Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Copper Oxide Supported on Silica (CuO/SiO2): A Highly Efficient Heterogeneous Catalyst for the Synthesis of 1,2-Dihydroquinazolines at Room Temperature

Author(s): Mrinaly Suri, Ujwal Pratim Saikia, Trishna Saikia, Ashutosh Namdeo* and Pallab Pahari*

Volume 27, Issue 16, 2023

Published on: 10 October, 2023

Page: [1447 - 1457] Pages: 11

DOI: 10.2174/0113852728261733231006094620

Price: $65

Abstract

A copper oxide supported on silica (CuO/SiO2) catalyst has been prepared which catalyzes a three-component reaction between 2-aminobenzopenone, benzaldehyde, and ammonium hydroxide leading to a convenient synthesis of 1,2-dihydroquinazoline. The main advantages of the process over the previous reports are room temperature reaction, selective formation of 1,2-dihydroquinazoline as a sole product, and recyclability of the catalyst. Seventeen derivatives with various substituents are prepared. The catalyst (fresh and recovered) has been fully characterized using HR-TEM, BET Surface area, XPS, FTIR, and XRD. The enhanced activity and selectivity of the catalyst (towards 1,2-dihydroquinazoline) is attributed to the formation of Cu-O-Si type surface structure which is also explained by the help of different analytical techniques. Further, the reaction was performed without a catalyst, with CuO and SiO2 separately. Based on catalyst characterization and experimental results a possible mechanism has been proposed and discussed thoroughly. Recovery and reusability of the catalyst have also been studied.

Keywords: Copper oxide supported on silica, heterogeneous catalyst, 1, 2-dihydroquinazoline, supported nanoparticle, multicomponent reaction, ammonium hydroxide.

Graphical Abstract
[1]
Michael, J.P. Quinoline, quinazoline and acridonealkaloids. Nat. Prod. Rep., 2008, 25(1), 166-187.
[http://dx.doi.org/10.1039/B612168N] [PMID: 18250901]
[2]
Khan, I.; Ibrar, A.; Ahmed, W.; Saeed, A. Synthetic approaches, functionalization and therapeutic potential of quinazoline and quinazolinone skeletons: The advances continue. Eur. J. Med. Chem., 2015, 90, 124-169.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.084] [PMID: 25461317]
[3]
Jafari, E.; Khajouei, M.R.; Hassanzadeh, F.; Hakimelahi, G.H.; Khodarahmi, G.A. Quinazolinone and quinazoline derivatives: recent structures with potent antimicrobi-al and cytotoxic activities. Res. Pharm. Sci., 2016, 11(1), 1-14.
[PMID: 27051427]
[4]
Los, R.; Wesolowska, M.T.; Malm, A.; Karpinska, M.M.; Matysiak, J.; Niewiadomy, A.; Glaszcz, U. ChemInform abstract: A new approach to the synthesis of 2-aryl-substituted benzimidazoles, quinazolines, and other related compounds and their antibacterial activity. Heteroat. Chem., 2012, 23, 275.
[http://dx.doi.org/10.1002/hc.21012]
[5]
Patterson, S.; Alphey, M.S.; Jones, D.C.; Shanks, E.J.; Street, I.P.; Frearson, J.A.; Wyatt, P.G.; Gilbert, I.H.; Fairlamb, A.H. Dihydroquinazolines as a novel class of Trypanosoma brucei trypanothione reductase inhibitors: Discovery, synthesis, and characterization of their binding mode by protein crystallography. J. Med. Chem., 2011, 54(19), 6514-6530.
[http://dx.doi.org/10.1021/jm200312v] [PMID: 21851087]
[6]
Li, W.J.; Li, Q.; Liu, D.L.; Ding, M.W. Synthesis, fungicidal activity, and sterol 14α-demethylase binding interaction of 2-azolyl-3,4-dihydroquinazolines on Penicillium digitatum. J. Agric. Food Chem., 2013, 61(7), 1419-1426.
[http://dx.doi.org/10.1021/jf305355u] [PMID: 23350742]
[7]
Kobayashi, Y.; Nakano, Y.; Kizaki, M.; Hoshikuma, K.; Yokoo, Y.; Kamiya, T. Capsaicin-like anti-obese activities of evodiamine from fruits of Evodia rutaecarpa, a vanilloid receptor agonist. Planta Med., 2001, 67, 628-633.
[http://dx.doi.org/10.1055/s-2001-17353] [PMID: 11582540]
[8]
Park, B.; Nam, J.H.; Kim, J.H.; Kim, H.J.; Onnis, V.; Balboni, G.; Lee, K.T.; Park, J.H.; Catto, M.; Carotti, A.; Lee, J.Y. 3,4-dihydroquinazoline derivatives inhibit the activities of cholinesterase enzymes. Bioorg. Med. Chem. Lett., 2017, 27, 1179-1185.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.068] [PMID: 28189420]
[9]
Verdel, B.M.; Souverein, P.C.; Egberts, A.C.G.; Leufkens, H.G.M. Difference in risks of allergic reaction to sulfonamide drugs based on chemical structure. Ann. Pharmacother., 2006, 40(6), 1040-1046.
[http://dx.doi.org/10.1345/aph.1G642] [PMID: 16735666]
[10]
Marschall, M.; Stamminger, T.; Urban, A.; Wildum, S.; Ruebsamen-Schaeff, H.; Zimmermann, H.; Lischka, P. In vitro evaluation of the activities of the novel anticytomegalovirus compound AIC246 (letermovir) against herpesviruses and other human pathogenic viruses. Antimicrob. Agents Chemother., 2012, 56(2), 1135-1137.
[http://dx.doi.org/10.1128/AAC.05908-11] [PMID: 22106211]
[11]
Lad, L.; Luo, L.; Carson, J.D.; Wood, K.W.; Hartman, J.J.; Copeland, R.A.; Sakowicz, R. Mechanism of inhibition of human KSP by ispinesib. Biochemistry, 2008, 47(11), 3576-3585.
[http://dx.doi.org/10.1021/bi702061g] [PMID: 18290633]
[12]
Rosini, M.; Antonello, A.; Cavalli, A.; Bolognesi, M.L.; Minarini, A.; Marucci, G.; Poggesi, E.; Leonardi, A.; Melchiorre, C. Prazosin-related compounds. Effect of transforming the piperazinylquinazoline moiety into an aminomethyltetrahydroacridine system on the affinity for alpha1-adrenoreceptors. J. Med. Chem., 2003, 46, 4895-4903.
[http://dx.doi.org/10.1021/jm030952q] [PMID: 14584940]
[13]
Nepali, K.; Sharma, S.; Ojha, R.; Dhar, K.L. Vasicine and structurally related quinazolines. Med. Chem. Res., 2013, 22(1), 1-15.
[http://dx.doi.org/10.1007/s00044-012-0002-5]
[14]
Pang, X.; Chen, C.; Su, X.; Li, M.; Wen, L. Diverse tandem cyclization reactions of o-cyanoanilines and diaryliodonium salts with copper catalyst for the construction of quinazolinimine and acridine scaffolds. Org. Lett., 2014, 16(23), 6228-6231.
[http://dx.doi.org/10.1021/ol503156g] [PMID: 25420123]
[15]
Xu, T.; Alper, H. Synthesis of pyrido[2,1-b]quinazolin-11-ones and dipyrido[1,2-a:2′,3′-d]pyrimidin-5-ones by Pd/DIBPP-catalyzed dearomatizing carbonylation. Org. Lett., 2015, 17(6), 1569-1572.
[http://dx.doi.org/10.1021/acs.orglett.5b00452] [PMID: 25753967]
[16]
Xu, C.; Jia, F.C.; Zhou, Z.W.; Zheng, S.J.; Li, H.; Wu, A.X. Copper-catalyzed multicomponent domino reaction of 2-bromoaldehydes, benzylamines, and sodium azide for the assembly of quinazoline derivatives. J. Org. Chem., 2016, 81(7), 3000-3006.
[http://dx.doi.org/10.1021/acs.joc.5b02843] [PMID: 26959522]
[17]
Li, Z.; Dong, J.; Chen, X.; Li, Q.; Zhou, Y.; Yin, S.F. Metal- and oxidant-free synthesis of quinazolinones from β-ketoesters with o-aminobenzamides via phosphorous acid-catalyzed cyclocondensation and selective C-C bond cleavage. J. Org. Chem., 2015, 80(19), 9392-9400.
[http://dx.doi.org/10.1021/acs.joc.5b00937] [PMID: 26339716]
[18]
Gruber, N.; Díaz, J.E.; Orelli, L.R. Synthesis of dihydroquinazolines from 2-aminobenzylamine: N3-aryl derivatives with electron-withdrawing groups. Beilstein J. Org. Chem., 2018, 14, 2510-2519.
[http://dx.doi.org/10.3762/bjoc.14.227] [PMID: 30344774]
[19]
Zhang, J.; Zhu, D.; Yu, C.; Wan, C.; Wang, Z. A simple and efficient approach to the synthesis of 2-phenylquinazolines via sp(3) C-H functionalization. Org. Lett., 2010, 12(12), 2841-2843.
[http://dx.doi.org/10.1021/ol100954x] [PMID: 20481477]
[20]
Derabli, C.; Boulcina, R.; Kirsch, G.; Carboni, B.; Debache, A. A DMAP-catalyzed mild and efficient synthesis of 1,2-dihydroquinazolines via a one-pot three-component protocol. Tetrahedron Lett., 2014, 55(1), 200-204.
[http://dx.doi.org/10.1016/j.tetlet.2013.10.157]
[21]
Sarma, R.; Prajapati, D. Microwave-promoted efficient synthesis of dihydroquinazolines. Green Chem., 2011, 13(3), 718-722.
[http://dx.doi.org/10.1039/c0gc00838a]
[22]
Rohlmann, R.; Stopka, T.; Richter, H.; García Mancheño, O. Iron-catalyzed oxidative tandem reactions with TEMPO oxoammonium salts: Synthesis of dihydro-quinazolines and quinolines. J. Org. Chem., 2013, 78(12), 6050-6064.
[http://dx.doi.org/10.1021/jo4007199] [PMID: 23705827]
[23]
Portela-Cubillo, F.; Scott, J.S.; Walton, J.C. Microwave-promoted syntheses of quinazolines and dihydroquinazolines from 2-aminoarylalkanone O-phenyl oximes. J. Org. Chem., 2009, 74(14), 4934-4942.
[http://dx.doi.org/10.1021/jo900629g] [PMID: 19449842]
[24]
Luo, L.; Zhao, X.; Zhang, L.; Yuan, Y.; Lü, S.; Jia, X. An aerobic oxidative aza-[4+2] cycloaddition induced by radical cation salt: Synthesis of dihydroquinazoline derivatives. Tetrahedron Lett., 2016, 57(51), 5830-5833.
[http://dx.doi.org/10.1016/j.tetlet.2016.11.052]
[25]
Srivastava, V. Hydrotalcite clay+[TBA][OH] ionic liquid combination for selective dihydroquinazolines. Curr. Organocatal., 2019, 6(1), 44-51.
[http://dx.doi.org/10.2174/2213337206666190228111913]
[26]
Rahman, M.; Ling, I.; Abdullah, N.; Hashim, R.; Hajra, A. Organocatalysis by p-sulfonic acid calix[4]arene: A convenient and efficient route to 2,3-dihydroquinazolin-4(1H)-ones in water. RSC Advances, 2015, 5(10), 7755-7760.
[http://dx.doi.org/10.1039/C4RA16374E]
[27]
Lignier, P.; Bellabarba, R.; Tooze, R.P. Scalable strategies for the synthesis of well-defined copper metal and oxidenanocrystals. Chem. Soc. Rev., 2012, 41(5), 1708-1720.
[http://dx.doi.org/10.1039/C1CS15223H] [PMID: 22048218]
[28]
Lomnicki, S.M.; Wu, H.; Osborne, S.N.; Pruett, J.M.; McCarley, R.L.; Poliakoff, E.; Dellinger, B. Size-selective synthesis of immobilized copper oxide nanoclusters on silica. Mater. Sci. Eng. B, 2010, 175(2), 136-142.
[http://dx.doi.org/10.1016/j.mseb.2010.07.016] [PMID: 25642099]
[29]
Zhang, N.; Du, Y.L.; Zhang, Y.; Wang, C.M. A simple method for controlling the type of cuprous oxide semiconductors using different surfactants. J. Mater. Chem., 2011, 21(14), 5408-5413.
[http://dx.doi.org/10.1039/c0jm03535a]
[30]
Reitz, J.B.; Solomon, E.I. Propylene oxidation on copper oxide surfaces: Electronic and geometric contributions to reactivity and selectivity. J. Am. Chem. Soc., 1998, 120(44), 11467-11478.
[http://dx.doi.org/10.1021/ja981579s]
[31]
(a) ) Sharma, R.K.; Yadav, M.; Gawande, M.B. Silica-coated magnetic nano-particles: Application in catalysis In:ACS Symposium Series, 2016, 1238, pp. 1-3.
[http://dx.doi.org/10.1021/bk-2016-1238.ch001];
(b) ) Sharma, R.K.; Sharma, S.; Dutta, S.; Zboril, R.; Gawande, M.B. Silica-nanosphere-based organic-inorganic hybrid nanomaterials: Synthesis, functionalization and ap-plications in catalysis. Green Chem., 2015, 17(6), 3207-3230.
[http://dx.doi.org/10.1039/C5GC00381D]
[32]
(a) ) Zhang, M.; Han, Y.; Niu, J.L.; Zhang, Z.H. A general and practical approach for the synthesis of 1,2,4-trioxanes catalyzed by silica-ferric chloride. Adv. Synth. Catal., 2017, 359(20), 3618-3625.
[http://dx.doi.org/10.1002/adsc.201700671];
(b) ) Yao, N.; Lin Hu, Y. Silica supported ionic liquid CuCl3-IL-SiO2: A novel and highly efficient catalyst for ullmann C-N and C-O cross-coupling reactions under mild conditions. Curr. Org. Chem., 2017, 21(4), 368-377.
[http://dx.doi.org/10.2174/1385272820666161020150646];
(c) ) Kadam, R.G.; Rathi, A.K.; Cepe, K.; Zboril, R.; Varma, R.S.; Gawande, M.B.; Jayaram, R.V. Hexagonal mesoporous silica-supported Copper Oxide (CuO/HMS) catalyst: Synthesis of primary amides from aldehydes in aqueous medium. ChemPlusChem, 2017, 82(3), 467-473.
[http://dx.doi.org/10.1002/cplu.201600611] [PMID: 31962015];
(d)) Estevão, M.S.; Afonso, C.A.M. Synthesis of trans-4,5-diaminocyclopent-2-enones from furfural catalyzed by Er(III) immobilized on silica. Tetrahedron Lett., 2017, 58(4), 302-304.
[http://dx.doi.org/10.1016/j.tetlet.2016.12.002];
(e) Sharma, R.K.; Yadav, M.; Monga, Y.; Gaur, R.; Adholeya, A.; Zboril, R.; Varma, R.S.; Gawande, M.B. Silica-based magnetic manganese nanocatalyst-applications in the oxidation of organic halides and alcohols. ACS Sustain. Chem. Eng., 2016, 4(3), 1123-1130.
[http://dx.doi.org/10.1021/acssuschemeng.5b01183]
[33]
Saikia, U.P.; Borah, G.; Pahari, P. Lewis-acid-catalysed activation of nitriles: A microwave-assisted solvent-free synthesis of 2,4-disubstituted quinazolines and 1,3-diazaspiro[5.5]undec-1-enes. Eur. J. Org. Chem., 2018, 2018(10), 1211-1217.
[http://dx.doi.org/10.1002/ejoc.201701585]
[34]
Deshmukh, R.; Schubert, U. Synthesis of CuO and Cu3N nanoparticles in and on hollow silica spheres. Eur. J. Inorg. Chem., 2013, 2013(14), 2498-2504.
[http://dx.doi.org/10.1002/ejic.201201442] [PMID: 23794942]
[35]
Dai, M.; Kwon, J.; Chabal, Y.; Halls, M.; Gordon, R. FTIR study of copper agglomeration during atomic layer deposition of copper. Mater. Res. Soc. Symp. Online Proc. Lib., 2009, 1155, 1155-C11.
[36]
Deka, P.; Deka, R.C.; Bharali, P. In situ generated copper nanoparticle catalyzed reduction of 4-nitrophenol. New J. Chem., 2014, 38(4), 1789-1793.
[http://dx.doi.org/10.1039/c3nj01589k]
[37]
Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods, 2012, 9(7), 671-675.
[http://dx.doi.org/10.1038/nmeth.2089] [PMID: 22930834]
[38]
Vannice, M.A. Kinetics of Catalytic Reactions, 1st ed; Springer Science: New York, USA, 2005.
[http://dx.doi.org/10.1007/b136380]
[39]
Hussain, F.L.; Suri, M.; Namdeo, A.; Borah, G.; Dutta, D.; Goswami, T.; Pahari, P. A mild aerobic oxidation of benzyl alcohols and oxidative decarboxylation of phenylacetic acids by cellulose-supported Ag-Ag2S nanoparticles. Catal. Commun., 2019, 124(March), 76-80.
[http://dx.doi.org/10.1016/j.catcom.2019.01.011]
[40]
Tsoncheva, T.; Issa, G.; Blasco, T.; Dimitrov, M.; Popova, M.; Hernández, S.; Kovacheva, D.; Atanasova, G.; Nieto, J.M.L. Catalytic VOCs elimination over copper and cerium oxide modified mesoporous SBA-15 silica. Appl. Catal. A Gen., 2013, 453, 1-12.
[http://dx.doi.org/10.1016/j.apcata.2012.12.007]
[41]
Benito, N.; Flores, M. Evidence of mixed oxide formation on the Cu/SiO2 interface. J. Phys. Chem. C, 2017, 121(34), 18771-18778.
[http://dx.doi.org/10.1021/acs.jpcc.7b06563]
[42]
Trinh, Q.T.; Bhola, K.; Amaniampong, P.N.; Jérôme, F.; Mushrif, S.H. Synergistic application of XPS and DFT to investigate metal oxide surface catalysis. J. Phys. Chem. C, 2018, 122(39), 22397-22406.
[http://dx.doi.org/10.1021/acs.jpcc.8b05499]
[43]
Brunauer, S.; Deming, S.L.; Deming, W.E.; Teller, E. On a theory of the van der waals adsorption of gases. J. Am. Chem. Soc., 1940, 62, 1723-1732.
[http://dx.doi.org/10.1021/ja01864a025]
[44]
Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc., 1938, 60(2), 309-319.
[http://dx.doi.org/10.1021/ja01269a023]
[45]
Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem., 1985, 57(4), 603-619.
[http://dx.doi.org/10.1351/pac198557040603]
[46]
Thomas, J.M.; Thomas, J.W. Principles and Practice of Hetrogeneous Catalysis; VCH: Weinheim, New York, 1997.
[47]
Baghbanian, S.M.; Farhang, M. CuFe2O4 nanoparticles: a magnetically recoverable and reusable catalyst for the synthesis of quinoline and quinazoline derivatives in aqueous media. RSC Adv., 2014, 4(23), 11624-11633.
[http://dx.doi.org/10.1039/c3ra46119j]
[48]
Zhang, J.; Yu, C.; Wang, S.; Wan, C.; Wang, Z. A novel and efficient methodology for the construction of quinazolines based on supported copper oxide nanoparticles. Chem. Commun. (Camb.), 2010, 46(29), 5244-5246.
[http://dx.doi.org/10.1039/c002454f] [PMID: 20574559]
[49]
Zhang, W.; Guo, F.; Wang, F.; Zhao, N.; Liu, L.; Li, J.; Wang, Z. Synthesis of quinazolines via CuO nanoparticles catalyzed aerobic oxidative coupling of aromatic alcohols and amidines. Org. Biomol. Chem., 2014, 12(30), 5752-5756.
[http://dx.doi.org/10.1039/C4OB00569D] [PMID: 24967723]
[50]
Visweswara Sastry, K.N.; Prasad, B.; Nagaraju, B.; Ganga Reddy, V.; Alarifi, A.; Babu, B.N.; Kamal, A. Copper-catalysed tandem synthesis of substituted quinazolines from phenacyl azides and O-carbonyl anilines. ChemistrySelect, 2017, 2(19), 5378-5383.
[http://dx.doi.org/10.1002/slct.201700889]
[51]
Borodziński, A.; Bonarowska, M. Relation between crystallite size and dispersion on supported metal catalysts. Langmuir, 1997, 13(21), 5613-5620.
[http://dx.doi.org/10.1021/la962103u]
[52]
Han, B.; Wang, C.; Han, R.F.; Yu, W.; Duan, X.Y.; Fang, R.; Yang, X.L. Efficient aerobic oxidative synthesis of 2-aryl quinazolines via benzyl C-H bond amination catalyzed by 4-hydroxy-TEMPO. Chem. Commun. (Camb.), 2011, 47(27), 7818-7820.
[http://dx.doi.org/10.1039/c1cc12308d] [PMID: 21655637]
[53]
Kamal, A.; Babu, K.S.; Chandrasekhar, C.; Nagaraju, B.; Visweswara Sastry, K.N.; Ganesh Kumar, C. Catalyst-free, one pot and three-component synthesis of 4′-phenyl-1′H-spiro[indoline-3,2′-quinazolin]-2-ones and 2,4-diphenyl-1,2-dihydroquinazolines. Tetrahedron Lett., 2015, 56(46), 6373-6376.
[http://dx.doi.org/10.1016/j.tetlet.2015.09.125]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy