.2018.10.013] [PMID: 30366153]
[11]
Zhao, L.; Buxbaum, J.N.; Reixach, N. Age-related oxidative modifications of transthyretin modulate its amyloidogenicity. Biochemistry, 2013, 52(11), 1913-1926.
[http://dx.doi.org/10.1021/bi301313b] [PMID: 23414091]
[12]
Koga, T.; Ando, E.; Hirata, A.; Fukushima, M.; Kimura, A.; Ando, Y.; Negi, A.; Tanihara, H. Vitreous opacities and outcome of vitreous surgery in patients with familial amyloidotic polyneuropathy. Am. J. Ophthalmol., 2003, 135(2), 188-193.
[http://dx.doi.org/10.1016/S0002-9394(02)01838-X] [PMID: 12566023]
[13]
Olofsson, B.O.; Grankvist, K.; Boman, K.; Forsberg, K.; Lafvas, I.; Lithner, F. Assessment of thyroid and adrenal function in patients with familial amyloidotic polyneuropathy. J. Intern. Med., 1989, 225(5), 337-341.
[14]
Park, G.Y.; Jamerlan, A.; Shim, K.H.; An, S.S.A. Diagnostic and treatment approaches involving transthyretin in amyloidogenic diseases. Int. J. Mol. Sci., 2019, 20(12), 2982-2999.
[http://dx.doi.org/10.3390/ijms20122982] [PMID: 31216785]
[15]
Liu, Y.T.; Yen, Y.J.; Ricardo, F.; Chang, Y.; Wu, P.H.; Huang, S.J.; Lin, K.P.; Yu, T.Y. Biophysical characterization and modulation of Transthyretin Ala97Ser. Ann. Clin. Transl. Neurol., 2019, 6(10), 1961-1970.
[http://dx.doi.org/10.1002/acn3.50887] [PMID: 31502419]
[16]
Waddington-Cruz, M.; Schmidt, H.; Botteman, M.F.; Carter, J.A.; Stewart, M.; Hopps, M.; Fallet, S.; Amass, L. Epidemiological and clinical characteristics of symptomatic hereditary transthyretin amyloid polyneuropathy: A global case series. Orphanet J. Rare Dis., 2019, 14(1), 34.
[http://dx.doi.org/10.1186/s13023-019-1000-1] [PMID: 30736835]
[17]
Obi, C.A.; Mostertz, W.C.; Griffin, J.M.; Judge, D.P. ATTR epidemiology, genetics, and prognostic factors. Methodist DeBakey Cardiovasc. J., 2022, 18(2), 17-26.
[http://dx.doi.org/10.14797/mdcvj.1066] [PMID: 35414855]
[18]
Kim, D.; Choi, J.O.; Jeon, E.S. Tafamidis for cardiac transthyretin amyloidosis. Cardiov. Prev. Pharmacot., 2021, 3(1), 1-9.
[http://dx.doi.org/10.36011/cpp.2021.3.e1]
[19]
Amass, L.; Li, H.; Gundapaneni, B.K.; Schwartz, J.H.; Keohane, D.J. Influence of baseline neurologic severity on disease progression and the associated disease-modifying effects of tafamidis in patients with transthyretin amyloid polyneuropathy. Orphanet J. Rare Dis., 2018, 13(1), 225-231.
[http://dx.doi.org/10.1186/s13023-018-0947-7] [PMID: 30558645]
[20]
Gillmore, J.D.; Hawkins, P.N. Pathophysiology and treatment of systemic amyloidosis. Nat. Rev. Nephrol., 2013, 9(10), 574-586.
[http://dx.doi.org/10.1038/nrneph.2013.171] [PMID: 23979488]
[21]
Bulawa, C.E.; Connelly, S.; Devit, M.; Wang, L.; Weigel, C.; Fleming, J.A.; Packman, J.; Powers, E.T.; Wiseman, R.L.; Foss, T.R.; Wilson, I.A.; Kelly, J.W.; Labaudinière, R. Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade. Proc. Natl. Acad. Sci., 2012, 109(24), 9629-9634.
[http://dx.doi.org/10.1073/pnas.1121005109] [PMID: 22645360]
[22]
Miller, M.; Pal, A.; Albusairi, W.; Joo, H.; Pappas, B.; Haque Tuhin, M.T.; Liang, D.; Jampala, R.; Liu, F.; Khan, J.; Faaij, M.; Park, M.; Chan, W.; Graef, I.; Zamboni, R.; Kumar, N.; Fox, J.; Sinha, U.; Alhamadsheh, M. Enthalpy-driven stabilization of transthyretin by AG10 mimics a naturally occurring genetic variant that protects from transthyretin amyloidosis. J. Med. Chem., 2018, 61(17), 7862-7876.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00817] [PMID: 30133284]
[23]
Nativi-Nicolau, J.N.; Karam, C.; Khella, S.; Maurer, M.S. Screening for ATTR amyloidosis in the clinic: Overlapping disorders, misdiagnosis, and multiorgan awareness. Heart Fail. Rev., 2022, 27(3), 785-793.
[http://dx.doi.org/10.1007/s10741-021-10080-2] [PMID: 33609196]
[24]
Donnelly, J.P.; Hanna, M. Cardiac amyloidosis: An update on diagnosis and treatment. Cleve. Clin. J. Med., 2017, 84(12)(3), 12-26.
[http://dx.doi.org/10.3949/ccjm.84.s3.02] [PMID: 29257735]
[25]
Sperry, B.W.; Vranian, M.N.; Hachamovitch, R.; Joshi, H.; McCarthy, M.; Ikram, A.; Hanna, M. Are classic predictors of voltage valid in cardiac amyloidosis? A contemporary analysis of electrocardiographic findings. Int. J. Cardiol., 2016, 214, 477-481.
[http://dx.doi.org/10.1016/j.ijcard.2016.04.030] [PMID: 27093686]
[26]
González-López, E.; López-Sainz, Á.; Garcia-Pavia, P. Progress and Hope. Rev. Esp. Cardiol., 2017, 70(11), 991-1004.
[PMID: 28870641]
[27]
Falk, R.H.; Alexander, K.M.; Liao, R.; Dorbala, S.A.L. (Light-Chain) cardiac amyloidosis: A review of diagnosis and therapy. J. Am. Coll. Cardiol., 2016, 68(12), 1323-1341.
[http://dx.doi.org/10.1016/j.jacc.2016.06.053] [PMID: 27634125]
[28]
Cassidy, J.T. Cardiac amyloidosis. Two cases with digitalis sensitivity. Ann. Intern. Med., 1961, 55(6), 989-994.
[http://dx.doi.org/10.7326/0003-4819-55-6-989] [PMID: 13877133]
[29]
Garibaldi, B.; Zaas, D. An unusual case of cardiac amyloidosis. J. Gen. Intern. Med., 2007, 22(7), 1047-1052.
[http://dx.doi.org/10.1007/s11606-007-0207-3] [PMID: 17447098]
[30]
Barge-Caballero, G.; Barge-Caballero, E.; López-Pérez, M.; Bilbao-Quesada, R.; González-Babarro, E.; Gómez-Otero, I.; López-López, A.; Gutiérrez-Feijoo, M.; Varela-Román, A.; González-Juanatey, C.; Díaz-Castro, Ó.; Crespo-Leiro, M.G. Beta-blocker exposure and survival in patients with transthyretin amyloid cardiomyopathy. Mayo Clin. Proc., 2022, 97(2), 261-273.
[http://dx.doi.org/10.1016/j.mayocp.2021.08.006] [PMID: 34802727]
[31]
Siddiqi, O.K.; Ruberg, F.L. Cardiac amyloidosis: An update on pathophysiology, diagnosis, and treatment. Trends Cardiovasc. Med., 2018, 28(1), 10-21.
[http://dx.doi.org/10.1016/j.tcm.2017.07.004] [PMID: 28739313]
[32]
Tini, G.; Cappelli, F.; Biagini, E.; Musumeci, B.; Merlo, M.; Crotti, L.; Cameli, M.; Di Bella, G.; Cipriani, A.; Marzo, F.; Guerra, F.; Forleo, C.; Gagliardi, C.; Zampieri, M.; Carigi, S.; Vianello, P.F.; Mandoli, G.E.; Ciliberti, G.; Lichelli, L.; Mariani, D.; Porcari, A.; Russo, D.; Licordari, R.; Ponziani, A.; Porto, I.; Perfetto, F.; Autore, C.; Rapezzi, C.; Sinagra, G.; Canepa, M. Current patterns of beta-blocker prescription in cardiac amyloidosis: An Italian nationwide survey. ESC Heart Fail., 2021, 8(4), 3369-3374.
[http://dx.doi.org/10.1002/ehf2.13411] [PMID: 33988312]
[33]
Laragh, J.H. New angiotensin converting enzyme inhibitors. Their role in the management of hypertension. Am. J. Hypertens., 1990, 3(11), 257S-265S.
[http://dx.doi.org/10.1093/ajh/3.11S.257S] [PMID: 2261144]
[34]
Cheng, R.K.; Vasbinder, A.; Levy, W.C.; Goyal, P.; Griffin, J.M.; Leedy, D.J.; Maurer, M.S. Lack of association between neurohormonal blockade and survival in transthyretin cardiac amyloidosis. J. Am. Heart Assoc., 2021, 10(24), e022859.
[http://dx.doi.org/10.1161/JAHA.121.022859] [PMID: 34729989]
[35]
Kittleson, M.M.; Maurer, M.S.; Ambardekar, A.V.; Bullock-Palmer, R.P.; Chang, P.P.; Eisen, H.J.; Nair, A.P.; Nativi-Nicolau, J.; Ruberg, F.L. Cardiac amyloidosis: Evolving diagnosis and management: A scientific statement from the american heart association. Circulation, 2020, 142(1), e7-e22.
[http://dx.doi.org/10.1161/CIR.0000000000000792] [PMID: 32476490]
[36]
Palma, J.A.; Gonzalez-Duarte, A.; Kaufmann, H. Orthostatic hypotension in hereditary transthyretin amyloidosis: Epidemiology, diagnosis and management. Clin. Auton. Res., 2019, 29(S1)(1), 33-44.
[http://dx.doi.org/10.1007/s10286-019-00623-x] [PMID: 31452021]
[37]
Griffin, J.M.; Rosenthal, J.L.; Grodin, J.L.; Maurer, M.S.; Grogan, M.; Cheng, R.K. ATTR Amyloidosis: Current and emerging management strategies: JACC: CardioOncology state-of-the-art review. JACC: CardioOncology, 2021, 3(4), 488-505.
[http://dx.doi.org/10.1016/j.jaccao.2021.06.006] [PMID: 34729521]
[38]
Scott, L.J. Tafamidis: A review of its use in familial amyloid polyneuropathy. Drugs, 2014, 74(12), 1371-1378.
[http://dx.doi.org/10.1007/s40265-014-0260-2] [PMID: 25022953]
[39]
Tschöpe, C.; Elsanhoury, A. Treatment of transthyretin amyloid cardiomyopathy: The current options, the future, and the challenges. J. Clin. Med., 2022, 11(8), 2148-2162.
[http://dx.doi.org/10.3390/jcm11082148] [PMID: 35456241]
[40]
Ericzon, B.G.; Wilczek, H.E.; Larsson, M.; Wijayatunga, P.; Stangou, A.; Pena, J.R.; Furtado, E.; Barroso, E.; Daniel, J.; Samuel, D.; Adam, R.; Karam, V.; Poterucha, J.; Lewis, D.; Ferraz-Neto, B.H.; Cruz, M.W.; Munar-Ques, M.; Fabregat, J.; Ikeda, S.; Ando, Y.; Heaton, N.; Otto, G.; Suhr, O. Liver transplantation for hereditary transthyretin amyloidosis: After 20 years still the best therapeutic alternative? Transplantation, 2015, 99(9), 1847-1854.
[http://dx.doi.org/10.1097/TP.0000000000000574] [PMID: 26308415]
[41]
Liepnieks, J.J.; Zhang, L.Q.; Benson, M.D. Progression of transthyretin amyloid neuropathy after liver transplantation. Neurology, 2010, 75(4), 324-327.
[http://dx.doi.org/10.1212/WNL.0b013e3181ea15d4] [PMID: 20660862]
[42]
Grande-Trillo, A.; Baliellas, C.; Lladó, L.; Casasnovas, C.; Franco-Baux, J.V.; Gracia-Sánchez, L.; Gómez-Bravo, M.Á.; González-Vilatarsana, E.; Caballero-Gullón, L.; Echeverri, E.; González-Costello, J. Transthyretin amyloidosis with cardiomyopathy after domino liver transplantation: Results of a cross-sectional study. Am. J. Transplant., 2021, 21(1), 372-381.
[http://dx.doi.org/10.1111/ajt.16216] [PMID: 32705768]
[43]
Castaño, A.; Drachman, B.M.; Judge, D.; Maurer, M.S. Natural history and therapy of TTR-cardiac amyloidosis: Emerging disease-modifying therapies from organ transplantation to stabilizer and silencer drugs. Heart Fail. Rev., 2015, 20(2), 163-178.
[http://dx.doi.org/10.1007/s10741-014-9462-7] [PMID: 25408161]
[44]
Barreiros, A.P.; Post, F.; Hoppe-Lotichius, M.; Linke, R.P.; Vahl, C.F.; Schäfers, H.J.; Galle, P.R.; Otto, G. Liver transplantation and combined liver-heart transplantation in patients with familial amyloid polyneuropathy: A single-center experience. Liver Transpl., 2010, 16(3), 314-323.
[http://dx.doi.org/10.1002/lt.21996] [PMID: 20209591]
[45]
Duncan, M.D.; Wilkes, D.S. Transplant-related immunosuppression: A review of immunosuppression and pulmonary infections. Proc. Am. Thorac. Soc., 2005, 2(5), 449-455.
[http://dx.doi.org/10.1513/pats.200507-073JS] [PMID: 16322599]
[46]
Keam, S.J. Vutrisiran: First Approval. Drugs, 2022, 82(13), 1419-1425.
[http://dx.doi.org/10.1007/s40265-022-01765-5] [PMID: 35997942]
[47]
Solomon, S.D.; Adams, D.; Kristen, A.; Grogan, M.; González-Duarte, A.; Maurer, M.S.; Merlini, G.; Damy, T.; Slama, M.S.; Brannagan, T.H., III; Dispenzieri, A.; Berk, J.L.; Shah, A.M.; Garg, P.; Vaishnaw, A.; Karsten, V.; Chen, J.; Gollob, J.; Vest, J.; Suhr, O. Effects of patisiran, an RNA interference therapeutic, on cardiac parameters in patients with hereditary transthyretin-mediated amyloidosis. Circulation, 2019, 139(4), 431-443.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.035831] [PMID: 30586695]
[48]
Rizk, M.; Tüzmen, Ş. Update on the clinical utility of an RNA interference-based treatment: Focus on Patisiran. Pharm. Genomics Pers. Med., 2017, 10, 267-278.
[http://dx.doi.org/10.2147/PGPM.S87945] [PMID: 29184431]
[49]
Adams, D.; Gonzalez-Duarte, A.; O’Riordan, W.D.; Yang, C.C.; Ueda, M.; Kristen, A.V.; Tournev, I.; Schmidt, H.H.; Coelho, T.; Berk, J.L.; Lin, K.P.; Vita, G.; Attarian, S.; Planté-Bordeneuve, V.; Mezei, M.M.; Campistol, J.M.; Buades, J.; Brannagan, T.H., III; Kim, B.J.; Oh, J.; Parman, Y.; Sekijima, Y.; Hawkins, P.N.; Solomon, S.D.; Polydefkis, M.; Dyck, P.J.; Gandhi, P.J.; Goyal, S.; Chen, J.; Strahs, A.L.; Nochur, S.V.; Sweetser, M.T.; Garg, P.P.; Vaishnaw, A.K.; Gollob, J.A.; Suhr, O.B. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med., 2018, 379(1), 11-21.
[http://dx.doi.org/10.1056/NEJMoa1716153] [PMID: 29972753]
[50]
Benson, M.D.; Waddington-Cruz, M.; Berk, J.L.; Polydefkis, M.; Dyck, P.J.; Wang, A.K.; Planté-Bordeneuve, V.; Barroso, F.A.; Merlini, G.; Obici, L.; Scheinberg, M.; Brannagan, T.H., III; Litchy, W.J.; Whelan, C.; Drachman, B.M.; Adams, D.; Heitner, S.B.; Conceição, I.; Schmidt, H.H.; Vita, G.; Campistol, J.M.; Gamez, J.; Gorevic, P.D.; Gane, E.; Shah, A.M.; Solomon, S.D.; Monia, B.P.; Hughes, S.G.; Kwoh, T.J.; McEvoy, B.W.; Jung, S.W.; Baker, B.F.; Ackermann, E.J.; Gertz, M.A.; Coelho, T. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N. Engl. J. Med., 2018, 379(1), 22-31.
[http://dx.doi.org/10.1056/NEJMoa1716793] [PMID: 29972757]
[51]
Dasgupta, N.R.; Rissing, S.M.; Smith, J.; Jung, J.; Benson, M.D. Inotersen therapy of transthyretin amyloid cardiomyopathy. Amyloid, 2020, 27(1), 52-58.
[http://dx.doi.org/10.1080/13506129.2019.1685487] [PMID: 31713445]
[52]
Keam, S.J. Inotersan: First global approval. Drugs, 2018, 78(13), 1371-1376.
[http://dx.doi.org/10.1007/s40265-018-0968-5] [PMID: 30120737]
[53]
Yonezawa, S.; Koide, H.; Asai, T. Recent advances in siRNA delivery mediated by lipid-based nanoparticles. Adv. Drug Deliv. Rev., 2020, 154-155, 64-78.
[http://dx.doi.org/10.1016/j.addr.2020.07.022] [PMID: 32768564]
[54]
Aimo, A.; Castiglione, V.; Rapezzi, C.; Franzini, M.; Panichella, G.; Vergaro, G.; Gillmore, J.; Fontana, M.; Passino, C.; Emdin, M. RNA-targeting and gene editing therapies for transthyretin amyloidosis. Nat. Rev. Cardiol., 2022, 19(10), 655-667.
[http://dx.doi.org/10.1038/s41569-022-00683-z] [PMID: 35322226]
[55]
Judge, D.P.; Kristen, A.V.; Grogan, M.; Maurer, M.S.; Falk, R.H.; Hanna, M.; Gillmore, J.; Garg, P.; Vaishnaw, A.K.; Harrop, J.; Powell, C.; Karsten, V.; Zhang, X.; Sweetser, M.T.; Vest, J.; Hawkins, P.N. Phase 3 multicenter study of revusiran in patients with hereditary transthyretin-mediated (hATTR) amyloidosis with cardiomyopathy (ENDEAVOUR). Cardiovasc. Drugs Ther., 2020, 34(3), 357-370.
[http://dx.doi.org/10.1007/s10557-019-06919-4] [PMID: 32062791]
[56]
Sekijima, Y.; Tojo, K.; Morita, H.; Koyama, J.; Ikeda, S. Safety and efficacy of long-term diflunisal administration in hereditary transthyretin (ATTR) amyloidosis. Amyloid, 2015, 22(2), 79-83.
[http://dx.doi.org/10.3109/13506129.2014.997872] [PMID: 26017328]
[57]
Yadav, J.D.; Othee, H.; Chan, K.A.; Man, D.C.; Belliveau, P.P.; Towle, J. Transthyretin amyloid cardiomyopathy-current and future therapies. Ann. Pharmacother., 2021, 55(12), 1502-1514.
[http://dx.doi.org/10.1177/10600280211000351] [PMID: 33685242]
[58]
Gillmore, J.D.; Gane, E.; Taubel, J.; Kao, J.; Fontana, M.; Maitland, M.L.; Seitzer, J.; O’Connell, D.; Walsh, K.R.; Wood, K.; Phillips, J.; Xu, Y.; Amaral, A.; Boyd, A.P.; Cehelsky, J.E.; McKee, M.D.; Schiermeier, A.; Harari, O.; Murphy, A.; Kyratsous, C.A.; Zambrowicz, B.; Soltys, R.; Gutstein, D.E.; Leonard, J.; Sepp-Lorenzino, L.; Lebwohl, D. CRISPR-Cas9 In vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med., 2021, 385(6), 493-502.
[http://dx.doi.org/10.1056/NEJMoa2107454] [PMID: 34215024]
[59]
clinicaltrials. NCT03336580, Available from: https://clinicaltrials.gov/ct2/show/NCT03336580
[60]
Giordanetto, F.; Schäfer, A.; Ottmann, C. Stabilization of protein-protein interactions by small molecules. Drug Discov. Today, 2014, 19(11), 1812-1821.
[http://dx.doi.org/10.1016/j.drudis.2014.08.005] [PMID: 25173701]
[61]
Gamez, J.; Salvadó, M.; Reig, N.; Suñé, P.; Casasnovas, C.; Rojas-Garcia, R.; Insa, R. Transthyretin stabilization activity of the catechol-O-methyltransferase inhibitor tolcapone (SOM0226) in hereditary ATTR amyloidosis patients and asymptomatic carriers: Proof-of-concept study. Amyloid, 2019, 26(2), 74-84.
[http://dx.doi.org/10.1080/13506129.2019.1597702] [PMID: 31119947]
[62]
Larsen, K.R.; Dajani, E.Z.; Dajani, N.E.; Dayton, M.T.; Moore, J.G. Effects of tolcapone, a catechol-O-methyltransferase inhibitor, and Sinemet on intestinal electrolyte and fluid transport in conscious dogs. Dig. Dis. Sci., 1998, 43(8), 1806-1813.
[http://dx.doi.org/10.1023/A:1018852223902] [PMID: 9724173]
[63]
Takahashi, Y.; Ohashi, N.; Takasone, K.; Yoshinaga, T.; Yazaki, M.; Roberts, M.; Glidden, P.F.; Sekijima, Y. CSF/plasma levels, transthyretin stabilisation and safety of multiple doses of tolcapone in subjects with hereditary ATTR amyloidosis. Amyloid, 2022, 29(3), 190-196.
[http://dx.doi.org/10.1080/13506129.2022.2056011] [PMID: 35352593]
[64]
Van Booven, D.; Marsh, S.; McLeod, H.; Carrillo, M.W.; Sangkuhl, K.; Klein, T.E.; Altman, R.B. Cytochrome P450 2C9-CYP2C9. Pharmacogenet. Genom., 2010, 20(4), 277-281.
[http://dx.doi.org/10.1097/FPC.0b013e3283349e84] [PMID: 20150829]
[65]
Lohrmann, G.; Pipilas, A.; Mussinelli, R.; Gopal, D.M.; Berk, J.L.; Connors, L.H.; Vellanki, N.; Hellawell, J.; Siddiqi, O.K.; Fox, J.; Maurer, M.S.; Ruberg, F.L. Stabilization of cardiac function with diflunisal in transthyretin (ATTR) cardiac amyloidosis. J. Card. Fail., 2020, 26(9), 753-759.
[http://dx.doi.org/10.1016/j.cardfail.2019.11.024] [PMID: 31805416]
[66]
Ikram, A.; Donnelly, J.P.; Sperry, B.W.; Samaras, C.; Valent, J.; Hanna, M. Diflunisal tolerability in transthyretin cardiac amyloidosis: A single center’s experience. Amyloid, 2018, 25(3), 197-202.
[http://dx.doi.org/10.1080/13506129.2018.1519507] [PMID: 30388377]
[67]
Berk, J.L.; Suhr, O.B.; Obici, L.; Sekijima, Y.; Zeldenrust, S.R.; Yamashita, T.; Heneghan, M.A.; Gorevic, P.D.; Litchy, W.J.; Wiesman, J.F.; Nordh, E.; Corato, M.; Lozza, A.; Cortese, A.; Robinson-Papp, J.; Colton, T.; Rybin, D.V.; Bisbee, A.B.; Ando, Y.; Ikeda, S.; Seldin, D.C.; Merlini, G.; Skinner, M.; Kelly, J.W.; Dyck, P.J. Repurposing diflunisal for familial amyloid polyneuropathy: A randomized clinical trial. JAMA, 2013, 310(24), 2658-2667.
[http://dx.doi.org/10.1001/jama.2013.283815] [PMID: 24368466]
[68]
Wixner, J.; Westermark, P.; Ihse, E.; Pilebro, B.; Lundgren, H. E.; Anan, I. The Swedish open-label diflunisal trial (DFNS01) on hereditary transthyretin amyloidosis and the impact of amyloid fibril composition. Amyloid Int. J. Exp. Clin., 2019, 26(sup1), 39-40.
[69]
Razavi, H.; Palaninathan, S.K.; Powers, E.T.; Wiseman, R.L.; Purkey, H.E.; Mohamedmohaideen, N.N.; Deechongkit, S.; Chiang, K.P.; Dendle, M.T.A.; Sacchettini, J.C.; Kelly, J.W. Benzoxazoles as transthyretin amyloid fibril inhibitors: Synthesis, evaluation, and mechanism of action. Angew. Chem. Int. Ed., 2003, 42(24), 2758-2761.
[http://dx.doi.org/10.1002/anie.200351179] [PMID: 12820260]
[70]
Coelho, T.; Maia, L.F.; Martins da Silva, A.; Waddington Cruz, M.; Planté-Bordeneuve, V.; Lozeron, P.; Suhr, O.B.; Campistol, J.M.; Conceição, I.M.; Schmidt, H.H.J.; Trigo, P.; Kelly, J.W.; Labaudinière, R.; Chan, J.; Packman, J.; Wilson, A.; Grogan, D.R. Tafamidis for transthyretin familial amyloid polyneuropathy: A randomized, controlled trial. Neurology, 2012, 79(8), 785-792.
[http://dx.doi.org/10.1212/WNL.0b013e3182661eb1] [PMID: 22843282]
[71]
Park, J.; Egolum, U.; Parker, S.; Andrews, E.; Ombengi, D.; Ling, H. Tafamidis: A first-in-class transthyretin stabilizer for transthyretin amyloid cardiomyopathy. Ann. Pharmacother., 2020, 54(5), 470-477.
[http://dx.doi.org/10.1177/1060028019888489] [PMID: 31735059]
[72]
Schmidt, H.H.J. Tafamidis for the treatment of transthyretin-associated familial amyloid polyneuropathy. Expert Opin. Orphan Drugs, 2013, 1(10), 837-845.
[http://dx.doi.org/10.1517/21678707.2013.841576]
[73]
Penchala, S.C.; Connelly, S.; Wang, Y.; Park, M.S.; Zhao, L.; Baranczak, A.; Rappley, I.; Vogel, H.; Liedtke, M.; Witteles, R.M.; Powers, E.T.; Reixach, N.; Chan, W.K.; Wilson, I.A.; Kelly, J.W.; Graef, I.A.; Alhamadsheh, M.M. AG10 inhibits amyloidogenesis and cellular toxicity of the familial amyloid cardiomyopathy-associated V122I transthyretin. Proc. Natl. Acad. Sci., 2013, 110(24), 9992-9997.
[http://dx.doi.org/10.1073/pnas.1300761110] [PMID: 23716704]
[74]
Judge, D.P.; Heitner, S.B.; Falk, R.H.; Maurer, M.S.; Shah, S.J.; Witteles, R.M.; Grogan, M.; Selby, V.N.; Jacoby, D.; Hanna, M.; Nativi-Nicolau, J.; Patel, J.; Rao, S.; Sinha, U.; Turtle, C.W.; Fox, J.C. Transthyretin stabilization by AG10 in symptomatic transthyretin amyloid cardiomyopathy. J. Am. Coll. Cardiol., 2019, 74(3), 285-295.
[http://dx.doi.org/10.1016/j.jacc.2019.03.012] [PMID: 30885685]
[75]
Fox, J.C.; Hellawell, J.L.; Rao, S.; O’Reilly, T.; Lumpkin, R.; Jernelius, J.; Gretler, D.; Sinha, U. First-in-human study of ag10, a novel, oral, specific, selective, and potent transthyretin stabilizer for the treatment of transthyretin amyloidosis: A phase 1 safety, tolerability, pharmacokinetic, and pharmacodynamic study in healthy adult volunteers. Clin. Pharmacol. Drug Dev., 2020, 9(1), 115-129.
[http://dx.doi.org/10.1002/cpdd.700] [PMID: 31172685]
[76]
Kolstoe, S.E.; Mangione, P.P.; Bellotti, V.; Taylor, G.W.; Tennent, G.A.; Deroo, S.; Morrison, A.J.; Cobb, A.J.A.; Coyne, A.; McCammon, M.G.; Warner, T.D.; Mitchell, J.; Gill, R.; Smith, M.D.; Ley, S.V.; Robinson, C.V.; Wood, S.P.; Pepys, M.B. Trapping of palindromic ligands within native transthyretin prevents amyloid formation. Proc. Natl. Acad. Sci., 2010, 107(47), 20483-20488.
[http://dx.doi.org/10.1073/pnas.1008255107] [PMID: 21059958]
[77]
Verona, G.; Mangione, P.P.; Raimondi, S.; Giorgetti, S.; Faravelli, G.; Porcari, R.; Corazza, A.; Gillmore, J.D.; Hawkins, P.N.; Pepys, M.B.; Taylor, G.W.; Bellotti, V. Inhibition of the mechano-enzymatic amyloidogenesis of transthyretin: Role of ligand affinity, binding cooperativity and occupancy of the inner channel. Sci. Rep., 2017, 7(1), 182.
[http://dx.doi.org/10.1038/s41598-017-00338-x] [PMID: 28298647]
[78]
Corazza, A.; Verona, G.; Waudby, C.A.; Mangione, P.P.; Bingham, R.; Uings, I.; Canetti, D.; Nocerino, P.; Taylor, G.W.; Pepys, M.B.; Christodoulou, J.; Bellotti, V. Binding of monovalent and bivalent ligands by transthyretin causes different short- and long-distance conformational changes. J. Med. Chem., 2019, 62(17), 8274-8283.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01037] [PMID: 31393717]
[79]
Obici, L.; Cortese, A.; Lozza, A.; Lucchetti, J.; Gobbi, M.; Palladini, G.; Perlini, S.; Saraiva, M.J.; Merlini, G. Doxycycline plus tauroursodeoxycholic acid for transthyretin amyloidosis: A phase II study. Amyloid, 2012, 19(sup1)(1), 34-36.
[http://dx.doi.org/10.3109/13506129.2012.678508] [PMID: 22551192]
[80]
Nagle, D.G.; Ferreira, D.; Zhou, Y.D. Epigallocatechin-3-gallate (EGCG): Chemical and biomedical perspectives. Phytochemistry, 2006, 67(17), 1849-1855.
[http://dx.doi.org/10.1016/j.phytochem.2006.06.020] [PMID: 16876833]
[81]
Kristen, A.V.; Lehrke, S.; Buss, S.; Mereles, D.; Steen, H.; Ehlermann, P.; Hardt, S.; Giannitsis, E.; Schreiner, R.; Haberkorn, U.; Schnabel, P.A.; Linke, R.P.; Röcken, C.; Wanker, E.E.; Dengler, T.J.; Altland, K.; Katus, H.A. Green tea halts progression of cardiac transthyretin amyloidosis: An observational report. Clin. Res. Cardiol., 2012, 101(10), 805-813.
[http://dx.doi.org/10.1007/s00392-012-0463-z] [PMID: 22584381]
[82]
Cappelli, F.; Martone, R.; Taborchi, G.; Morini, S.; Bartolini, S.; Angelotti, P.; Farsetti, S.; Di Mario, C.; Perfetto, F. Epigallocatechin-3-gallate tolerability and impact on survival in a cohort of patients with transthyretin-related cardiac amyloidosis. A single-center retrospective study. Intern. Emerg. Med., 2018, 13(6), 873-880.
[http://dx.doi.org/10.1007/s11739-018-1887-x] [PMID: 29882023]
[83]
Masciocchi, N.; Abbinante, V.M.; Zambra, M.; Barreca, G.; Zampieri, M. Thermal and structural characterization of two crystalline polymorphs of tafamidis free acid. Molecules, 2022, 27(21), 7411.
[84]
Guo, X.; Liu, Z.; Zheng, Y.; Li, Y.; Li, L.; Liu, H.; Chen, Z.; Wu, L. Review on the structures and activities of transthyretin amyloidogenesis inhibitors. Drug Des. Devel. Ther., 2020, 14, 1057-1081.
[http://dx.doi.org/10.2147/DDDT.S237252] [PMID: 32210536]
[85]
Yamamoto, T.; Muto, K.; Komiyama, M.; Canivet, J.; Yamaguchi, J.; Itami, K. Nickel-catalyzed C-H arylation of azoles with haloarenes: Scope, mechanism, and applications to the synthesis of bioactive molecules. Chemistry, 2011, 17(36), 10113-10122.
[http://dx.doi.org/10.1002/chem.201101091] [PMID: 21744407]
[86]
Karumanchi, K.; Natarajan, S.K.; Gadde, S.; Vanchanagiri, K.; Moturu, K.V.R. A new synthesis of tafamidis via zinc-MsOH mediated reductive cyclisation strategy. J. Chem. Sci., 2021, 133(2), 48.
[http://dx.doi.org/10.1007/s12039-021-01910-9]
[87]
Liu, K.M.; Zhang, R.; Duan, X.F. Room-temperature cobalt-catalyzed arylation of aromatic acids: Overriding the ortho-selectivity via the oxidative assembly of carboxylate and aryl titanate reagents using oxygen. Org. Biomol. Chem., 2016, 14(5), 1593-1598.
[http://dx.doi.org/10.1039/C5OB02496J] [PMID: 26732625]
[88]
Yuan, S.; Yu, B.; Liu, H.M. New drug approvals for 2019: Synthesis and clinical applications. Eur. J. Med. Chem., 2020, 205, 112667.
[http://dx.doi.org/10.1016/j.ejmech.2020.112667] [PMID: 32911308]
[89]
Koyanagi, A.; Murata, Y.; Hayakawa, S.; Matsumura, M.; Yasuike, S. One-pot synthesis of 2-arylated and 2-alkylated benzoxazoles and benzimidazoles based on triphenylbismuth dichloride-promoted desulfurization of thioamides. Beilstein J. Org. Chem., 2022, 18, 1479-1487.
[http://dx.doi.org/10.3762/bjoc.18.155] [PMID: 36320343]
[90]
Wu, G.; Zhou, J.; Zhang, M.; Hu, P.; Su, W. Palladium-catalyzed direct arylation of benzoxazoles with unactivated simple arenes. Chem. Commun., 2012, 48(71), 8964-8966.
[http://dx.doi.org/10.1039/c2cc34238c] [PMID: 22846870]
[91]
Zhang, Y.; Ji, M. Iodine promoted one‐pot synthesis of 2‐aryl benzoxazoles from amidoximes via oxidative cyclization and ring contraction. Eur. J. Org. Chem., 2019, 2019(45), 7506-7510.
[http://dx.doi.org/10.1002/ejoc.201901468]
[92]
Ding, H.X.; Leverett, C.A.; Kyne, R.E., Jr; Liu, K.K.C.; Sakya, S.M.; Flick, A.C.; O’Donnell, C.J. Synthetic approaches to the 2012 new drugs. Bioorg. Med. Chem., 2014, 22(7), 2005-2032.
[http://dx.doi.org/10.1016/j.bmc.2014.02.017] [PMID: 24629448]
[93]
Bakshi, M.; Singh, B.; Singh, A.; Singh, S. The ICH guidance in practice: Stress degradation studies on ornidazole and development of a validated stability-indicating assay. J. Pharm. Biomed. Anal., 2001, 26(5-6), 891-897.
[http://dx.doi.org/10.1016/S0731-7085(01)00475-7] [PMID: 11600301]
[94]
Lal, B.; Kapoor, D.; Jaimini, M. A review on analytical method validation and its regulatory perspectives. J. Drug Deliv. Ther., 2019, 9(2), 501-506.
[http://dx.doi.org/10.22270/jddt.v9i2.2403]
[95]
Trullols, E.; Ruisánchez, I.; Rius, F.X. Validation of qualitative analytical methods. Trends Analyt. Chem., 2004, 23(2), 137-145.
[http://dx.doi.org/10.1016/S0165-9936(04)00201-8]
[96]
Rappley, I.; Monteiro, C.; Novais, M.; Baranczak, A.; Solis, G.; Wiseman, R.L.; Helmke, S.; Maurer, M.S.; Coelho, T.; Powers, E.T.; Kelly, J.W. Quantification of transthyretin kinetic stability in human plasma using subunit exchange. Biochemistry, 2014, 53(12), 1993-2006.
[http://dx.doi.org/10.1021/bi500171j] [PMID: 24661308]
[97]
Hyun, H.C.; Jeong, J.W.; Kim, H.R.; Oh, J.H.; Lee, J.H.; Choi, S.; Kim, Y.S.; Koo, T.S. Development and validation of a liquid chromatography-tandem mass spectrometry method for the assay of tafamidis in rat plasma: Application to a pharmacokinetic study in rats. J. Pharm. Biomed. Anal., 2017, 137, 90-95.
[http://dx.doi.org/10.1016/j.jpba.2017.01.020] [PMID: 28107689]
[98]
Lee, K.R.; Jeong, J.W.; Hyun, H.C.; Jang, E.; Ahn, S.; Choi, S.; Joo, S.H.; Kim, S.; Koo, T.S. Pharmacokinetics of tafamidis, a transthyretin amyloidosis drug, in rats. Xenobiotica, 2018, 48(8), 831-838.
[http://dx.doi.org/10.1080/00498254.2017.1366575] [PMID: 28803538]
[99]
Smerikarova, M.; Bozhanov, S.; Maslarska, V.; Tournev, I. Determination of tafamidis plasma concentrations in amyloidosis patients with Glu89Gln Mutation by HPLC-UV detection. J. Chromatogr. Sci., 2022, 60(9), 840-847.
[http://dx.doi.org/10.1093/chromsci/bmab132] [PMID: 34897414]
[100]
Smerikarova, M.; Bozhanov, S.; Maslarska, V. A brief review of analytical methods for the estimation of ttr kinetic stabilizers in pharmaceutical formulations and biological matrices. Int. J. Appl.Pharmac., 2022, 14(5), 14-21.
[http://dx.doi.org/10.22159/ijap.2022v14i5.45612]
[101]
George, S.L.; Desu, M.M. Planning the size and duration of a clinical trial studying the time to some critical event. J. Chronic Dis., 1974, 27(1), 15-24.
[http://dx.doi.org/10.1016/0021-9681(74)90004-6] [PMID: 4592596]
[102]
Buxbaum, J.N. Evaluation of tafamidis as first-line therapeutic agent for transthyretin familial amyloidotic polyneuropathy. Degener. Neurol. Neuromuscul. Dis., 2012, 2, 165-173.
[http://dx.doi.org/10.2147/DNND.S24624] [PMID: 30890886]
[103]
Fujita, T.; Inomata, T.; Kaida, T.; Iida, Y.; Ikeda, Y.; Nabeta, T.; Ishii, S.; Maekawa, E.; Naruke, T.; Koitabashi, T.; Kitamura, E.; Sekijima, Y.; Ako, J. Tafamidis for the treatment of hereditary transthyretin amyloid cardiomyopathy: A case report. Case Rep. Cardiol., 2017, 137(2), 74-77.
[PMID: 28152524]
[104]
Rozenbaum, M.H.; Tran, D.; Bhambri, R.; Nativi-Nicolau, J. Annual cardiovascular-related hospitalization days avoided with tafamidis in patients with transthyretin amyloid cardiomyopathy. Am. J. Cardiovasc. Drugs, 2022, 22(4), 445-450.
[http://dx.doi.org/10.1007/s40256-022-00526-9] [PMID: 35353352]
[105]
Klamerus, K.J.; Watsky, E.; Moller, R.; Wang, R.; Riley, S. The effect of tafamidis on the QTc interval in healthy subjects. Br. J. Clin. Pharmacol., 2015, 79(6), 918-925.
[http://dx.doi.org/10.1111/bcp.12561] [PMID: 25546001]
[106]
Hanna, M.; Damy, T.; Grogan, M.; Stewart, M.; Gundapaneni, B.; Sultan, M.B.; Maurer, M.S. Tafamidis and quality of life in people with transthyretin amyloid cardiomyopathy in the study ATTR-ACT: A plain language summary. Future Cardiol., 2022, 18(3), 165-172.
[http://dx.doi.org/10.2217/fca-2021-0095] [PMID: 34779246]
[107]
Barroso, F.A.; Judge, D.P.; Ebede, B.; Li, H.; Stewart, M.; Amass, L.; Sultan, M.B. Long-term safety and efficacy of tafamidis for the treatment of hereditary transthyretin amyloid polyneuropathy: Results up to 6 years. Amyloid, 2017, 24(3), 194-204.
[http://dx.doi.org/10.1080/13506129.2017.1357545] [PMID: 28758793]
[108]
Elliott, P.; Drachman, B.M.; Gottlieb, S.S.; Hoffman, J.E.; Hummel, S.L.; Lenihan, D.J.; Ebede, B.; Gundapaneni, B.; Li, B.; Sultan, M.B.; Shah, S.J. Long-term survival with tafamidis in patients with transthyretin amyloid cardiomyopathy. Circ. Heart Fail., 2022, 15(1), e008193.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.120.008193] [PMID: 34923848]
[109]
Nativi-Nicolau, J.; Judge, D.P.; Hoffman, J.E.; Gundapaneni, B.; Keohane, D.; Sultan, M.B.; Grogan, M. How did transthyretin amyloid cardiomyopathy progress in patients who took placebo in the study ATTR-ACT? A plain language summary. Future Cardiol., 2022, 18(6), 445-453.
[http://dx.doi.org/10.2217/fca-2021-0150] [PMID: 35297655]
[110]
Casanova, I.; Caetano, A.; Díaz, A.; Conceição, I.; Brum, M.; de Carvalho, M. Motor excitability measurements in early stage familial amyloid polyneuropathy: The influence of tafamidis treatment. Neurophysiol. Clin., 2020, 50(3), 145-153.
[http://dx.doi.org/10.1016/j.neucli.2020.04.003] [PMID: 32507631]
[111]
Coelho, T.; Maia, L.F.; da Silva, A.M.; Cruz, M.W.; Planté-Bordeneuve, V.; Suhr, O.B.; Conceiçao, I.; Schmidt, H.H.J.; Trigo, P.; Kelly, J.W.; Labaudinière, R.; Chan, J.; Packman, J.; Grogan, D.R. Long-term effects of tafamidis for the treatment of transthyretin familial amyloid polyneuropathy. J. Neurol., 2013, 260(11), 2802-2814.
[http://dx.doi.org/10.1007/s00415-013-7051-7] [PMID: 23974642]
[112]
Merlini, G.; Coelho, T.; Waddington Cruz, M.; Li, H.; Stewart, M.; Ebede, B. Evaluation of mortality during long-term treatment with tafamidis for transthyretin amyloidosis with polyneuropathy: Clinical trial results up to 8.5 years. Neurol. Ther., 2020, 9(1), 105-115.
[http://dx.doi.org/10.1007/s40120-020-00180-w] [PMID: 32107748]
[113]
Gundapaneni, B.K.; Sultan, M.B.; Keohane, D.J.; Schwartz, J.H. Tafamidis delays neurological progression comparably across Val30Met and non-Val30Met genotypes in transthyretin familial amyloid polyneuropathy. Eur. J. Neurol., 2018, 25(3), 464-468.
[http://dx.doi.org/10.1111/ene.13510] [PMID: 29115008]
[114]
Huber, P.; Flynn, A.; Sultan, M.B.; Li, H.; Rill, D.; Ebede, B.; Gundapaneni, B.; Schwartz, J.H. A comprehensive safety profile of tafamidis in patients with transthyretin amyloid polyneuropathy. Amyloid, 2019, 26(4), 203-209.
[http://dx.doi.org/10.1080/13506129.2019.1643714] [PMID: 31353964]
[115]
Merlini, G.; Planté-Bordeneuve, V.; Judge, D.P.; Schmidt, H.; Obici, L.; Perlini, S.; Packman, J.; Tripp, T.; Grogan, D.R. Effects of tafamidis on transthyretin stabilization and clinical outcomes in patients with non-Val30Met transthyretin amyloidosis. J. Cardiovasc. Transl. Res., 2013, 6(6), 1011-1020.
[http://dx.doi.org/10.1007/s12265-013-9512-x] [PMID: 24101373]
[116]
Waddington Cruz, M.; Amass, L.; Keohane, D.; Schwartz, J.; Li, H.; Gundapaneni, B. Early intervention with tafamidis provides long-term (5.5-year) delay of neurologic progression in transthyretin hereditary amyloid polyneuropathy. Amyloid, 2016, 23(3), 178-183.
[http://dx.doi.org/10.1080/13506129.2016.1207163] [PMID: 27494299]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy