Generic placeholder image

Current Reviews in Clinical and Experimental Pharmacology

Editor-in-Chief

ISSN (Print): 2772-4328
ISSN (Online): 2772-4336

Mini-Review Article

A Short Review on Obeticholic Acid: An Effective Modulator of Farnesoid X Receptor

Author(s): Anila Kutty Narayanan*, Sudhindran Surendran, Dinesh Balakrishnan, Unnikrishnan Gopalakrishnan, Shweta Malick, Arun Valsan, Cyriac Abby Philips and Christopher John Edward Watson

Volume 19, Issue 3, 2024

Published on: 05 October, 2023

Page: [225 - 233] Pages: 9

DOI: 10.2174/0127724328239536230919070001

Price: $65

Abstract

Farnesoid X receptor (FXR) was identified as an orphan nuclear receptor resembling the steroid receptor in the late ’90s. Activation of FXR is a crucial step in many physiological functions of the liver. A vital role of FXR is impacting the amount of bile acids in the hepatocytes, which it performs by reducing bile acid synthesis, stimulating the bile salt export pump, and inhibiting its enterohepatic circulation, thus protecting the hepatocytes against the toxic accumulation of bile acids. Furthermore, FXR mediates bile acid biotransformation in the intestine, liver regeneration, glucose hemostasis, and lipid metabolism. In this review, we first discuss the mechanisms of the disparate pleiotropic actions of FXR agonists. We then delve into the pharmacokinetics of Obeticholic acid (OCA), the first-in-class selective, potent FXR agonist. We additionally discuss the clinical journey of OCA in humans, its current evidence in various human diseases, and its plausible roles in the future.

Keywords: FXR, liver metabolism, bile acids, obeticholic acid, FXR agonist, pharmacokinetics.

Graphical Abstract
[1]
Maloney PR, Parks DJ, Haffner CD, et al. Identification of a chemical tool for the orphan nuclear receptor FXR. J Med Chem 2000; 43(16): 2971-4.
[http://dx.doi.org/10.1021/jm0002127] [PMID: 10956205]
[2]
Li C, Yang J, Wang Y, Qi Y, Yang W, Li Y. Farnesoid X receptor agonists as therapeutic target for cardiometabolic diseases. Front Pharmacol 2020; 11: 1247.
[http://dx.doi.org/10.3389/fphar.2020.01247]
[3]
Flatt B, Martin R, Wang TL, et al. Discovery of XL335 (WAY-362450), a highly potent, selective, and orally active agonist of the farnesoid X receptor (FXR). J Med Chem 2009; 52(4): 904-7.
[http://dx.doi.org/10.1021/jm8014124] [PMID: 19159286]
[4]
Chiang JYL, Ferrell JM. Bile acid metabolism in liver pathobiology. Gene Expr 2018; 18(2): 71-87.
[5]
Jiang L, Zhang H, Xiao D, Wei H, Chen Y. Farnesoid X receptor (FXR): Structures and ligands. Comput Struct Biotechnol J 2021; 19: 2148-59.
[6]
Chapman RW, Lynch KD. Obeticholic acid - A new therapy in PBC and NASH. Br Med Bull 2020; 133(1): 95-104.
[7]
Ali AH, Carey EJ, Lindor KD. Recent advances in the development of farnesoid X receptor agonists. Ann Transl Med 2015; 3(1): 5.
[8]
Kulkarni AV, Tevethia HV, Arab JP, et al. Efficacy and safety of obeticholic acid in liver disease—A systematic review and meta-analysis. Clin Res Hepatol Gastroenterol 2021; 45(3): 101675.
[http://dx.doi.org/10.1016/j.clinre.2021.101675] [PMID: 33722778]
[9]
Anakk S, Watanabe M, Ochsner SA, McKenna NJ, Finegold MJ, Moore DD. Combined deletion of Fxr and Shp in mice induces Cyp17a1 and results in juvenile onset cholestasis. J Clin Invest 2011; 121(1): 86-95.
[http://dx.doi.org/10.1172/JCI42846] [PMID: 21123943]
[10]
Massafra V, van Mil SWC. Farnesoid X receptor: A “homeostat” for hepatic nutrient metabolism. Biochim Biophys Acta Mol Basis Dis 2018; 1864(1): 45-59.
[11]
Smith SM, Pegram AH. Obeticholic acid: A farnesoid X receptor agonist for primary biliary cholangitis. J Pharm Technol 2017; 66-71.
[12]
Vilas-Boas V, Gijbels E, Jonckheer J, De Waele E, Vinken M. Cholestatic liver injury induced by food additives, dietary supplements and parenteral nutrition. Environ Int 2020; 136: 105422.
[http://dx.doi.org/10.1016/j.envint.2019.105422]
[13]
Keitel V, Dröge C, Häussinger D. Targeting FXR in Cholestasis. Handb Exp Pharmacol. Springer New York 2019; LLC: 299-324.
[14]
Zhang L, Wang YD, Chen WD, et al. Promotion of liver regeneration/repair by farnesoid X receptor in both liver and intestine in mice. Hepatology 2012; 56(6): 2336-43.
[http://dx.doi.org/10.1002/hep.25905] [PMID: 22711662]
[15]
Stofan M, Guo GL. Bile acids and FXR: novel targets for liver diseases. Lausanne: Frontiers Media S.A. 2020.
[16]
Shaik FB, Prasad DVR, Narala VR. Role of farnesoid X receptor in inflammation and resolution. Inflamm Res 2015; 64(1): 9-20.
[17]
Stayrook KR, Bramlett KS, Savkur RS, et al. Regulation of carbohydrate metabolism by the farnesoid X receptor. Endocrinology 2005; 146(3): 984-91.
[http://dx.doi.org/10.1210/en.2004-0965] [PMID: 15564327]
[18]
Yamagata K, Daitoku H, Shimamoto Y, et al. Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and Foxo1. J Biol Chem 2004; 279(22): 23158-65.
[http://dx.doi.org/10.1074/jbc.M314322200] [PMID: 15047713]
[19]
Pineda TI, Claudel T, Duval C, Kosykh V, Fruchart JC, Staels B. Bile acids induce the expression of the human peroxisome proliferator-activated receptor α gene via activation of the farnesoid X receptor. Mol Endocrinol 2003; 17(2): 259-72.
[http://dx.doi.org/10.1210/me.2002-0120] [PMID: 12554753]
[20]
Zhang Y, Edwards PA. FXR signaling in metabolic disease. FEBS Lett 2008; 582(1): 10-8.
[http://dx.doi.org/10.1016/j.febslet.2007.11.015] [PMID: 18023284]
[21]
Zhou L, Li C, Gao L, Wang A. High-density lipoprotein synthesis and metabolism. Review Mol Med Rep 2015; 12(3): 4015-21.
[22]
Jiao Y, Lu Y, Li XY. Farnesoid X receptor: A master regulator of hepatic triglyceride and glucose homeostasis. Acta Pharmacol Sin 2015; 36(1): 44-50.
[23]
Out R, Hoekstra M, Spijkers JAA, et al. Scavenger receptor class B type I is solely responsible for the selective uptake of cholesteryl esters from HDL by the liver and the adrenals in mice. J Lipid Res 2004; 45(11): 2088-95.
[http://dx.doi.org/10.1194/jlr.M400191-JLR200] [PMID: 15314100]
[24]
Singh AB, Dong B, Kraemer FB, Xu Y, Zhang Y, Liu J. Farnesoid X receptor activation by obeticholic acid elevates liver low-density lipoprotein receptor expression by mRNA stabilization and reduces plasma low-density lipoprotein cholesterol in mice. Arterioscler Thromb Vasc Biol 2018; 38(10): 2448-59.
[http://dx.doi.org/10.1161/ATVBAHA.118.311122] [PMID: 30354208]
[25]
Dong B, Young M, Liu X, Singh AB, Liu J. Regulation of lipid metabolism by obeticholic acid in hyperlipidemic hamsters. J Lipid Res 2017; 58(2): 350-63.
[http://dx.doi.org/10.1194/jlr.M070888] [PMID: 27940481]
[26]
Bowlus C. Obeticholic acid for the treatment of primary biliary cholangitis in adult patients: clinical utility and patient selection. Hepat Med 2016; 8: 89-95.
[http://dx.doi.org/10.2147/HMER.S91709] [PMID: 27621676]
[27]
Krupa K, Hapshy V, Nguyen H, Parmar M. Obeticholic Acid.In: StatPearls. Treasure Island (FL): StatPearls Publishing 2023.
[28]
Binu VJ, Kaley S, Cynthia L, et al. Impact of obeticholic acid exposure on decompensation and mortality in primary biliary cholangitis and cirrhosis. Hepatol Commun 2021; 5(8): 1426-36.
[29]
Kjærgaard K, Frisch K, Sørensen M, et al. Obeticholic acid improves hepatic bile acid excretion in patients with primary biliary cholangitis. J Hepatol 2021; 74(1): 58-65.
[http://dx.doi.org/10.1016/j.jhep.2020.07.028] [PMID: 32717289]
[30]
Roberts SB, Ismail M, Kanagalingam G, et al. Real-world effectiveness of obeticholic acid in patients with primary biliary cholangitis. Hepatol Commun 2020; 4(9): 1332-45.
[http://dx.doi.org/10.1002/hep4.1518] [PMID: 32923836]
[31]
Nevens F, Andreone P, Mazzella G, et al. A placebo-controlled trial of obeticholic acid in primary biliary cholangitis. N Engl J Med 2016; 375(7): 631-43.
[http://dx.doi.org/10.1056/NEJMoa1509840] [PMID: 27532829]
[32]
Han NC, Shao PTA, Xiao J, et al. Safety Profile of Obeticholic Acid in Chronic Liver Disease. In: A Pooled Analysis of 1878 1 Individuals 2 1878.
[33]
Mudaliar S, Henry RR, Sanyal AJ, et al. Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology 2013; 145(3): 574-582.e1.
[http://dx.doi.org/10.1053/j.gastro.2013.05.042] [PMID: 23727264]
[34]
Neuschwander-Tetri BA, Loomba R, Sanyal AJ, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): A multicentre, randomised, placebo-controlled trial. Lancet 2015; 385(9972): 956-65.
[http://dx.doi.org/10.1016/S0140-6736(14)61933-4] [PMID: 25468160]
[35]
Jones DEJ. Pathogenesis of primary biliary cirrhosis. Gut 2007; 56(11): 1615-24.
[PMID: 17641080]
[36]
Li X, Liao M, Pan Q, Xie Q, Yang H, Peng Y. Combination therapy of obeticholic acid and ursodeoxycholic acid in patients with primary biliary cholangitis who respond incompletely to ursodeoxycholic acid: A systematic review. Eur J Gastroenterol Hepatol 2020; 32(9): 1116-22.
[37]
Bowlus CL, Pockros PJ, Kremer AE, et al. Long-term obeticholic acid therapy improves histological endpoints in patients with primary biliary cholangitis. Clin Gastroenterol Hepatol 2020; 18(5): 1170-1178.e6.
[http://dx.doi.org/10.1016/j.cgh.2019.09.050] [PMID: 31606455]
[38]
Hirschfield GM, Mason A, Luketic V, et al. Efficacy of obeticholic acid in patients with primary biliary cirrhosis and inadequate response to ursodeoxycholic acid. Gastroenterology 2015; 148(4): 751-761.e8.
[http://dx.doi.org/10.1053/j.gastro.2014.12.005] [PMID: 25500425]
[39]
Trauner M, Nevens F, Shiffman ML, et al. Long-term efficacy and safety of obeticholic acid for patients with primary biliary cholangitis: 3-year results of an international open-label extension study. Lancet Gastroenterol Hepatol 2019; 4(6): 445-53.
[http://dx.doi.org/10.1016/S2468-1253(19)30094-9] [PMID: 30922873]
[40]
Kowdley KV, Vuppalanchi R, Levy C, et al. A randomized, placebo-controlled, phase II study of obeticholic acid for primary sclerosing cholangitis. J Hepatol 2020; 73(1): 94-101.
[http://dx.doi.org/10.1016/j.jhep.2020.02.033] [PMID: 32165251]
[41]
Cotter TG, Rinella M. Nonalcoholic fatty liver disease 2020: The state of the disease. Gastroenterology 2020; 158(7): 1851-64.
[http://dx.doi.org/10.1053/j.gastro.2020.01.052] [PMID: 32061595]
[42]
Sheka AC, Adeyi O, Thompson J, Hameed B, Crawford PA, Ikramuddin S. Nonalcoholic steatohepatitis: A review. JAMA 2020; 323(12): 1175-83.
[43]
Younossi ZM, Ratziu V, Loomba R, et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: Interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 2019; 394(10215): 2184-96.
[http://dx.doi.org/10.1016/S0140-6736(19)33041-7] [PMID: 31813633]
[44]
Noureddin M, Sanyal AJ. Pathogenesis of NASH: the Impact of Multiple Pathways. Curr Hepatol Rep 2018; 17(4): 350-60.
[http://dx.doi.org/10.1007/s11901-018-0425-7] [PMID: 31380156]
[45]
Shah RA, Kowdley KV. Obeticholic acid for the treatment of nonalcoholic steatohepatitis. Expert Rev Gastroenterol Hepatol 2020; 14(5): 311-21.
[http://dx.doi.org/10.1080/17474124.2020.1748498] [PMID: 32241197]
[46]
Cariou B. The farnesoid X receptor (FXR) as a new target in non-alcoholic steatohepatitis. Diabetes Metab 2008; 34(6): 685-91.
[http://dx.doi.org/10.1016/S1262-3636(08)74605-6] [PMID: 19195631]
[47]
Ratziu V, Sanyal AJ, Loomba R, et al. Regenerate: Design of a pivotal, randomised, phase 3 study evaluating the safety and efficacy of obeticholic acid in patients with fibrosis due to nonalcoholic steatohepatitis. Contemp Clin Trials 2019; 84: 105803.
[http://dx.doi.org/10.1016/j.cct.2019.06.017] [PMID: 31260793]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy