Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Research Article

Effects of Vitamins E and D on Mechanical Properties of Breast Cancerous Cells

Author(s): Armin Jarahi Khameneh, Dornaz Milani, Nasibeh Babaei, Negin Hannani, Ashkan Heydarian* and Hossein Sahbafar

Volume 20, Issue 4, 2024

Published on: 10 October, 2023

Page: [417 - 423] Pages: 7

DOI: 10.2174/0115733947265982230929154843

Price: $65

conference banner
Abstract

Background: Several investigations have demonstrated that vitamins can treat or prevent cancer by altering actin filaments and inhibiting cell migration and proliferation. Vitamins D and E are fat-soluble. This research aims to determine the short-term impact of vitamin D and E on the mechanical properties of breast cancer cells before comparing them with normal breast cells.

Methods: Atomic force microscopy (AFM) was used to examine the deformation of MCF-10 normal breast cells, MCF-7 breast cancer cells, and MCF-7 breast cancer cells treated with 0.03 μM vitamin D and 16 μM vitamin E solutions. Young's modulus was calculated employing the Hertz model to determine cell stiffness.

Results: The Young's modulus of vitamin D-treated cancer cells (585.8 Pa) was substantially similar to that of normal cells (455.6 Pa). Nevertheless, vitamin E treatment did not affect Young's modulus of cancer cells, which remained remarkably similar to that of untreated cancer cells (216.6 and 203.4 Pa, respectively).

Conclusion: Unlike vitamin E, vitamin D enhances the stiffness of tumor cells and makes their mechanical properties similar to normal cells by interfering with actin filaments and cell skeletons, which may inhibit tumor cell migration. Based on these findings, vitamin D appears to be an effective drug for cancer treatment.

Keywords: Breast cancer, vitamin D, vitamin E, elasticity, epithelial cell, cell mechanics.

« Previous
Graphical Abstract
[1]
Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin 2022; 72(1): 7-33.
[http://dx.doi.org/10.3322/caac.21708] [PMID: 35020204]
[2]
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Santos JM, Khan ZS, Munir MT, Tarafdar K, Rahman SM, Hussain F. Vitamin D 3 decreases glycolysis and invasiveness, and increases cellular stiffness in breast cancer cells. J Nutr Biochem 2018; 53: 111-20.
[http://dx.doi.org/10.1016/j.jnutbio.2017.10.013] [PMID: 29216499]
[4]
Tavera-Mendoza LE, Westerling T, Libby E, et al. Vitamin D receptor regulates autophagy in the normal mammary gland and in luminal breast cancer cells. Proc Natl Acad Sci 2017; 114(11): E2186-94.
[http://dx.doi.org/10.1073/pnas.1615015114] [PMID: 28242709]
[5]
JoEllen W. Vitamin D and breast cancer: Past and present. J Steroid Biochem Mol Biol 2018; 177: 15-20.
[6]
Yao S, Kwan ML, Ergas IJ, et al. Association of serum level of vitamin D at diagnosis with breast cancer survival. JAMA Oncol 2017; 3(3): 351-7.
[http://dx.doi.org/10.1001/jamaoncol.2016.4188] [PMID: 27832250]
[7]
So JY, Wahler JE, Yoon T, et al. Oral administration of a gemini vitamin D analog, a synthetic triterpenoid and the combination prevents mammary tumorigenesis driven by ErbB2 overexpression. Cancer Prev Res 2013; 6(9): 959-70.
[http://dx.doi.org/10.1158/1940-6207.CAPR-13-0087] [PMID: 23856074]
[8]
Milliken EL, Zhang X, Flask C, Duerk JL, MacDonald PN, Keri RA. EB1089, a vitamin D receptor agonist, reduces proliferation and decreases tumor growth rate in a mouse model of hormone-induced mammary cancer. Cancer Lett 2005; 229(2): 205-15.
[http://dx.doi.org/10.1016/j.canlet.2005.06.044] [PMID: 16115727]
[9]
Lee HJ, So JY, DeCastro A, et al. Gemini vitamin D analog suppresses ErbB2-positive mammary tumor growth via inhibition of ErbB2/AKT/ERK signaling. J Steroid Biochem Mol Biol 2010; 121(1-2): 408-12.
[http://dx.doi.org/10.1016/j.jsbmb.2010.03.053] [PMID: 20304052]
[10]
Zinser GM, Welsh J. Vitamin D receptor status alters mammary gland morphology and tumorigenesis in MMTV-neu mice. Carcinogenesis 2004; 25(12): 2361-72.
[http://dx.doi.org/10.1093/carcin/bgh271] [PMID: 15333467]
[11]
Li J, Luco AL, Ochietti B, et al. Tumoral vitamin D synthesis by CYP27B1 1-α-Hydroxylase delays mammary tumor progression in the PyMT-MMTV mouse model and its action involves NF-κB modulation. Endocrinology 2016; 157(6): 2204-16.
[http://dx.doi.org/10.1210/en.2015-1824] [PMID: 27119753]
[12]
Rossdeutscher L, Li J, Luco AL, et al. Chemoprevention activity of 25-hydroxyvitamin D in the MMTV-PyMT mouse model of breast cancer. Cancer Prev Res 2015; 8(2): 120-8.
[http://dx.doi.org/10.1158/1940-6207.CAPR-14-0110] [PMID: 25468832]
[13]
Johnson AL, Zinser GM, Waltz SE. Vitamin D3-dependent VDR signaling delays ron-mediated breast tumorigenesis through suppression of β-catenin activity. Oncotarget 2015; 6(18): 16304-20.
[http://dx.doi.org/10.18632/oncotarget.4059] [PMID: 26008979]
[14]
Ooi LL, Zhou H, Kalak R, et al. Vitamin D deficiency promotes human breast cancer growth in a murine model of bone metastasis. Cancer Res 2010; 70(5): 1835-44.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3194] [PMID: 20160035]
[15]
Ahmadi M, Hedayatizadeh-Omran A, Alizadeh-Navaei R, et al. Effects of vitamin E on doxorubicin cytotoxicity in human breast cancer cells in vitro. Asian Pac J Cancer Prev 2022; 23(1): 201-5.
[http://dx.doi.org/10.31557/APJCP.2022.23.1.201] [PMID: 35092389]
[16]
Sigounas G, Anagnostou A, Steiner M. dl-alpha-tocopherol induces apoptosis in erythroleukemia, prostate, and breast cancer cells. Nutr Cancer 2009; 28(1): 30-5.
[http://dx.doi.org/10.1080/01635589709514549]
[17]
Sato R, Helzlsouer KJ, Alberg AJ, Hoffman SC, Norkus EP, Comstock GW. Prospective study of carotenoids, tocopherols, and retinoid concentrations and the risk of breast cancer. Cancer Epidemiol Biomarkers Prev 2002; 11(5): 451-7.
[PMID: 12010859]
[18]
Kushi L, Fee R, Sellers T, et al. Intake of vitamins A, C, and E and postmenopausal breast cancer: The Iowa Women’s health study. Academic Oup Com 1996; 144.
[19]
Rohan TE, Howe GR, Friedenreich CM, Jain M, Miller AB. Dietary fiber, vitamins A, C, and E, and risk of breast cancer: A cohort study. Cancer Causes Control 1993; 4(1): 29-37.
[http://dx.doi.org/10.1007/BF00051711] [PMID: 8381678]
[20]
Hunter DJ, Manson JE, Colditz GA, et al. A prospective study of the intake of vitamins C, E, and A and the risk of breast cancer. N Engl J Med 1993; 329(4): 234-40.
[http://dx.doi.org/10.1056/NEJM199307223290403] [PMID: 8292129]
[21]
Zhang S, Hunter D. Dietary carotenoids and vitamins A, C, and E and risk of breast cancer. J Natl Cancer Inst 1999; 91(6): 547-56.
[22]
Zhu C, Bao G. Cell mechanics: Mechanical response, cell adhesion, and molecular deformation. Annu Rev Biomed Eng 2000; 2: 189-226.
[23]
Elson EL. Cellular mechanics as an indicator of cytoskeletal structure and function. Annu Rev Biophys Biophys Chem 1988; 17: 397-430.
[http://dx.doi.org/10.1146/annurev.bb.17.060188.002145]
[24]
Pourati J, Maniotis A, Spiegel D, et al. Is cytoskeletal tension a major determinant of cell deformability in adherent endothelial cells? Am J Physiol Cell Physiol 1998; 274(5): C1283-9.
[http://dx.doi.org/10.1152/ajpcell.1998.274.5.C1283] [PMID: 9612215]
[25]
Rotsch C, Jacobson K, Radmacher M. Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy. Proc Natl Acad Sci 1999; 96(3): 921-6.
[http://dx.doi.org/10.1073/pnas.96.3.921] [PMID: 9927669]
[26]
Heydarian A, Milani D, Moein Fatemi SM. An investigation of the viscoelastic behavior of MCF-10A and MCF-7 cells. Biochem Biophys Res Commun 2020; 529(2): 432-6.
[http://dx.doi.org/10.1016/j.bbrc.2020.06.010] [PMID: 32703447]
[27]
Huang S. Cell tension, matrix mechanics, and cancer development. Cancer Cell 2005; 8-176.(3): 175-6.
[28]
Lopez JI, Mouw JK, Weaver VM. Biomechanical regulation of cell orientation and fate. Oncogene 2008; 27: 6981-93.
[http://dx.doi.org/10.1038/onc.2008.348]
[29]
Suresh S, Spatz J, Mills JP, et al. Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater 2005; 1(1): 15-30.
[http://dx.doi.org/10.1016/j.actbio.2004.09.001] [PMID: 16701777]
[30]
Rother J, Nöding H, Mey I, Janshoff A. Atomic force microscopy-based microrheology reveals significant differences in the viscoelastic response between malign and benign cell lines. Open Biol 2014; 4(5): 140046.
[http://dx.doi.org/10.1098/rsob.140046] [PMID: 24850913]
[31]
Coughlin MF, Bielenberg DR, Lenormand G, et al. Cytoskeletal stiffness, friction, and fluidity of cancer cell lines with different metastatic potential. Clin Exp Metastasis 2012; 30: 237-50.
[http://dx.doi.org/10.1007/s10585-012-9531-z]
[32]
Guck J, Schinkinger S, Lincoln B, Wottawah F. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J 2005; 88(5): 3689-98.
[33]
Swaminathan V, Mythreye K, O’Brien ET, Berchuck A, Blobe GC, Superfine R. Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res 2011; 71(15): 5075-80.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-0247] [PMID: 21642375]
[34]
Suresh S. Biomechanics and biophysics of cancer cells. Acta Biomater 2007; 3(4): 413-38.
[http://dx.doi.org/10.1016/j.actbio.2007.04.002] [PMID: 17540628]
[35]
Plodinec M, Loparic M, Monnier CA, et al. The nanomechanical signature of breast cancer. Nature Nanotechnology 2012; 7: 757-65.
[http://dx.doi.org/10.1038/nnano.2012.167]
[36]
Jonas O, Mierke CT, Käs JA. Invasive cancer cell lines exhibit biomechanical properties that are distinct from their noninvasive counterparts. Soft Matter 2011; 7(24): 11488-95.
[http://dx.doi.org/10.1039/c1sm05532a]
[37]
Kraning-Rush CM, Califano JP, Reinhart-King CA. Cellular traction stresses increase with increasing metastatic potential. PLoS One 2012; 7(2): e32572.
[http://dx.doi.org/10.1371/journal.pone.0032572] [PMID: 22389710]
[38]
Paredes J, Albergaria A, Oliveira JT, Jerónimo C, Milanezi F, Schmitt FC. P-cadherin overexpression is an indicator of clinical outcome in invasive breast carcinomas and is associated with CDH3 promoter hypomethylation. Clin Cancer Res 2005; 11(16): 5869-77.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0059] [PMID: 16115928]
[39]
Ribeiro AS, Albergaria A, Sousa B, Correia AL, Bracke M, Seruca R, et al. Extracellular cleavage and shedding of P-cadherin: A mechanism underlying the invasive behaviour of breast cancer cells. Oncogene 2009; 29: 392-402.
[http://dx.doi.org/10.1038/onc.2009.338]
[40]
Ansardamavandi A, Tafazzoli-Shadpour M, Omidvar R, Jahanzad I. Quantification of effects of cancer on elastic properties of breast tissue by Atomic Force Microscopy. J Mech Behav Biomed Mater 2016; 60: 234-42.
[http://dx.doi.org/10.1016/j.jmbbm.2015.12.028] [PMID: 26878463]
[41]
Lee G. Biomechanics approaches to studying human diseases. Trends Biotechnol 2007; 25(3): 111-8.
[42]
Katira P, Bonnecaze RT, Zaman MH. Modeling the mechanics of cancer: Effect of changes in cellular and extra-cellular mechanical properties. Front Oncol 2013; 3: 145.
[http://dx.doi.org/10.3389/fonc.2013.00145] [PMID: 23781492]
[43]
Wottawah F, Schinkinger S, Lincoln B. Characterizing single suspended cells by optorheology. Acta Biomater 2005; 1(3): 263-71.
[44]
Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett 1986; 56(9): 930-3.
[http://dx.doi.org/10.1103/PhysRevLett.56.930] [PMID: 10033323]
[45]
Kasas S, Thomson NH, Smith BL, Hansma PK, Miklossy J, Hansma HG. Biological applications of the AFM: From single molecules to organs. Int J Imaging Syst Technol 1996; 8(2): 151-61.
[46]
Imaging of living cells by atomic force microscopy. Prog Surf Sci 1994; 46(1): 39-60.
[47]
Hansma H. Biomolecular imaging with the atomic force microscope. Annu Rev Biophys Biomol Struct 1994; 23: 115-39.
[48]
Schoenenberger C. Slow cellular dynamics in MDCK and R5 cells monitored by time-lapse atomic force microscopy. Biophys J 1994; 67(2): 929-36.
[49]
A-Hassan E, Heinz WF, Antonik MD, et al. Relative microelastic mapping of living cells by atomic force microscopy. Biophys J 1998; 74(3): 1564-78.
[http://dx.doi.org/10.1016/S0006-3495(98)77868-3] [PMID: 9512052]
[50]
Schaus S. Cell viability and probe-cell membrane interactions of XR1 glial cells imaged by atomic force microscopy. Biophys J 1997; 73(3): 1205-14.
[51]
Haydon PG, Lartius R, Parpura V, Marchese-Ragona SP. Membrane deformation of living glial cells using atomic force microscopy. J Microsc 1996; 182(2): 114-20.
[http://dx.doi.org/10.1046/j.1365-2818.1996.141423.x] [PMID: 8683560]
[52]
Henderson E, Haydon P, Sakaguchi D. Actin filament dynamics in living glial cells imaged by atomic force microscopy. Science 1992; 257(5078): 1944-6.
[http://dx.doi.org/10.1126/science.1411511] [PMID: 1411511]
[53]
Kámán J, Kámán J. Young’s modulus and energy dissipation determination methods by afm, with particular reference to a chalcogenide thin film. Period Polytech Electr Eng Comput Sci 2015; 59(1): 18-25.
[http://dx.doi.org/10.3311/PPee.7865]
[54]
Lekka M, Laidler P, Ignacak J, Łabędź M, et al. The effect of chitosan on stiffness and glycolytic activity of human bladder cells. Biochim Biophys Acta 2001; 1540(2): 127-36.
[55]
Rotsch C. Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: An atomic force microscopy study. Biophys J 2000; 78(1): 520-35.
[56]
Lekka M, Laidler P, Gil D, et al. Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. Springer 1999; 28: 312-6.
[http://dx.doi.org/10.1007/s002490050213]
[57]
Park S, Koch D, Cardenas R, Käs J. Cell motility and local viscoelasticity of fibroblasts. Biophys J 2005; 89(6): 4330-42.
[58]
Cross SE, Yu-Sheng J, Jianyu R. Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2020; 2: 547-66.
[59]
Milani D, Khorramymehr S, Vasaghi-Gharamaleki B. The effect of acetylsalicylic acid (Asa) on the mechanical properties of breast cancer epithelial cells. Recent Patents Anticancer Drug Discov 2022; 17(4): 410-5.
[http://dx.doi.org/10.2174/1574892817666220104094846] [PMID: 34983353]
[60]
Li QS, Lee GYH, Ong CN, Lim CT. Probing the elasticity of breast cancer cells using AFM. IFMBE Proc 2009; 23: 2122-5.
[http://dx.doi.org/10.1007/978-3-540-92841-6_530]
[61]
Li QS, Lee GYH, Ong CN, Lim CT. AFM indentation study of breast cancer cells. Biochem Biophys Res Commun 2008; 374(4): 609-13.
[http://dx.doi.org/10.1016/j.bbrc.2008.07.078] [PMID: 18656442]
[62]
Wang X, Quinn PJ. The location and function of vitamin E in membranes (Review). Mol Membr Biol 2000; 17(3): 143-56.
[http://dx.doi.org/10.1080/09687680010000311] [PMID: 11128973]
[63]
Itoo A, Paul M, Ghosh B, Polymers SB-C. Oxaliplatin delivery via chitosan/vitamin E conjugate micelles for improved efficacy and MDR-reversal in breast cancer. Carbohydr Polym 2022; 282: 119108.
[64]
Gok S, Kuzmenko O, Babinskyi A, Severcan F. Vitamin E derivative with modified side chain induced apoptosis by modulating the cellular lipids and membrane dynamics in MCF7 cells. Cell Biochem Biophys 2021; 79: 271-87.
[http://dx.doi.org/10.1007/s12013-020-00961-y]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy