Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Review Article

Management of Cancer using Photodynamic Therapy: Advancement and Applications

Author(s): Deepika Yadav, Pramod Sharma, Prem Mishra* and Rishabha Malviya*

Volume 20, Issue 4, 2024

Published on: 11 October, 2023

Page: [357 - 371] Pages: 15

DOI: 10.2174/0115733947239258231003091058

Price: $65

Abstract

Photosensitizers (PS) are effective in treating a wide range of tumours using the timetested technique of photodynamic therapy (PDT). Light has been employed for centuries as a curative modality due to its efficacy. Since the effects of using certain dyes in conjunction with light irradiation were first proven around the turn of the 20th century, new PDT methods have been created. Current research focuses mostly on methods to lessen or eliminate unwanted side effects and enhance the drug's pharmacokinetic qualities. The FDA's decision to approve PDT as the first drug/device combo is not surprising, given the widespread curiosity and volume of published material on the subject. In PDT, light energy is combined with a PS to destroy tumour cells after its activation by light. In comparison to chemotherapy and/or radiation treatment, PDT often has fewer adverse effects and is safer. Several different PSs may be used to diagnose tumours, in addition to their therapeutic use. Photodynamic diagnostics (PDD) is the term used to describe methods like these. In this review, we present a high-level introduction to the diagnostic and therapeutic uses of PDT in cancer. The need of developing predictors to determine the response to therapy will be explored in relation to the assessment of PDT therapeutic effectiveness in the clinic. The use of PDT to treat different tumours will also be shown through case studies. The potential of combining PDT with other forms of treatment, such as chemotherapy, radiation, surgery, and immunotherapy, to increase efficacy against tumours will also be highlighted. Results from PDT alone may not be as good as those from PDT combined with other therapies. It's also possible that lower dosages used in combination therapy will have fewer adverse effects and provide better outcomes than each individual treatment would. It is possible that the therapeutic uses of PDT might be broadened by a greater knowledge of the efficacy of PDT in a combination context in the clinic, as well as the optimisation of such complicated multimodal therapies.

Keywords: Photodynamic therapy, cancer treatment, targeted therapy, patient care, cell death, pharmacokinetic, photosensitizers.

Graphical Abstract
[1]
Wen X, Li Y, Hamblin MR. Photodynamic therapy in dermatology beyond non-melanoma cancer: An update. Photodiagn Photodyn Ther 2017; 19: 140-52.
[http://dx.doi.org/10.1016/j.pdpdt.2017.06.010] [PMID: 28647616]
[2]
Kessel D. Apoptosis and associated phenomena as a determinants of the efficacy of photodynamic therapy. Photochem Photobiol Sci 2015; 14(8): 1397-402.
[http://dx.doi.org/10.1039/c4pp00413b] [PMID: 25559971]
[3]
Brown SB, Brown EA, Walker I. The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol 2004; 5(8): 497-508.
[http://dx.doi.org/10.1016/S1470-2045(04)01529-3] [PMID: 15288239]
[4]
O’Connor AE, Gallagher WM, Byrne AT. Porphyrin and nonporphyrin photosensitizers in oncology: Preclinical and clinical advances in photodynamic therapy. Photochem Photobiol 2009; 85(5): 1053-74.
[http://dx.doi.org/10.1111/j.1751-1097.2009.00585.x] [PMID: 19682322]
[5]
Abrahamse H, Hamblin MR. New photosensitizers for photodynamic therapy. Biochem J 2016; 473(4): 347-64.
[http://dx.doi.org/10.1042/BJ20150942] [PMID: 26862179]
[6]
Agostinis P, Berg K, Cengel KA, et al. Photodynamic therapy of cancer: An update. CA Cancer J Clin 2011; 61(4): 250-81.
[http://dx.doi.org/10.3322/caac.20114] [PMID: 21617154]
[7]
Dougherty TJ, Gomer CJ, Henderson BW, et al. Photodynamic therapy. J Natl Cancer Inst 1998; 90(12): 889-905.
[http://dx.doi.org/10.1093/jnci/90.12.889] [PMID: 9637138]
[8]
Morrison SA, Hill SL, Rogers GS, Graham RA. Efficacy and safety of continuous low-irradiance photodynamic therapy in the treatment of chest wall progression of breast cancer. J Surg Res 2014; 192(2): 235-41.
[http://dx.doi.org/10.1016/j.jss.2014.06.030] [PMID: 25043529]
[9]
Korbelik M, Cecic I. Contribution of myeloid and lymphoid host cells to the curative outcome of mouse sarcoma treatment by photodynamic therapy. Cancer Lett 1999; 137(1): 91-8.
[http://dx.doi.org/10.1016/S0304-3835(98)00349-8] [PMID: 10376798]
[10]
Juzeniene A, Peng Q, Moan J. Milestones in the development of photodynamic therapy and fluorescence diagnosis. Photochem Photobiol Sci 2007; 6(12): 1234-45.
[http://dx.doi.org/10.1039/b705461k] [PMID: 18046478]
[11]
Volgger V, Betz CS. Photodynamic therapy in the upper aerodigestive tract. Overview and outlook. J Biophotonics 2016; 9(11-12): 1302-13.
[http://dx.doi.org/10.1002/jbio.201600036] [PMID: 27010591]
[12]
Berg K, Weyergang A, Prasmickaite L, et al. Photochemical internalization (PCI): A technology for drug delivery. Methods Mol Biol 2010; 635: 133-45.
[http://dx.doi.org/10.1007/978-1-60761-697-9_10] [PMID: 20552345]
[13]
Society AC. Photodynamic therapy Available from: http://www.cancer.org/treat ment/treat ments andsi deeff ects/treat mentt ypes/photo (Accessed July 21, 2016).
[14]
Kato H. History of photodynamic therapy–past, present and future. Cancer Chemother 1996; 23(1): 8-15.
[15]
Rogers GS. Continuous low-irradiance photodynamic therapy: A new therapeutic paradigm. J Natl Compr Canc Netw 2012; 10(2): S-14-7.
[http://dx.doi.org/10.6004/jnccn.2012.0166] [PMID: 23055207]
[16]
Fitzmaurice S, Eisen DB. Daylight photodynamic therapy: What is known and what is yet to be determined. Dermatol Surg 2016; 42(3): 286-95.
[http://dx.doi.org/10.1097/DSS.0000000000000633] [PMID: 26918967]
[17]
Bisland SK, Lilge L, Lin A, Rusnov R, Wilson BC. Metronomic photodynamic therapy as a new paradigm for photodynamic therapy: Rationale and preclinical evaluation of technical feasibility for treating malignant brain tumors. Photochem Photobiol 2004; 80(1): 22-30.
[http://dx.doi.org/10.1562/2004-03-05-RA-100.1] [PMID: 15339204]
[18]
Beyer W. Systems for light application and dosimetry in photodynamic therapy. J Photochem Photobiol B 1996; 36(2): 153-6.
[http://dx.doi.org/10.1016/S1011-1344(96)07363-0] [PMID: 9002252]
[19]
Zhou Z, Song J, Nie L, Chen X. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem Soc Rev 2016; 45(23): 6597-626.
[http://dx.doi.org/10.1039/C6CS00271D] [PMID: 27722328]
[20]
Hirschberg H, Sørensen DR, Angell-Petersen E, et al. Repetitive photodynamic therapy of malignant brain tumors. J Environ Pathol Toxicol Oncol 2006; 25(1-2): 261-80.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v25.i1-2.170] [PMID: 16566723]
[21]
Gupta AK, Paquet M, Villanueva E, Brintnell W. Interventions for actinic keratoses. Cochrane Database Syst Rev 2012; 12(12): CD004415.
[PMID: 23235610]
[22]
Gupta AK, Paquet M. Network meta-analysis of the outcome ‘participant complete clearance’ in nonimmunosuppressed participants of eight interventions for actinic keratosis: A follow-up on a Cochrane review. Br J Dermatol 2013; 169(2): 250-9.
[http://dx.doi.org/10.1111/bjd.12343] [PMID: 23550994]
[23]
Vegter S, Tolley K. A network meta-analysis of the relative efficacy of treatments for actinic keratosis of the face or scalp in Europe. PLoS One 2014; 9(6): e96829.
[http://dx.doi.org/10.1371/journal.pone.0096829] [PMID: 24892649]
[24]
Tanghetti EA, Hamann C, Tanghetti M. A controlled comparisonstudy of topical fluorouracil 5% cream pre‐treatment of amino‐levulinic acid/photodynamic therapy for actinic keratosis. J Drugs Dermatol 2015; 14(11): 1241-4.
[PMID: 26580872]
[25]
Patel G, Armstrong AW, Eisen DB. Efficacy of photodynamic therapy vs other interventions in randomized clinical trials for the treatment of actinic keratoses: A systematic review and meta-analysis. JAMA Dermatol 2014; 150(12): 1281-8.
[http://dx.doi.org/10.1001/jamadermatol.2014.1253] [PMID: 25162181]
[26]
Jansen MHE, Kessels JPHM, Nelemans PJ, et al. Randomized trial of four treatment approaches for actinic keratosis. N Engl J Med 2019; 380(10): 935-46.
[http://dx.doi.org/10.1056/NEJMoa1811850] [PMID: 30855743]
[27]
Keyal U, Bhatta AK, Zhang G, Wang XL. Present and future perspectives of photodynamic therapy for cutaneous squamous cell carcinoma. J Am Acad Dermatol 2019; 80(3): 765-73.
[http://dx.doi.org/10.1016/j.jaad.2018.10.042] [PMID: 30393093]
[28]
Bath-Hextall FJ, Matin RN, Wilkinson D, Leonardi-Bee J. Interventions for cutaneous Bowen’s disease. Cochrane Database Syst Rev 2013; 2013(6): CD007281.
[PMID: 23794286]
[29]
Kim HJ, Song KH. Ablative fractional laser–assisted photodynamic therapy provides superior long-term efficacy compared with standard methyl aminolevulinate photodynamic therapy for lower extremity Bowen disease. J Am Acad Dermatol 2018; 79(5): 860-8.
[http://dx.doi.org/10.1016/j.jaad.2018.05.034] [PMID: 29857012]
[30]
Szeimies RM, Ibbotson S, Murrell DF, et al. A clinical study comparing methyl aminolevulinate photodynamic therapy and surgery in small superficial basal cell carcinoma (8-20 mm), with a 12-month follow-up. J Eur Acad Dermatol Venereol 2008; 22(11): 1302-11.
[http://dx.doi.org/10.1111/j.1468-3083.2008.02803.x] [PMID: 18624836]
[31]
Roozeboom MH, Nelemans PJ, Mosterd K, Steijlen PM, Arits AHMM, Kelleners-Smeets NWJ. Photodynamic therapy vs. topical imiquimod for treatment of superficial basal cell carcinoma: A subgroup analysis within a noninferiority randomized controlled trial. Br J Dermatol 2015; 172(3): 739-45.
[http://dx.doi.org/10.1111/bjd.13299] [PMID: 25066012]
[32]
Arits AHMM, Mosterd K, Essers BAB, et al. Photodynamic therapy versus topical imiquimod versus topical fluorouracil for treatment of superficial basal-cell carcinoma: A single blind, non-inferiority, randomised controlled trial. Lancet Oncol 2013; 14(7): 647-54.
[http://dx.doi.org/10.1016/S1470-2045(13)70143-8] [PMID: 23683751]
[33]
Zou Y, Zhao Y, Yu J, et al. Photodynamic therapy versus surgical excision to basal cell carcinoma: Meta-analysis. J Cosmet Dermatol 2016; 15(4): 374-82.
[http://dx.doi.org/10.1111/jocd.12236] [PMID: 27363535]
[34]
Wolfsen HC. Carpe luz—seize the light: Endoprevention of esophageal adenocarcinoma when using photodynamic therapy with porfimer sodium. Gastrointest Endosc 2005; 62(4): 499-503.
[http://dx.doi.org/10.1016/j.gie.2005.07.017] [PMID: 16185960]
[35]
Bustamante FAC, Hourneaux De Moura EG, Bernardo W, Sallum RAA, Ide E, Baba E. Surgery versus endoscopic therapies for early cancer and high-grade dysplasia in the esophagus: A systematic review. Arq Gastroenterol 2016; 53(1): 10-9.
[http://dx.doi.org/10.1590/S0004-28032016000100004] [PMID: 27281499]
[36]
Wu J, Pan Y, Wang T, Gao D, Hu B. Endotherapy versus surgery for early neoplasia in Barrett’s esophagus: A meta-analysis. Gastrointest Endosc 2014; 79(2): 233-241.e2.
[http://dx.doi.org/10.1016/j.gie.2013.08.005] [PMID: 24079410]
[37]
Wu H, Minamide T, Yano T. Role of photodynamic therapy in the treatment of esophageal cancer. Dig Endosc 2019; 31(5): 508-16.
[http://dx.doi.org/10.1111/den.13353]
[38]
Litle VR, Luketich JD, Christie NA, et al. Photodynamic therapy as palliation for esophageal cancer: Experience in 215 patients. Ann Thorac Surg 2003; 76(5): 1687-93.
[http://dx.doi.org/10.1016/S0003-4975(03)01299-2] [PMID: 14602313]
[39]
Yano T, Muto M, Minashi K, et al. Photodynamic therapy as salvage treatment for local failure after chemoradiotherapy in patients with esophageal squamous cell carcinoma: A phase II study. Int J Cancer 2012; 131(5): 1228-34.
[http://dx.doi.org/10.1002/ijc.27320] [PMID: 22024814]
[40]
Hatogai K, Yano T, Kojima T, et al. Salvage photodynamic therapy for local failure after chemoradiotherapy for esophageal squamous cell carcinoma. Gastrointest Endosc 2016; 83(6): 1130-1139.e3.
[http://dx.doi.org/10.1016/j.gie.2015.11.016] [PMID: 26608125]
[41]
Yano T, Kasai H, Horimatsu T, et al. A multicenter phase II study of salvage photodynamic therapy using talaporfin sodium (ME2906) and a diode laser (PNL6405EPG) for local failure after chemoradiotherapy or radiotherapy for esophageal cancer. Oncotarget 2017; 8(13): 22135-44.
[http://dx.doi.org/10.18632/oncotarget.14029] [PMID: 28212527]
[42]
Gonzalez-Carmona MA, Bolch M, Jansen C, et al. Combined photodynamic therapy with systemic chemotherapy for unresectable cholangiocarcinoma. Aliment Pharmacol Ther 2019; 49(4): 437-47.
[http://dx.doi.org/10.1111/apt.15050] [PMID: 30637783]
[43]
Zoepf T, Jakobs R, Arnold JC, Apel D, Riemann JF. Palliation of nonresectable bile duct cancer: Improved survival after photodynamic therapy. Am J Gastroenterol 2005; 100(11): 2426-30.
[http://dx.doi.org/10.1111/j.1572-0241.2005.00318.x] [PMID: 16279895]
[44]
Wentrup R, Winkelmann N, Mitroshkin A, et al. Photodynamic therapy plus chemotherapy compared with photodynamic therapy alone in hilar nonresectable cholangiocarcinoma. Gut Liver 2016; 10(3): 470-5.
[http://dx.doi.org/10.5009/gnl15175] [PMID: 26814610]
[45]
Kenneth K, Wang MC. Ultrasound-Guided Verteporfin Photodynamic Therapy for the Treatment of Unresectable Solid Pancreatic Tumors or Advanced Pancreatic Cancer, VERTPAC-02 Study. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT03033225
[46]
Shafirstein G, Battoo A, Harris K, et al. Photodynamic therapy of non‐small cell lung cancer. narrative review and future directions. Ann Am Thorac Soc 2016; 13(2): 265-75.
[http://dx.doi.org/10.1513/AnnalsATS.201509-650FR] [PMID: 26646726]
[47]
Pass HI, Temeck BK, Kranda K, et al. Phase III randomized trial of surgery with or without intraoperative photodynamic therapy and postoperative immunochemotherapy for malignant pleural mesothelioma. Ann Surg Oncol 1997; 4(8): 628-33.
[http://dx.doi.org/10.1007/BF02303746] [PMID: 9416409]
[48]
Simone CB II, Cengel KA. Photodynamic therapy for lung cancer and malignant pleural mesothelioma. Semin Oncol 2014; 41(6): 820-30.
[http://dx.doi.org/10.1053/j.seminoncol.2014.09.017] [PMID: 25499640]
[49]
Pass HI, Tochner Z, DeLaney T, et al. Intraoperative photodynamic therapy for malignant mesothelioma. Ann Thorac Surg 1990; 50(4): 687-8.
[http://dx.doi.org/10.1016/0003-4975(90)90230-4] [PMID: 2222072]
[50]
Moskal TL, Dougherty TJ, Urschel JD, et al. Operation and photodynamic therapy for pleural mesothelioma: 6-year follow-up. Ann Thorac Surg 1998; 66(4): 1128-33.
[http://dx.doi.org/10.1016/S0003-4975(98)00799-1] [PMID: 9800793]
[51]
Kidane B, Hirpara D, Yasufuku K. Photodynamic therapy in non‐gastrointestinal thoracic malignancies. Int J Mol Sci 2016; 17(1): 135.
[http://dx.doi.org/10.3390/ijms17010135] [PMID: 26805818]
[52]
Kato T, Jin CS, Lee D, et al. Preclinical investigation of folate receptor-targeted nanoparticles for photodynamic therapy of malignant pleural mesothelioma. Int J Oncol 2018; 53(5): 2034-46.
[PMID: 30226590]
[53]
Ostrom QT, Bauchet L, Davis FG, et al. The epidemiology of glioma in adults: A “state of the science” review. Neuro-oncol 2014; 16(7): 896-913.
[http://dx.doi.org/10.1093/neuonc/nou087] [PMID: 24842956]
[54]
Konishi Y, Muragaki Y, Iseki H, Mitsuhashi N, Okada Y. Patterns of intracranial glioblastoma recurrence after aggressive surgical resection and adjuvant management: Retrospective analysis of 43 cases. Neurol Med Chir 2012; 52(8): 577-86.
[http://dx.doi.org/10.2176/nmc.52.577] [PMID: 22976141]
[55]
Petrecca K, Guiot MC, Panet-Raymond V, Souhami L. Failure pattern following complete resection plus radiotherapy and temozolomide is at the resection margin in patients with glioblastoma. J Neurooncol 2013; 111(1): 19-23.
[http://dx.doi.org/10.1007/s11060-012-0983-4] [PMID: 23054563]
[56]
Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352(10): 987-96.
[http://dx.doi.org/10.1056/NEJMoa043330] [PMID: 15758009]
[57]
deSouza RM, Shaweis H, Han C, et al. Has the survival of patients with glioblastoma changed over the years? Br J Cancer 2016; 114(2): 146-50.
[http://dx.doi.org/10.1038/bjc.2015.421] [PMID: 26671748]
[58]
Eljamel S. Photodynamic applications in brain tumors: A comprehensive review of the literature. Photodiagn Photodyn Ther 2010; 7(2): 76-85.
[http://dx.doi.org/10.1016/j.pdpdt.2010.02.002] [PMID: 20510302]
[59]
Kostron H. Photodynamic diagnosis and therapy and the brain. Methods Mol Biol 2010; 635: 261-80.
[http://dx.doi.org/10.1007/978-1-60761-697-9_17] [PMID: 20552352]
[60]
Eljamel MS, Goodman C, Moseley H. ALA and Photofrin® Fluorescence-guided resection and repetitive PDT in glioblastoma multiforme: A single centre Phase III randomised controlled trial. Lasers Med Sci 2008; 23(4): 361-7.
[http://dx.doi.org/10.1007/s10103-007-0494-2] [PMID: 17926079]
[61]
Quirk BJ, Brandal G, Donlon S, et al. Photodynamic therapy (PDT) for malignant brain tumors: Where do we stand? Photodiagn Photodyn Ther 2015; 12(3): 530-44.
[http://dx.doi.org/10.1016/j.pdpdt.2015.04.009] [PMID: 25960361]
[62]
Kostron H, Fritsch E, Grunert V. Photodynamic therapy of malignant brain tumours: A phase I/II trial. Br J Neurosurg 1988; 2(2): 241-8.
[http://dx.doi.org/10.3109/02688698808992675] [PMID: 2855780]
[63]
Marks PV, Belchetz PE, Saxena A, et al. Effect of photodynamic therapy on recurrent pituitary adenomas: Clinical phase I/II trial--an early report. Br J Neurosurg 2000; 14(4): 317-25.
[http://dx.doi.org/10.1080/026886900417298] [PMID: 11045196]
[64]
Zilidis G, Aziz F, Telara S, Eljamel MS. Fluorescence image-guided surgery and repetitive Photodynamic Therapy in brain metastatic malignant melanoma. Photodiagn Photodyn Ther 2008; 5(4): 264-6.
[http://dx.doi.org/10.1016/j.pdpdt.2009.01.001] [PMID: 19356668]
[65]
Aziz F, Telara S, Moseley H, Goodman C, Manthri P, Eljamel MS. Photodynamic therapy adjuvant to surgery in metastatic carcinoma in brain. Photodiagn Photodyn Ther 2009; 6(3-4): 227-30.
[http://dx.doi.org/10.1016/j.pdpdt.2009.09.003] [PMID: 19932456]
[66]
Cuenca RE, Allison RR, Sibata C, Downie GH. Breast cancer with chest wall progression: Treatment with photodynamic therapy. Ann Surg Oncol 2004; 11(3): 322-7.
[http://dx.doi.org/10.1245/ASO.2004.03.025] [PMID: 14993029]
[67]
Allison RR, Sibata C, Mang TS, et al. Photodynamic therapy for chest wall recurrence from breast cancer. Photodiagn Photodyn Ther 2004; 1(2): 157-71.
[http://dx.doi.org/10.1016/S1572-1000(04)00039-0]
[68]
Schuh M, Nseyo UO, Potter WR, Dao TL, Dougherty TJ. Photodynamic therapy for palliation of locally recurrent breast carcinoma. J Clin Oncol 1987; 5(11): 1766-70.
[http://dx.doi.org/10.1200/JCO.1987.5.11.1766] [PMID: 2445930]
[69]
Khan SA, Dougherty TJ, Mang TS. An evaluation of photodynamic therapy in the management of cutaneous metastases of breast cancer. Eur J Cancer 1993; 29(12): 1686-90.
[http://dx.doi.org/10.1016/0959-8049(93)90105-O] [PMID: 8398295]
[70]
Lamberti MJ, Vittar NB, Rivarola VA. Breast cancer as photodynamic therapy target: Enhanced therapeutic efficiency by overview of tumor complexity. World J Clin Oncol 2014; 5(5): 901-7.
[http://dx.doi.org/10.5306/wjco.v5.i5.901] [PMID: 25493228]
[71]
Banerjee SM, MacRobert AJ, Mosse CA, Periera B, Bown SG, Keshtgar MRS. Photodynamic therapy: Inception to application in breast cancer. Breast 2017; 31: 105-13.
[http://dx.doi.org/10.1016/j.breast.2016.09.016] [PMID: 27833041]
[72]
Fan H, Wang L, Zhang P, Liu S. Photodynamic therapy in spinal metastases: A qualitative analysis of published results. Int Surg 2015; 100(4): 712-9.
[http://dx.doi.org/10.9738/INTSURG-D-14-00093.1] [PMID: 25875556]
[73]
Health USNIo. Available from: https://clinicaltrials.gov (Accessed January 7, 2017).
[74]
An Open Label, Phase II Trial of Continuous Low-Irradiance Photodynamic Therapy (CLIPT) Using Verteporfin (Visudyne®) for the Treatment of Cutaneous Metastases of Breast Cancer. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT02939274
[75]
Lopes Filho LL, Lopes IMRS, Lopes LRS, Enokihara MMSS, Michalany AO, Matsunaga N. Mammary and extramammary Paget’s disease. An Bras Dermatol 2015; 90(2): 225-31.
[http://dx.doi.org/10.1590/abd1806-4841.20153189] [PMID: 25830993]
[76]
Nardelli AA, Stafinski T, Menon D. Effectiveness of photodynamic therapy for mammary and extra-mammary Paget’s disease: A state of the science review. BMC Dermatol 2011; 11(1): 13.
[http://dx.doi.org/10.1186/1471-5945-11-13] [PMID: 21676258]
[77]
Raspagliesi F, Fontanelli R, Rossi G, et al. Photodynamic therapy using a methyl ester of 5-aminolevulinic acid in recurrent Paget’s disease of the vulva: A pilot study. Gynecol Oncol 2006; 103(2): 581-6.
[http://dx.doi.org/10.1016/j.ygyno.2006.04.009] [PMID: 16793128]
[78]
Apalla Z, Lallas A, Tsorova A, et al. Complete response of extramammary Paget’s disease with imiquimod and PDT: Report of two cases. Photodermatol Photoimmunol Photomed 2018; 34(4): 273-5.
[http://dx.doi.org/10.1111/phpp.12386]
[79]
Jing W, Juan X, Li X, et al. Complete remission of two patients with recurrent and wide spread extramammary Paget disease obtained from 5-aminolevulinic acid-based photodynamic therapy and imiquimod combination treatment. Photodiagn Photodyn Ther 2014; 11(3): 434-40.
[http://dx.doi.org/10.1016/j.pdpdt.2014.03.006] [PMID: 24657920]
[80]
Wang H-W, Lv T, Zhang L-L, et al. A prospective pilot study to evalu‐ate combined topical photodynamic therapy and surgery for extra‐mammary paget’s disease. Lasers Surg Med 2013; 45(5): 296-301.
[81]
Meulemans J, Delaere P, Vander Poorten V, et al. Photodynamic therapy in head and neck cancer: Indications, outcomes, and future prospects. Curr Opin Otolaryngol Head Neck Surg 2019; 27(2): 136-41.
[PMID: 30724766]
[82]
Civantos FJ, Karakullukcu B, Biel M, et al. A review of photody‐namic therapy for neoplasms of the head and neck. Adv Ther 2018; 35(3): 324-40.
[http://dx.doi.org/10.1007/s12325-018-0659-3] [PMID: 29417455]
[83]
Karakullukcu B, van Oudenaarde K, Copper MP, et al. Photodynamic therapy of early stage oral cavity and oropharynx neoplasms: An outcome analysis of 170 patients. Eur Arch Otorhinolaryngol 2011; 268(2): 281-8.
[http://dx.doi.org/10.1007/s00405-010-1361-5] [PMID: 20706842]
[84]
Karakullukcu B, Stoker SD, Wildeman APE, Copper MP, Wildeman MA, Tan IB. A matched cohort comparison of mTHPC-mediated photodynamic therapy and trans-oral surgery of early stage oral cavity squamous cell cancer. Eur Arch Otorhinolaryngol 2013; 270(3): 1093-7.
[http://dx.doi.org/10.1007/s00405-012-2104-6] [PMID: 22773192]
[85]
Cerrati EW, Nguyen SA, Farrar JD, Lentsch EJ. The efficacy of photodynamic therapy in the treatment of oral squamous cell carcinoma: A meta-analysis. Ear Nose Throat J 2015; 94(2): 72-9.
[http://dx.doi.org/10.1177/014556131509400208] [PMID: 25651350]
[86]
Ikeda H, Ohba S, Egashira K, Asahina I. The effect of photodynamic therapy with talaporfin sodium, a second-generation photosensitizer, on oral squamous cell carcinoma: A series of eight cases. Photodiagn Photodyn Ther 2018; 21: 176-80.
[http://dx.doi.org/10.1016/j.pdpdt.2017.11.016] [PMID: 29198764]
[87]
Ahn PH, Quon H, O’Malley BW, et al. Toxicities and early outcomes in a phase 1 trial of photodynamic therapy for premalignant and early stage head and neck tumors. Oral Oncol 2016; 55: 37-42.
[http://dx.doi.org/10.1016/j.oraloncology.2016.01.013] [PMID: 26865261]
[88]
Windahl T, Andersson SO, Lofgren L. Photodynamic therapy of localised prostatic cancer. Lancet 1990; 336(8723): 1139.
[http://dx.doi.org/10.1016/0140-6736(90)92626-S] [PMID: 1978022]
[89]
Moore CM, Nathan TR, Lees WR, et al. Photodynamic therapy using meso tetra hydroxy phenyl chlorin (mTHPC) in early prostate cancer. Lasers Surg Med 2006; 38(5): 356-63.
[http://dx.doi.org/10.1002/lsm.20275] [PMID: 16392142]
[90]
Zaak D, Sroka R, Stocker S, et al. Photodynamic therapy of prostate cancer by means of 5-aminolevulinic acid-induced protoporphyrin IX - in vivo experiments on the dunning rat tumor model. Urol Int 2004; 72(3): 196-202.
[http://dx.doi.org/10.1159/000077114] [PMID: 15084761]
[91]
Nathan TR, Whitelaw DE, Chang SC, et al. Photodynamic therapy for prostate cancer recurrence after radiotherapy: A phase I study. J Urol 2002; 168(4 Part 1): 1427-32.
[http://dx.doi.org/10.1016/S0022-5347(05)64466-7] [PMID: 12352410]
[92]
Du KL, Mick R, Busch TM, et al. Preliminary results of interstitial motexafin lutetium-mediated PDT for prostate cancer. Lasers Surg Med 2006; 38(5): 427-34.
[http://dx.doi.org/10.1002/lsm.20341] [PMID: 16788929]
[93]
Verigos K, Stripp DCH, Mick R, et al. Updated results of a phase I trial of motexafin lutetium-mediated interstitial photodynamic therapy in patients with locally recurrent prostate cancer. J Environ Pathol Toxicol Oncol 2006; 25(1-2): 373-88.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v25.i1-2.230] [PMID: 16566729]
[94]
Patel H, Mick R, Finlay J, et al. Motexafin lutetium-photodynamic therapy of prostate cancer: Short- and long-term effects on prostate-specific antigen. Clin Cancer Res 2008; 14(15): 4869-76.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0317] [PMID: 18676760]
[95]
Trachtenberg J, Bogaards A, Weersink RA, et al. Vascular targeted photodynamic therapy with palladium-bacteriopheophorbide photosensitizer for recurrent prostate cancer following definitive radiation therapy: Assessment of safety and treatment response. J Urol 2007; 178(5): 1974-9.
[http://dx.doi.org/10.1016/j.juro.2007.07.036] [PMID: 17869307]
[96]
Haider MA, Davidson SRH, Kale AV, et al. Prostate gland: MR imaging appearance after vascular targeted photodynamic therapy with palladium-bacteriopheophorbide. Radiology 2007; 244(1): 196-204.
[http://dx.doi.org/10.1148/radiol.2441060398] [PMID: 17507719]
[97]
Johansson A, Axelsson J, Andersson-Engels S, Swartling J. Realtime light dosimetry software tools for interstitial photodynamic therapy of the human prostate. Med Phys 2007; 34(11): 4309-21.
[http://dx.doi.org/10.1118/1.2790585] [PMID: 18072496]
[98]
Kawczyk-Krupka A, Wawrzyniec K, Musiol SK, Potempa M, Bugaj AM, Sieroń A. Treatment of localized prostate cancer using WST-09 and WST-11 mediated vascular targeted photodynamic therapy: A review. Photodiagn Photodyn Ther 2015; 12(4): 567-74.
[http://dx.doi.org/10.1016/j.pdpdt.2015.10.001] [PMID: 26467273]
[99]
Preise D, Scherz A, Salomon Y. Antitumor immunity promoted by vascular occluding therapy: Lessons from vascular-targeted photodynamic therapy (VTP). Photochem Photobiol Sci 2011; 10(5): 681-8.
[http://dx.doi.org/10.1039/c0pp00315h] [PMID: 21258718]
[100]
Noweski A, Roosen A, Lebdai S, et al. Medium-term Follow-up of vascular-targeted photodynamic therapy of localized prostate cancer using TOOKAD soluble WST-11 (Phase II Trials). EurUrol- Focus 2018; 5(6): 1022-8.
[101]
Azzouzi AR, Vincendeau S, Barret E, et al. Padeliporfin vascular-targeted photodynamic therapy versus active surveillance in men with low-risk prostate cancer (CLIN1001 PCM301): An open-label, phase 3, randomised controlled trial. Lancet Oncol 2017; 18(2): 181-91.
[http://dx.doi.org/10.1016/S1470-2045(16)30661-1] [PMID: 28007457]
[102]
Nseyo UO, Shumaker B, Klein EA, Sutherland K. Photodynamic therapy using porfimer sodium as an alternative to cystectomy in patients with refractory transitional cell carcinoma in situ of the bladder. J Urol 1998; 160(1): 39-44.
[http://dx.doi.org/10.1016/S0022-5347(01)63021-0] [PMID: 9628601]
[103]
Berger AP, Steiner H, Stenzl A, Akkad T, Bartsch G, Holtl L. Photodynamic therapy with intravesical instillation of 5-aminolevulinic acid for patients with recurrent superficial bladder cancer: A single-center study. Urology 2003; 61(2): 338-41.
[http://dx.doi.org/10.1016/S0090-4295(02)02123-4] [PMID: 12597942]
[104]
Waidelich R, Beyer W, Knchel R, et al. Whole bladder photodynamic therapy with 5-aminolevulinic acid using a white light source. Urology 2003; 61(2): 332-7.
[http://dx.doi.org/10.1016/S0090-4295(02)02164-7] [PMID: 12597941]
[105]
Skyrme RJ, French AJ, Datta SN, Allman R, Mason MD, Matthews PN. A phase-1 study of sequential mitomycin C and 5-aminolaevulinic acid-mediated photodynamic therapy in recurrent superficial bladder carcinoma. BJU Int 2005; 95(9): 1206-10.
[http://dx.doi.org/10.1111/j.1464-410X.2005.05506.x] [PMID: 15892802]
[106]
Jocham D, von Wietersheim J, Pflüger H, et al. BCG versus photodynamic therapy (PDT) for nonmuscle invasive bladder cancer: A multicentre clinical phase III study. Aktuelle Urol 2009; 40(2): 91-9.
[http://dx.doi.org/10.1055/s-0028-1098741] [PMID: 19214951]
[107]
D’Hallewin MA, Baert L. Long-term results of whole bladder wall photodynamic therapy for carcinoma in situ of the bladder. Urology 1995; 45(5): 763-7.
[http://dx.doi.org/10.1016/S0090-4295(99)80080-6] [PMID: 7747371]
[108]
Neuhaus J, Schastak S, Berndt M, et al. Photodynamic therapy of bladder cancer. Urologe A 2013; 52(9): 1225-32.
[http://dx.doi.org/10.1007/s00120-013-3306-2] [PMID: 24026059]
[109]
Berndt-Paetz M, Weimann A, Sieger N, et al. Tetrahydroporphyrin-tetratosylat (THPTS): A near-infrared photosensitizer for targeted and efficient photodynamic therapy (PDT) of human bladder carcinoma. An in vitro study. Photodiagn Photodyn Ther 2017; 18: 244-51.
[http://dx.doi.org/10.1016/j.pdpdt.2017.02.017] [PMID: 28279796]
[110]
Almerie MQ, Gossedge G, Wright KE, Jayne DG. Treatment of peritoneal carcinomatosis with photodynamic therapy: Systematic review of current evidence. Photodiagn Photodyn Ther 2017; 20: 276-86.
[http://dx.doi.org/10.1016/j.pdpdt.2017.10.021] [PMID: 29111390]
[111]
Almerie MQ, Gossedge G, Wright KE, Jayne DG. Photodynamic diagnosis for detection of peritoneal carcinomatosis. J Surg Res 2015; 195(1): 175-87.
[http://dx.doi.org/10.1016/j.jss.2015.01.009] [PMID: 25682189]
[112]
Agarwal ML, Clay ME, Harvey EJ, Evans HH, Antunez AR, Oleinick NL. Photodynamic therapy induces rapid cell death by apoptosis in L5178Y mouse lymphoma cells. Cancer Res 1991; 51(21): 5993-6.
[PMID: 1933862]
[113]
Oleinick NL, Morris RL, Belichenko I. The role of apoptosis in response to photodynamic therapy: What, where, why, and how. Photochem Photobiol Sci 2002; 1(1): 1-21.
[http://dx.doi.org/10.1039/b108586g] [PMID: 12659143]
[114]
Noodt BB, Berg K, Stokke T, Peng Q, Nesland JM. Different apoptotic pathways are induced from various intracellular sites by tetraphenylporphyrins and light. Br J Cancer 1999; 79(1): 72-81.
[http://dx.doi.org/10.1038/sj.bjc.6690014] [PMID: 10408696]
[115]
Kessel D, Luo Y, Mathieu P, Reiners JJ Jr. Determinants of the apoptotic response to lysosomal photodamage. Photochem Photobiol 2000; 71(2): 196-200.
[http://dx.doi.org/10.1562/0031-8655(2000)071<0196:DOTART>2.0.CO;2] [PMID: 10687394]
[116]
Woodburn KW, Fan Q, Miles DR, Kessel D, Luo Y, Young SW. Localization and efficacy analysis of the phototherapeutic lutetiumtexaphyrin (PCI-0123) in the murine EMT6 sarcoma model. Photochem Photobiol 1997; 65(3): 410-5.
[http://dx.doi.org/10.1111/j.1751-1097.1997.tb08579.x] [PMID: 9077121]
[117]
Kessel D, Caruso JA, Reiners JJ Jr. Potentiation of photodynamic therapy by ursodeoxycholic acid. Cancer Res 2000; 60(24): 6985-8.
[PMID: 11156400]
[118]
Kessel D, Luo Y, Deng Y, Chang CK. The role of subcellular localization in initiation of apoptosis by photodynamic therapy. Photochem Photobiol 1997; 65(3): 422-6.
[http://dx.doi.org/10.1111/j.1751-1097.1997.tb08581.x] [PMID: 9077123]
[119]
Chiu S-M, Oleinick NL. Dissociation of mitochondrial depolarization from cytochrome c release during apoptosis induced by photodynamic therapy. Br J Cancer 2001; 84(8): 1099-106.
[http://dx.doi.org/10.1054/bjoc.2000.1714] [PMID: 11308261]
[120]
Roberts WG, Liaw LHL, Berns MW. In vitro photosensitization II. An electron microscopy study of cellular destruction with mono-L-aspartyl chlorin e6 and photofrin II. Lasers Surg Med 1989; 9(2): 102-8.
[http://dx.doi.org/10.1002/lsm.1900090204] [PMID: 2523992]
[121]
Trivedi NS, Wang HW, Nieminen AL, Oleinick NL, Izatt JA. Quantitative analysis of Pc 4 localization in mouse lymphoma (LY-R) cells via double-label confocal fluorescence microscopy. Photochem Photobiol 2000; 71(5): 634-9.
[http://dx.doi.org/10.1562/0031-8655(2000)071<0634:QAOPLI>2.0.CO;2] [PMID: 10818795]
[122]
Moan J, Berg K. The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem Photobiol 1991; 53(4): 549-53.
[http://dx.doi.org/10.1111/j.1751-1097.1991.tb03669.x] [PMID: 1830395]
[123]
Kessel D, Castelli M. Evidence that bcl-2 is the target of three photosensitizers that induce a rapid apoptotic response. Photochem Photobiol 2001; 74(2): 318-22.
[http://dx.doi.org/10.1562/0031-8655(2001)074<0318:ETBITT>2.0.CO;2] [PMID: 11547571]
[124]
Hishita T, Tada-Oikawa S, Tohyama K, et al. Caspase-3 activation by lysosomal enzymes in cytochrome c-independent apoptosis in myelodysplastic syndrome-derived cell line P39. Cancer Res 2001; 61(7): 2878-84.
[PMID: 11306462]
[125]
Ishisaka R, Utsumi T, Yabuki M, et al. Activation of caspase-3-like protease by digitonin-treated lysosomes. FEBS Lett 1998; 435(2-3): 233-6.
[http://dx.doi.org/10.1016/S0014-5793(98)01080-1] [PMID: 9762916]
[126]
Ishisaka R, Utsumi T, Kanno T, et al. Participation of a cathepsin L-type protease in the activation of caspase-3. Cell Struct Funct 1999; 24(6): 465-70.
[http://dx.doi.org/10.1247/csf.24.465] [PMID: 10698261]
[127]
Yano T, Hatogai K, Morimoto H, Yoda Y, Kaneko K. Photodynamic therapy for esophageal cancer. Ann Transl Med 2014; 2(3): 29.
[http://dx.doi.org/10.3978/j.issn.2305-5839.2014.03.01] [PMID: 25333005]
[128]
Minamide T, Yoda Y, Hori K, et al. Advantages of salvage photodynamic therapy using talaporfin sodium for local failure after chemoradiotherapy or radiotherapy for esophageal cancer. Surg Endosc 2020; 34(2): 899-906.
[http://dx.doi.org/10.1007/s00464-019-06846-3] [PMID: 31139985]
[129]
Moghissi K. Where does photodynamic therapy fit in the esophageal cancer treatment jigsaw puzzle? J Natl Compr Canc Netw 2012; 10(2): S-52-5.
[http://dx.doi.org/10.6004/jnccn.2012.0176] [PMID: 23055217]
[130]
Dixon K, Gibbins S, Moghissi K. A surgical view of photodynamic therapy in oncology: A review. Surg J 2015; 1(1): e1-e15.
[http://dx.doi.org/10.1055/s-0035-1565246] [PMID: 28824964]
[131]
Moon S, Kim DK, Kim J. Apoptosis-related microRNA-145-5p enhances the effects of pheophorbide a-based photodynamic therapy in oral cancer. Oncotarget 2017; 8(21): 35184-92.
[http://dx.doi.org/10.18632/oncotarget.17059] [PMID: 28456786]
[132]
Moor ACE. Signaling pathways in cell death and survival after photodynamic therapy. J Photochem Photobiol B 2000; 57(1): 1-13.
[http://dx.doi.org/10.1016/S1011-1344(00)00065-8] [PMID: 11100832]
[133]
Morton CA. Methyl aminolevulinate: Actinic keratoses and Bowen’s disease. Dermatol Clin 2007; 25(1): 81-7.
[http://dx.doi.org/10.1016/j.det.2006.09.009]
[134]
Celli JP, Spring BQ, Rizvi I, et al. Imaging and photodynamic therapy: Mechanisms, monitoring, and optimization. Chem Rev 2010; 110(5): 2795-838.
[http://dx.doi.org/10.1021/cr900300p] [PMID: 20353192]
[135]
Dolmans DEJGJ, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer 2003; 3(5): 380-7.
[http://dx.doi.org/10.1038/nrc1071] [PMID: 12724736]
[136]
Yi G, Hong SH, Son J, et al. Recent advances in nanoparticle carriers for photodynamic therapy. Quant Imaging Med Surg 2018; 8(4): 433-43.
[http://dx.doi.org/10.21037/qims.2018.05.04] [PMID: 29928608]
[137]
Son J, Lee D, Yoo J, Park C, Koo H. A comparative study of the effect of drug hydrophobicity on nanoparticle drug delivery in vivo using two photosensitizers. Nanomedicine 2020; 24: 102151.
[http://dx.doi.org/10.1016/j.nano.2020.102151] [PMID: 31927135]
[138]
Sztandera K, Gorzkiewicz M, Klajnert-Maculewicz B. Nanocarriers in photodynamic therapy in vitro and in vivo studies. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020; 12(3): e1509.
[http://dx.doi.org/10.1002/wnan.1599] [PMID: 31692285]
[139]
Zhao X, Liu J, Fan J, Chao H, Peng X. Recent progress in photosensitizers for overcoming the challenges of photodynamic therapy: From molecular design to application. Chem Soc Rev 2021; 50(6): 4185-219.
[http://dx.doi.org/10.1039/D0CS00173B] [PMID: 33527104]
[140]
(a) Bhawalkar JD, Kumar ND, Zhao CF, Prasad PN. Two-photon photodynamic therapy. J Clin Las Med Surg 1997; 15(5): 201-4.;
(b) Fisher W G, Partridge W P, Dees C, Wachter E A. Simultaneous two-photon activation of type-I photodynamic therapy agents. Photochem Photobiol 1997; 66(2): 141-55.
[PMID: 9277135]
[141]
Goyan R L, Cramb D T. Near-infrared two-photon excitation of protoporphyrin IX: Photodynamics and photoproduct generation. Photochem Photobiol 2000; 72(6): 821-7.
[http://dx.doi.org/10.1562/0031-8655(2000)0720821NITPEO2.0.CO2]
[142]
Karotki A, Khurana M, Lepock JR, Wilson BC. Simultaneous two-photon excitation of photofrin in relation to photodynamic therapy. Photochem Photobiol 2006; 82(2): 443-52.
[http://dx.doi.org/10.1562/2005-08-24-RA-657] [PMID: 16613497]
[143]
Lo PC, Chen J, Stefflova K, et al. Photodynamic molecular beacon triggered by fibroblast activation protein on cancer-associated fibroblasts for diagnosis and treatment of epithelial cancers. J Med Chem 2009; 52(2): 358-68.
[http://dx.doi.org/10.1021/jm801052f] [PMID: 19093877]
[144]
Gao Y, Qiao G, Zhuo L, Li N, Liu Y, Tang B. A tumor mRNA-mediated bi-photosensitizer molecular beacon as an efficient imaging and photosensitizing agent. Chem Commun 2011; 47(18): 5316-8.
[http://dx.doi.org/10.1039/c1cc10557d] [PMID: 21451872]
[145]
Arian D, Cló E, Gothelf KV, Mokhir A. A nucleic acid dependent chemical photocatalysis in live human cells. Chemistry 2010; 16(1): 288-95.
[http://dx.doi.org/10.1002/chem.200902377] [PMID: 19894234]
[146]
Cló E, Snyder JW, Voigt NV, Ogilby PR, Gothelf KV. DNA-programmed control of photosensitized singlet oxygen production. J Am Chem Soc 2006; 128(13): 4200-1.
[http://dx.doi.org/10.1021/ja058713a] [PMID: 16568974]
[147]
Lovell JF, Chen J, Huynh E, Jarvi MT, Wilson BC, Zheng G. Facile synthesis of advanced photodynamic molecular beacon architectures. Bioconjug Chem 2010; 21(6): 1023-5.
[http://dx.doi.org/10.1021/bc100178z] [PMID: 20509598]
[148]
Verhille M, Couleaud P, Vanderess R, Brault D, Barberi-Heyob M, Frochot C. Modulation of photosensitization processes for an improved targeted photodynamic therapy. Curr Med Chem 2010; 17(32): 3925-43.
[http://dx.doi.org/10.2174/092986710793205453] [PMID: 20858211]
[149]
Liu TW, Chen J, Burgess L, et al. Activation kinetics of zipper molecular beacons. J Phys Chem B 2015; 119(1): 44-53.
[http://dx.doi.org/10.1021/jp5086813] [PMID: 25474619]
[150]
Wei Y, Zhou J, Xing D, Chen Q. In vivo monitoring of singlet oxygen using delayed chemiluminescence during photodynamic therapy. J Biomed Opt 2007; 12(1): 014002.
[http://dx.doi.org/10.1117/1.2437151] [PMID: 17343477]
[151]
Wang J, Xing D, He Y, Hu X. Experimental study on photodynamic diagnosis of cancer mediated by chemiluminescence probe. FEBS Lett 2002; 523(1-3): 128-32.
[http://dx.doi.org/10.1016/S0014-5793(02)02961-7] [PMID: 12123818]
[152]
Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: Part two—cellular signaling, cell metabolism and modes of cell death. Photodiagn Photodyn Ther 2005; 2(1): 1-23.
[http://dx.doi.org/10.1016/S1572-1000(05)00030-X] [PMID: 25048553]
[153]
Abiodun Solanke IMF, Ajayi DM, Arigbede AO. Nanotechnology and its application in dentistry. Ann Med Health Sci Res 2014; 4(9)(3): 171.
[http://dx.doi.org/10.4103/2141-9248.141951] [PMID: 25364585]
[154]
Mitsiadis TA, Woloszyk A, Jiménez-Rojo L. Nanodentistry: Combining nanostructured materials and stem cells for dental tissue regeneration. Nanomedicine 2012; 7(11): 1743-53.
[http://dx.doi.org/10.2217/nnm.12.146] [PMID: 23210714]
[155]
Shetty NJ, Swati P, David K. Nanorobots: Future in dentistry. Saudi Dent J 2013; 25(2): 49-52.
[http://dx.doi.org/10.1016/j.sdentj.2012.12.002] [PMID: 23960556]
[156]
Coutts IGC, Hamblin MR. Synthesis of spiroheterocycles by oxidative coupling of phenolic sulphonamides. J Chem Soc Chem Commun 1980; (20): 949-50.
[http://dx.doi.org/10.1039/c39800000949]
[157]
Coutts IGC, Hamblin MR, Welsby SE. Spirodienones. Part 2. The synthesis of some heterocyclic spirodienones by phenolic coupling. J Chem Soc, Perkin Trans 1 1981; I: 493.
[http://dx.doi.org/10.1039/p19810000493]
[158]
Coutts IGC, Hamblin MR, Tinley EJ, Bobbitt JM. The enzymatic oxidation of phenolic tetrahydroisoquinoline-1-carboxylic acids. J Chem Soc, Perkin Trans 1 1979; I: 2744-50.
[http://dx.doi.org/10.1039/p19790002744]
[159]
Grundon MF, Hamblin MR, Harrison DM. Biosynthesis of aromatic isoprenoids part 5: The preparation of 1-(3,3-dimethylallyl)-L-tryptophan and cyclo-L-alanyl tryptophan and their non-incorporation into echinulin. J Chem Soc Perkin 1980; I: 1294-8.
[http://dx.doi.org/10.1039/p19800001294]
[160]
Gamaleia NF, Shton IO. Gold mining for PDT: Great expectations from tiny nanoparticles. Photodiagn Photodyn Ther 2015; 12(2): 221-31.
[http://dx.doi.org/10.1016/j.pdpdt.2015.03.002] [PMID: 25818545]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy