Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Clinical Trials of Mesenchymal Stem Cells for the Treatment of COVID 19

Author(s): Elham Zendedel, Lobat Tayebi, Mohammad Nikbakht, Elham Hasanzadeh* and Shiva Asadpour*

Volume 19, Issue 8, 2024

Published on: 05 October, 2023

Page: [1055 - 1071] Pages: 17

DOI: 10.2174/011574888X260032230925052240

Price: $65

Abstract

Mesenchymal Stem Cells (MSCs) are being investigated as a treatment for a novel viral disease owing to their immunomodulatory, anti-inflammatory, tissue repair and regeneration characteristics, however, the exact processes are unknown. MSC therapy was found to be effective in lowering immune system overactivation and increasing endogenous healing after SARS-CoV-2 infection by improving the pulmonary microenvironment. Many studies on mesenchymal stem cells have been undertaken concurrently, and we may help speed up the effectiveness of these studies by collecting and statistically analyzing data from them. Based on clinical trial information found on clinicaltrials. gov and on 16 November 2020, which includes 63 clinical trials in the field of patient treatment with COVID-19 using MSCs, according to the trend of increasing studies in this field, and with the help of meta-analysis studies, it is possible to hope that the promise of MSCs will one day be realized. The potential therapeutic applications of MSCs for COVID-19 are investigated in this study.

Keywords: Covid-19, mesenchymal stem cell (MSCs), clinical trials, cell therapy, regenerative medicine, SARS-CoV-2.

Next »
Graphical Abstract
[1]
Hassan SA, Sheikh FN, Jamal S, Ezeh JK, Akhtar A. Coronavirus (COVID-19): a review of clinical features, diagnosis, and treatment. Cureus 2020; 12(3): e7355.
[http://dx.doi.org/10.7759/cureus.7355] [PMID: 32328367]
[2]
Hasanzadeh E, Rafati A, Tamijani SMSH, Rafaiee R, Golchin A, Abasi M. The Role of Advanced Technologies against COVID-19: Prevention, Detection, and Treatments. Curr Stem Cell Res Ther 2023; 18(6): 800-28.
[http://dx.doi.org/10.2174/1574888X18666221221123505] [PMID: 36545723]
[3]
Kannan S, Shaik Syed Ali P, Sheeza A, Hemalatha K. COVID-19 (Novel Coronavirus 2019) - recent trends. Eur Rev Med Pharmacol Sci 2020; 24(4): 2006-11.
[PMID: 32141569]
[4]
Marra MA, Jones SJM, Astell CR, et al. The Genome sequence of the SARS-associated coronavirus. Science 2003; 300(5624): 1399-404.
[http://dx.doi.org/10.1126/science.1085953] [PMID: 12730501]
[5]
Cooper TJ, Woodward BL, Alom S, Harky A. Coronavirus disease 2019 (COVID-19) outcomes in HIV/AIDS patients: a systematic review. HIV Med 2020; 21(9): 567-77.
[http://dx.doi.org/10.1111/hiv.12911] [PMID: 32671970]
[6]
Kumar D, Malviya R, Sharma PK. Corona virus: a review of COVID-19. Eurasian Journal of Medicine and Oncology 2020; 4(1): 8-25.
[7]
Chen L, Lou J, Bai Y, Wang M. COVID-19 disease with positive fecal and negative pharyngeal and sputum viral tests. Am J Gastroenterol 2020; 115(5): 790.
[http://dx.doi.org/10.14309/ajg.0000000000000610] [PMID: 32205644]
[8]
Team E. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19)—China. China CDC weekly 2020; 2(8): 113.
[9]
Felsenstein S, Herbert JA, McNamara PS, Hedrich CM. COVID-19: Immunology and treatment options. Clin Immunol 2020; 215: 108448.
[http://dx.doi.org/10.1016/j.clim.2020.108448] [PMID: 32353634]
[10]
Rajnik M, Cascella M, Cuomo A, Dulebohn SC, Di Napoli R. Features, evaluation, and treatment of coronavirus (COVID-19). Treasure Island (FL): StatPearls 2021.
[11]
Leng Z, Zhu R, Hou W, et al. Transplantation of ACE2-mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis 2020; 11(2): 216-28.
[http://dx.doi.org/10.14336/AD.2020.0228] [PMID: 32257537]
[12]
Enderami SE, Kia V, Eshaghi-Gorji R, et al. Mesenchymal Stromal Cells and their EVs as Potential Leads for SARSCoV2 Treatment. Curr Stem Cell Res Ther 2023; 18(1): 35-53.
[http://dx.doi.org/10.2174/1574888X17666220426115831] [PMID: 35473518]
[13]
Walter J, Ware LB, Matthay MA. Mesenchymal stem cells: mechanisms of potential therapeutic benefit in ARDS and sepsis. Lancet Respir Med 2014; 2(12): 1016-26.
[http://dx.doi.org/10.1016/S2213-2600(14)70217-6] [PMID: 25465643]
[14]
Al Naem M, Bourebaba L, Kucharczyk K, Röcken M, Marycz K. Therapeutic mesenchymal stromal stem cells: Isolation, characterization and role in equine regenerative medicine and metabolic disorders. Stem Cell Rev Rep 2020; 16(2): 301-22.
[http://dx.doi.org/10.1007/s12015-019-09932-0] [PMID: 31797146]
[15]
Hasanzadeh E, Mahmoodi N, Basiri A, et al. Proanthocyanidin as a crosslinking agent for fibrin, collagen hydrogels and their composites with decellularized Wharton’s-jelly-extract for tissue engineering applications. J Bioact Compat Polym 2020; 35(6): 554-71.
[http://dx.doi.org/10.1177/0883911520956252]
[16]
Golchin A, Seyedjafari E, Ardeshirylajimi A. Mesenchymal stem cell therapy for COVID-19: present or future. Stem Cell Rev Rep 2020; 16(3): 427-33.
[http://dx.doi.org/10.1007/s12015-020-09973-w] [PMID: 32281052]
[17]
Rogers CJ, Harman RJ, Bunnell BA, et al. Rationale for the clinical use of adipose-derived mesenchymal stem cells for COVID-19 patients. J Transl Med 2020; 18(1): 203.
[http://dx.doi.org/10.1186/s12967-020-02380-2] [PMID: 32423449]
[18]
Ellison-Hughes GM, Colley L, O’Brien KA, Roberts KA, Agbaedeng TA, Ross MD. The role of MSC therapy in attenuating the damaging effects of the cytokine storm induced by COVID-19 on the heart and cardiovascular system. Front Cardiovasc Med 2020; 7: 602183.
[http://dx.doi.org/10.3389/fcvm.2020.602183] [PMID: 33363221]
[19]
Heald-Sargent T, Gallagher T. Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence. Viruses 2012; 4(4): 557-80.
[http://dx.doi.org/10.3390/v4040557] [PMID: 22590686]
[20]
Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol 2016; 3(1): 237-61.
[http://dx.doi.org/10.1146/annurev-virology-110615-042301] [PMID: 27578435]
[21]
Hulswit RJG, de Haan CAM, Bosch BJ. Coronavirus spike protein and tropism changes. Adv Virus Res 2016; 96: 29-57.
[http://dx.doi.org/10.1016/bs.aivir.2016.08.004] [PMID: 27712627]
[22]
Xu Y, Lou Z, Liu Y, et al. Crystal structure of severe acute respiratory syndrome coronavirus spike protein fusion core. J Biol Chem 2004; 279(47): 49414-9.
[http://dx.doi.org/10.1074/jbc.M408782200] [PMID: 15345712]
[23]
Post-COVID-19 global health strategies: The need for an interdisciplinary approach. Aging Clin Exp Res 2020; 32(8): 1613-20.
[24]
Yen BL, Yen ML, Wang LT, Liu KJ, Sytwu HK. Current status of mesenchymal stem cell therapy for immune/inflammatory lung disorders: Gleaning insights for possible use in COVID-19. Stem Cells Transl Med 2020; 9(10): 1163-73.
[http://dx.doi.org/10.1002/sctm.20-0186] [PMID: 32526079]
[25]
Zendedel E, Atkin SL, Sahebkar A. Use of stem cells as carriers of oncolytic viruses for cancer treatment. J Cell Physiol 2019; 234(9): 14906-13.
[http://dx.doi.org/10.1002/jcp.28320] [PMID: 30770550]
[26]
Lee BC, Kang KS. Functional enhancement strategies for immunomodulation of mesenchymal stem cells and their therapeutic application. Stem Cell Res Ther 2020; 11(1): 397.
[http://dx.doi.org/10.1186/s13287-020-01920-3] [PMID: 32928306]
[27]
Moll G, Drzeniek N, Kamhieh-Milz J, Geissler S, Volk HD, Reinke P. MSC Therapies for COVID-19: Importance of Patient Coagulopathy, Thromboprophylaxis, Cell Product Quality and Mode of Delivery for Treatment Safety and Efficacy. Front Immunol 2020; 11: 1091.
[http://dx.doi.org/10.3389/fimmu.2020.01091] [PMID: 32574263]
[28]
Shetty AK. Mesenchymal stem cell infusion shows promise for combating coronavirus (COVID-19)-induced pneumonia. Aging Dis 2020; 11(2): 462-4.
[http://dx.doi.org/10.14336/AD.2020.0301] [PMID: 32257554]
[29]
Öztürk S, Elçin AE, Elçin YM. Mesenchymal Stem Cells for Coronavirus (COVID-19)-Induced Pneumonia: Revisiting the Paracrine Hypothesis with New Hopes? Aging Dis 2020; 11(3): 477-9.
[http://dx.doi.org/10.14336/AD.2020.0403] [PMID: 32489694]
[30]
Chen L, Qu J, Kalyani FS, et al. Mesenchymal stem cell-based treatments for COVID-19: Status and future perspectives for clinical applications. Cell Mol Life Sci 2022; 79(3): 142.
[http://dx.doi.org/10.1007/s00018-021-04096-y] [PMID: 35187617]
[31]
Csobonyeiova M, Smolinska V, Harsanyi S, Ivantysyn M, Klein M. The Immunomodulatory Role of Cell-Free Approaches in SARS-CoV-2-Induced Cytokine Storm—A Powerful Therapeutic Tool for COVID-19 Patients. Biomedicines 2023; 11(6): 1736.
[http://dx.doi.org/10.3390/biomedicines11061736] [PMID: 37371831]
[32]
Kandula UR, Wake AD. Effectiveness of RCTs Pooling Evidence on Mesenchymal Stem Cell (MSC) Therapeutic Applications During COVID-19 Epidemic: A Systematic Review. Biologics 2023; 17: 85-112.
[PMID: 37223116]
[33]
Zarrabi M, Shahrbaf MA, Nouri M, et al. Allogenic mesenchymal stromal cells and their extracellular vesicles in COVID-19 induced ARDS: A randomized controlled trial. Stem Cell Res Ther 2023; 14(1): 169.
[http://dx.doi.org/10.1186/s13287-023-03402-8] [PMID: 37365605]
[34]
Taufiq H, Shaik Fakiruddin K, Muzaffar U, et al. Systematic review and meta-analysis of mesenchymal stromal/stem cells as strategical means for the treatment of COVID-19. Ther Adv Respir Dis 2023; 17.
[http://dx.doi.org/10.1177/17534666231158276] [PMID: 37128999]
[35]
Liu Q, Ma F, Zhong Y, et al. Efficacy and safety of human umbilical cord-derived mesenchymal stem cells for COVID-19 pneumonia: A meta-analysis of randomized controlled trials. Stem Cell Res Ther 2023; 14(1): 118.
[http://dx.doi.org/10.1186/s13287-023-03286-8] [PMID: 37143167]
[36]
Feng Y. Application of MSCs therapy in COVID-19. Second International Conference on Biological Engineering and Medical Science (ICBioMed 2022).
[37]
Norouzi-Barough L, Asgari Khosroshahi A, Gorji A, Zafari F, Shahverdi Shahraki M, Shirian S. COVID-19-induced stroke and the potential of using mesenchymal stem cells-derived extracellular vesicles in the regulation of neuroinflammation. Cell Mol Neurobiol 2023; 43(1): 37-46.
[http://dx.doi.org/10.1007/s10571-021-01169-1] [PMID: 35025001]
[38]
Chakraborty R, Parvez S. COVID-19: An overview of the current pharmacological interventions, vaccines, and clinical trials. Biochem Pharmacol 2020; 180: 114184.
[http://dx.doi.org/10.1016/j.bcp.2020.114184] [PMID: 32739342]
[39]
Alzahrani FA. The Potential Use of Mesenchymal Stem Cells and Their Derived Exosomes as Immunomodulatory Agents for COVID-19 Patients. Stem Cells Int 2020; 2020: 8835986.
[40]
Woods N, MacLoughlin R. Defining a Regulatory Strategy for ATMP/Aerosol Delivery Device Combinations in the Treatment of Respiratory Disease. Pharmaceutics 2020; 12(10): 922.
[http://dx.doi.org/10.3390/pharmaceutics12100922] [PMID: 32993197]
[41]
Brave H, MacLoughlin R. State of the Art Review of Cell Therapy in the Treatment of Lung Disease, and the Potential for Aerosol Delivery. Int J Mol Sci 2020; 21(17): 6435.
[http://dx.doi.org/10.3390/ijms21176435] [PMID: 32899381]
[42]
O’Driscoll L. Extracellular vesicles from mesenchymal stem cells as a Covid-19 treatment. Drug Discov Today 2020; 25(7): 1124-5.
[http://dx.doi.org/10.1016/j.drudis.2020.04.022] [PMID: 32387262]
[43]
Raza SS, Khan MA. Mesenchymal stem cells: A new front emerges in coronavirus disease 2019 treatment. Cytotherapy 2022; 24(8): 755-66.
[http://dx.doi.org/10.1016/j.jcyt.2020.07.002] [PMID: 35880307]
[44]
Lu L. The “Salmon Spirit” of translational medical research. Ann Transl Med 2020; 8(8): 560.
[http://dx.doi.org/10.21037/atm.2020.04.29] [PMID: 32775361]
[45]
Meng F, Xu R, Wang S, et al. Human umbilical cord-derived mesenchymal stem cell therapy in patients with COVID-19: A phase 1 clinical trial. Signal Transduct Target Ther 2020; 5(1): 172.
[http://dx.doi.org/10.1038/s41392-020-00286-5] [PMID: 32855385]
[46]
Irmak DK, Darıcı H, Karaöz E. Stem cell based therapy option in COVID-19: Is it really promising? Aging Dis 2020; 11(5): 1174-91.
[http://dx.doi.org/10.14336/AD.2020.0608] [PMID: 33014531]
[47]
Sleem A, Saleh F. Mesenchymal stem cells in the fight against viruses: Face to face with the invisible enemy. Curr Res Transl Med 2020; 68(3): 105-10.
[http://dx.doi.org/10.1016/j.retram.2020.04.003] [PMID: 32616467]
[48]
Choudhery MS, Harris DT. Stem cell therapy for COVID-19: Possibilities and challenges. Cell Biol Int 2020; 44(11): 2182-91.
[http://dx.doi.org/10.1002/cbin.11440] [PMID: 32767687]
[49]
Wang XY. MSCs transplantation may be a potential therapeutic strategy for COVID-19 treatment. Eur Rev Med Pharmacol Sci 2020; 24(8): 4537-8.
[PMID: 32373992]
[50]
Khorshidi M, Zarezadeh M, Emami M, Olang B, Moradi Moghaddam O. Promising impacts of mesenchymal stem cell therapy in treatment of SARS-CoV-2 (COVID-19). Heart Lung 2020; 49(6): 745-8.
[http://dx.doi.org/10.1016/j.hrtlng.2020.08.007] [PMID: 32911459]
[51]
Mirmotalebisohi SA, et al. Identification of the crucial regulatory elements modulating the host respiratory response to SARS-CoV-2 using motif detection, A systems biology approach. Regeneration. Reconstruction & Restoration 2020; 5(1): 4.
[52]
Rad MR. Effect of vitamin K2 as a stimulants of bone regeneration in osteoporosis therapy. Regen Reconstr Restor 2020; 5(1): 5.
[53]
Bamba C, Singh SP, Choudhury S. Can mesenchymal stem cell therapy be the interim management of COVID-19? Drug Discov Ther 2020; 14(3): 139-42.
[http://dx.doi.org/10.5582/ddt.2020.03032] [PMID: 32554953]
[54]
Sadeghi S, Soudi S, Shafiee A, Hashemi SM. Mesenchymal stem cell therapies for COVID-19: Current status and mechanism of action. Life Sci 2020; 262: 118493.
[http://dx.doi.org/10.1016/j.lfs.2020.118493] [PMID: 32979360]
[55]
Smith JA. Proliferation of mesenchymal stem cell trials for COVID-19: Risks and recommendations. 2020. Available from: https:///C:/Users/Bisma/Downloads/2020.04.21%20MSC%20trial%20preprint.pdf
[56]
Lythgoe MP, Middleton P. Ongoing clinical trials for the management of the COVID-19 pandemic. Trends Pharmacol Sci 2020; 41(6): 363-82.
[http://dx.doi.org/10.1016/j.tips.2020.03.006] [PMID: 32291112]
[58]
Al-Anazi K, Al-Jasser A. The rising role of mesenchymal stem cells in the treatment of COVID-19 infections. J Stem Cell Ther Transplant 2020; 4: 011-6.
[http://dx.doi.org/10.29328/journal.jsctt.1001021]
[59]
Zumla A, Wang FS, Ippolito G, et al. Reducing mortality and morbidity in patients with severe COVID-19 disease by advancing ongoing trials of Mesenchymal Stromal (stem) Cell (MSC) therapy — Achieving global consensus and visibility for cellular host-directed therapies. Int J Infect Dis 2020; 96: 431-9.
[http://dx.doi.org/10.1016/j.ijid.2020.05.040] [PMID: 32425638]
[60]
Ardura M, Hartley D, Dandoy C, Lehmann L, Jaglowski S, Auletta JJ. Addressing the impact of the Coronavirus Disease (COVID-19) pandemic on hematopoietic cell transplantation: Learning networks as means for sharing best practices. Biol Blood Marrow Transplant 2020; 26(7): e147-60.
[http://dx.doi.org/10.1016/j.bbmt.2020.04.018] [PMID: 32339662]
[61]
Chibber P, Haq SA, Ahmed I, Andrabi NI, Singh G. Advances in the possible treatment of COVID-19: A review. Eur J Pharmacol 2020; 883: 173372.
[http://dx.doi.org/10.1016/j.ejphar.2020.173372] [PMID: 32682787]
[62]
Hamdan H, Hashmi SK, Lazarus H, Gale RP, Qu W, El Fakih R. Promising role for mesenchymal stromal cells in coronavirus infectious disease-19 (COVID-19)-related severe acute respiratory syndrome? Blood Rev 2021; 46: 100742.
[http://dx.doi.org/10.1016/j.blre.2020.100742] [PMID: 32854985]
[63]
Wang X, Wang H, Lu J, et al. Erythropoietin-Modified Mesenchymal Stem Cells Enhance Anti-fibrosis Efficacy in Mouse Liver Fibrosis Model. Tissue Eng Regen Med 2020; 17(5): 683-93.
[http://dx.doi.org/10.1007/s13770-020-00276-2] [PMID: 32621283]
[64]
Hajivalili M, Hosseini M, Haji-Fatahaliha M. Gaining insights on immune responses to the novel coronavirus, COVID-19 and therapeutic challenges. Life Sci 2020; 257: 118058.
[http://dx.doi.org/10.1016/j.lfs.2020.118058] [PMID: 32653518]
[65]
Peng M. Outbreak of COVID-19: An emerging global pandemic threat. Biomed Pharmacother 2020; 129: 110499.
[http://dx.doi.org/10.1016/j.biopha.2020.110499] [PMID: 32768974]
[66]
Tu YF, Chien CS, Yarmishyn AA, et al. A review of SARS-CoV-2 and the ongoing clinical trials. Int J Mol Sci 2020; 21(7): 2657.
[http://dx.doi.org/10.3390/ijms21072657] [PMID: 32290293]
[67]
Das M, et al. COVID-19 neurotropism and implications for therapy. Neuroimmunol Neuroinflamm 2020; 7(2): 141-9.
[68]
Sahu KK, Siddiqui AD, Cerny J. Mesenchymal Stem Cells in COVID-19: A Journey from Bench to Bedside. Lab Med 2021; 52(1): 24-35.
[http://dx.doi.org/10.1093/labmed/lmaa049] [PMID: 32729620]
[69]
Villarta-De Dios NP, Osio-Salido ES. Should Mesenchymal Stem Cell Therapy be used in the treatment of COVID-19? Acta Med Philipp 2020; 54.
[70]
Yadav P, Vats R, Bano A, Bhardwaj R. Mesenchymal stem cell immunomodulation and regeneration therapeutics as an ameliorative approach for COVID-19 pandemics. Life Sci 2020; 263: 118588.
[http://dx.doi.org/10.1016/j.lfs.2020.118588] [PMID: 33049279]
[71]
Gosain R, Abdou Y, Singh A, Rana N, Puzanov I, Ernstoff MS. COVID-19 and cancer: A comprehensive review. Curr Oncol Rep 2020; 22(5): 53.
[http://dx.doi.org/10.1007/s11912-020-00934-7] [PMID: 32385672]
[72]
Chatterjee V, Yang X, Ma Y, Wu MH, Yuan SY. Extracellular vesicles: New players in regulating vascular barrier function. Am J Physiol Heart Circ Physiol 2020; 319(6): H1181-96.
[http://dx.doi.org/10.1152/ajpheart.00579.2020] [PMID: 33035434]
[73]
Rodriguez HC, Gupta M, Cavazos-Escobar E, El-Amin SF III, Gupta A. Umbilical cord: An allogenic tissue for potential treatment of COVID-19. Hum Cell 2021; 34(1): 1-13.
[http://dx.doi.org/10.1007/s13577-020-00444-5] [PMID: 33033884]
[74]
Mallis P, Michalopoulos E, Chatzistamatiou T, Stavropoulos-Giokas C. Mesenchymal stromal cells as potential immunomodulatory players in severe acute respiratory distress syndrome induced by SARS-CoV-2 infection. World J Stem Cells 2020; 12(8): 731-51.
[http://dx.doi.org/10.4252/wjsc.v12.i8.731] [PMID: 32952855]
[75]
Mahajan A, Bhattacharyya S. Application of Mesenchymal stem celland secretome for combating mortality and morbidity in COVID-19patients: A brief review. Biomed J 2020.
[76]
Sohag AAM, Hannan MA, Rahman S, et al. Revisiting potential druggable targets against SARS-CoV -2 and repurposing therapeutics under preclinical study and clinical trials: A comprehensive review. Drug Dev Res 2020; 81(8): 919-41.
[http://dx.doi.org/10.1002/ddr.21709] [PMID: 32632960]
[77]
Can A, Coskun H. The rationale of using mesenchymal stem cells in patients with COVID-19-related acute respiratory distress syndrome: What to expect. Stem Cells Transl Med 2020; 9(11): 1287-302.
[http://dx.doi.org/10.1002/sctm.20-0164] [PMID: 32779878]
[78]
Louchet M, Sibiude J, Peytavin G, Picone O, Tréluyer JM, Mandelbrot L. Placental transfer and safety in pregnancy of medications under investigation to treat coronavirus disease 2019. Am J Obstet Gynecol MFM 2020; 2(3): 100159.
[http://dx.doi.org/10.1016/j.ajogmf.2020.100159] [PMID: 32838264]
[79]
Khadke S, Ahmed N, Ahmed N, et al. Harnessing the immune system to overcome cytokine storm and reduce viral load in COVID-19: a review of the phases of illness and therapeutic agents. Virol J 2020; 17(1): 1-8.
[80]
Geng YJ, Wei ZY, Qian HY, Huang J, Lodato R, Castriotta RJ. Pathophysiological characteristics and therapeutic approaches for pulmonary injury and cardiovascular complications of coronavirus disease 2019. Cardiovasc Pathol 2020; 47: 107228.
[http://dx.doi.org/10.1016/j.carpath.2020.107228] [PMID: 32375085]
[81]
Bhandari R, Khanna G, Kuhad A. Pharmacological insight into potential therapeutic agents for the deadly Covid-19 pandemic. Eur J Pharmacol 2021; 890: 173643.
[http://dx.doi.org/10.1016/j.ejphar.2020.173643] [PMID: 33065092]
[82]
Jayaramayya K, Mahalaxmi I, Subramaniam MD, et al. Immunomodulatory effect of mesenchymal stem cells and mesenchymal stem-cell-derived exosomes for COVID-19 treatment. BMB Rep 2020; 53(8): 400-12.
[http://dx.doi.org/10.5483/BMBRep.2020.53.8.121] [PMID: 32731913]
[83]
Pujari R, Thommana MV, Ruiz Mercedes B, Serwat A. Therapeutic Options for COVID-19: A Review. Cureus 2020; 12(9): e10480.
[PMID: 32953365]
[84]
Lotfi M, Hamblin MR, Rezaei N. COVID-19: Transmission, prevention, and potential therapeutic opportunities. Clin Chim Acta 2020; 508: 254-66.
[http://dx.doi.org/10.1016/j.cca.2020.05.044] [PMID: 32474009]
[85]
Ulm JW, Nelson SF. COVID-19 drug repurposing: Summary statistics on current clinical trials and promising untested candidates. Transbound Emerg Dis 2021; 68(2): 313-7.
[http://dx.doi.org/10.1111/tbed.13710] [PMID: 32619318]
[86]
Lechowicz K, Drożdżal S, Machaj F, et al. COVID-19: the potential treatment of pulmonary fibrosis associated with SARS-CoV-2 infection. J Clin Med 2020; 9(6): 1917.
[http://dx.doi.org/10.3390/jcm9061917] [PMID: 32575380]
[87]
Almasi F, Mohammadipanah F. Hypothetical targets and plausible drugs of coronavirus infection caused by SARS-CoV-2. Transbound Emerg Dis 2021; 68(2): 318-32.
[http://dx.doi.org/10.1111/tbed.13734] [PMID: 32662203]
[88]
Almasi F, Mohammadipanah F. Potential targets and plausible drugs of Coronavirus infection caused by 2019-nCoV. Authorea 2020.
[89]
Sheervalilou R, Shirvaliloo M, Dadashzadeh N, et al. COVID-19 under spotlight: A close look at the origin, transmission, diagnosis, and treatment of the 2019-nCoV disease. J Cell Physiol 2020; 235(12): 8873-924.
[http://dx.doi.org/10.1002/jcp.29735] [PMID: 32452539]
[90]
Oroojalian F, Haghbin A, Baradaran B, et al. Novel insights into the treatment of SARS-CoV-2 infection: An overview of current clinical trials. Int J Biol Macromol 2020; 165(Pt A): 18-43.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.204] [PMID: 32991900]
[91]
Yamamoto V, Bolanos JF, Fiallos J, et al. COVID-19: review of a 21st century pandemic from etiology to neuro-psychiatric implications. J Alzheimers Dis 2020; 77(2): 459-504.
[http://dx.doi.org/10.3233/JAD-200831] [PMID: 32925078]
[92]
Teymoori-Rad M, Marashi SM, Vitamin D. Vitamin D and Covid-19: From potential therapeutic effects to unanswered questions. Rev Med Virol 2020; e2159.
[93]
Benskin LL. A Basic Review of the Preliminary Evidence That COVID-19 Risk and Severity Is Increased in Vitamin D Deficiency. Front Public Health 2020; 8: 513.
[http://dx.doi.org/10.3389/fpubh.2020.00513] [PMID: 33014983]
[94]
Song N, Wakimoto H, Rossignoli F, et al. Mesenchymal stem cell immunomodulation: In pursuit of controlling COVID-19 related cytokine storm. Stem Cells 2021; 39(6): 707-22.
[http://dx.doi.org/10.1002/stem.3354] [PMID: 33586320]
[95]
Shahani P, Datta I. Mesenchymal stromal cell therapy for coronavirus disease 2019: which? when? and how much? Cytotherapy 2021; 23(10): 861-73.
[http://dx.doi.org/10.1016/j.jcyt.2021.04.004] [PMID: 34053857]
[96]
Ye Q, Wang H, Xia X, et al. Safety and efficacy assessment of allogeneic human dental pulp stem cells to treat patients with severe COVID-19: structured summary of a study protocol for a randomized controlled trial (Phase I/II). Trials 2020; 21(1): 520.
[http://dx.doi.org/10.1186/s13063-020-04380-5] [PMID: 32532356]
[97]
Iannaccone G, Scacciavillani R, Del Buono MG, et al. Weathering the cytokine storm in COVID-19: therapeutic implications. Cardiorenal Med 2020; 10(5): 277-87.
[http://dx.doi.org/10.1159/000509483] [PMID: 32599589]
[98]
Bahrami A, Ferns GA. Genetic and pathogenic characterization of SARS-CoV-2: a review. Future Virol 2020; 15(8): 533-49.
[http://dx.doi.org/10.2217/fvl-2020-0129]
[99]
Deev R. Cell transplantation in a COVID-19 treatment program: stem stromal (mesenchymal) cell transplantation. Genes Cells 2020; 15(2)
[100]
Kothari A, Singh V, Nath UK, et al. Immune Dysfunction and Multiple Treatment Modalities for the SARS-CoV-2 Pandemic: Races of Uncontrolled Running Sweat? Biology (Basel) 2020; 9(9): 243.
[http://dx.doi.org/10.3390/biology9090243] [PMID: 32846906]
[101]
Lisi L, Lacal PM, Barbaccia ML, Graziani G. Approaching coronavirus disease 2019: Mechanisms of action of repurposed drugs with potential activity against SARS-CoV-2. Biochem Pharmacol 2020; 180: 114169.
[http://dx.doi.org/10.1016/j.bcp.2020.114169] [PMID: 32710969]
[102]
Shweta F, et al. Augmented curation of unstructured clinical notes from a massive EHR system reveals specific phenotypic signature of impending COVID-19 diagnosis. arXiv 2020; 2020: 09338.
[103]
Andrade KRC, Carvalho VKDS, Farinasso CM, et al. Pharmacological therapies for patients with human coronavirus infections: a rapid systematic review. Cien Saude Colet 2020; 25(9): 3517-54.
[http://dx.doi.org/10.1590/1413-81232020259.14242020] [PMID: 32876256]
[104]
Ngo BT, Rendell M. A systematic analysis of the time course to develop treatments for covid-19. MedRxiv 2020.
[105]
Andrade KRC, Carvalho VKS, Farinasso CM, et al. Terapia medicamentosa para infecções por coronavírus em humanos: revisão sistemática rápida. Cien Saude Colet 2020; 25(9): 3517-54.
[http://dx.doi.org/10.1590/1413-81232020259.14242020] [PMID: 32876256]
[106]
Ngo BT. The time course of therapeutic interventions for COVID-19. medRxiv 2020; 2020
[107]
Zhu Y, Zhu R, Liu K, et al. Human Umbilical Cord Mesenchymal Stem Cells for Adjuvant Treatment of a Critically Ill COVID-19 Patient: A Case Report. Infect Drug Resist 2020; 13: 3295-300.
[http://dx.doi.org/10.2147/IDR.S272645] [PMID: 33061476]
[108]
Meacci E, Garcia-Gil M, Pierucci F. SARS-CoV-2 Infection: A Role for S1P/S1P Receptor Signaling in the Nervous System? Int J Mol Sci 2020; 21(18): 6773.
[http://dx.doi.org/10.3390/ijms21186773] [PMID: 32942748]
[109]
López-Collazo E, Avendaño-Ortiz J, Martín-Quirós A, Aguirre LA. Immune Response and COVID-19: A mirror image of Sepsis. Int J Biol Sci 2020; 16(14): 2479-89.
[http://dx.doi.org/10.7150/ijbs.48400] [PMID: 32792851]
[110]
Pandey A, Nikam AN, Shreya AB, et al. Potential therapeutic targets for combating SARS-CoV-2: Drug repurposing, clinical trials and recent advancements. Life Sci 2020; 256: 117883.
[http://dx.doi.org/10.1016/j.lfs.2020.117883] [PMID: 32497632]
[111]
Scarabel L, Guardascione M, Dal Bo M, Toffoli G. Pharmacological strategies to prevent SARS-CoV-2 infection and treat the early phases of COVID-19. Int J Infect Dis 2021; 104: 441-51.
[http://dx.doi.org/10.1016/j.ijid.2021.01.035] [PMID: 33476760]
[112]
Pakzad M, Hassani SN, Abbasi F, et al. A roadmap for the production of a GMP-compatible cell bank of allogeneic bone marrow-derived clonal mesenchymal stromal cells for cell therapy applications. Stem Cell Rev Rep 2022; 18(7): 2279-95.
[http://dx.doi.org/10.1007/s12015-022-10351-x] [PMID: 35175538]
[113]
Abu-El-Rub E, Khasawneh RR, Almahasneh F, et al. Mesenchymal stem cells and COVID-19: What they do and what they can do. World J Stem Cells 2021; 13(9): 1318-37.
[http://dx.doi.org/10.4252/wjsc.v13.i9.1318] [PMID: 34630865]
[114]
Sharma Y, Rao EP, Mohanty S. An insight into the molecular mechanisms of mesenchymal stem cells and their translational approaches to combat COVID-19. Stem Cells 2022; COVID-19: 23-46.
[115]
Patel M. Nanotechnology and stem cell therapy for combating COVID-19. Nanotechnology and Regenerative Medicine. 2023; pp. 155-77.
[http://dx.doi.org/10.1016/B978-0-323-90471-1.00013-X]
[116]
Jeyaraman M, John A, Koshy S, et al. Fostering mesenchymal stem cell therapy to halt cytokine storm in COVID-19. Biochim Biophys Acta Mol Basis Dis 2021; 1867(2): 166014.
[http://dx.doi.org/10.1016/j.bbadis.2020.166014] [PMID: 33232817]
[117]
Esmaeilzadeh A, Elahi R. Immunobiology and immunotherapy of COVID-19: A clinically updated overview. J Cell Physiol 2021; 236(4): 2519-43.
[http://dx.doi.org/10.1002/jcp.30076] [PMID: 33022076]
[118]
Zaki MM, Lesha E, Said K, et al. Cell therapy strategies for COVID-19: Current approaches and potential applications. Sci Adv 2021; 7(33): eabg5995.
[http://dx.doi.org/10.1126/sciadv.abg5995] [PMID: 34380619]
[119]
Siemieniuk RA. Antibody and cellular therapies for treatment of covid-19: a living systematic review and network meta-analysis. BMJ 2021; 374: n2231.
[120]
Widowati W, Faried A, Kusuma HSW, Hermanto Y, Harsono AB, Djuwantono T. Allogeneic Mesenchymal Stem Cells and Its Conditioned Medium as a Potential Adjuvant Therapy for COVID-19. Molecular and Cellular Biomedical Sciences 2023; 7(1): 1-9.
[http://dx.doi.org/10.21705/mcbs.v7i1.287]
[121]
Dilogo IH, Aditianingsih D, Sugiarto A, et al. Umbilical cord mesenchymal stromal cells as critical COVID-19 adjuvant therapy: A randomized controlled trial. Stem Cells Transl Med 2021; 10(9): 1279-87.
[http://dx.doi.org/10.1002/sctm.21-0046] [PMID: 34102020]
[122]
Moloudizargari M, Govahi A, Fallah M, Rezvanfar MA, Asghari MH, Abdollahi M. The mechanisms of cellular crosstalk between mesenchymal stem cells and natural killer cells: Therapeutic implications. J Cell Physiol 2021; 236(4): 2413-29.
[http://dx.doi.org/10.1002/jcp.30038] [PMID: 32892356]
[123]
Wang L, et al. Stem Cell Res (Amst) 2020; •••: 101985.
[124]
Saldanha-Araujo F, Melgaço Garcez E, Silva-Carvalho AE, Carvalho JL. Mesenchymal Stem Cells: A New Piece in the Puzzle of COVID-19 Treatment. Front Immunol 2020; 11: 1563.
[http://dx.doi.org/10.3389/fimmu.2020.01563] [PMID: 32719683]
[125]
Vivarelli S, Falzone L, Grillo CM, Scandurra G, Torino F, Libra M. Cancer Management during COVID-19 Pandemic: Is Immune Checkpoint Inhibitors-Based Immunotherapy Harmful or Beneficial? Cancers (Basel) 2020; 12(8): 2237.
[http://dx.doi.org/10.3390/cancers12082237] [PMID: 32785162]
[126]
Baindara P, Agrawal S, Mandal SM. Host-directed therapies: a potential solution to combat COVID-19. Expert Opin Biol Ther 2020; 20(10): 1117-20.
[http://dx.doi.org/10.1080/14712598.2020.1807001] [PMID: 32783643]
[127]
Ma MT, et al. Efficacy of Targeting SARS-CoV-2 by CAR-NK Cells. bioRxiv 2020; 2020-08.
[http://dx.doi.org/10.1101/2020.08.11.247320]
[128]
Market M, Angka L, Martel AB, et al. Flattening the COVID-19 curve with natural killer cell based immunotherapies. Front Immunol 2020; 11: 1512.
[http://dx.doi.org/10.3389/fimmu.2020.01512] [PMID: 32655581]
[129]
Pashaei M, Rezaei N. Immunotherapy for SARS-CoV-2: potential opportunities. Expert Opin Biol Ther 2020; 20(10): 1111-6.
[http://dx.doi.org/10.1080/14712598.2020.1807933] [PMID: 32762581]
[130]
Fouladseresht H, Doroudchi M, Rokhtabnak N, et al. Predictive monitoring and therapeutic immune biomarkers in the management of clinical complications of COVID-19. Cytokine Growth Factor Rev 2021; 58: 32-48.
[http://dx.doi.org/10.1016/j.cytogfr.2020.10.002] [PMID: 33199179]
[131]
Sarkar C, Mondal M, Torequl Islam M, et al. Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives. Front Pharmacol 2020; 11: 572870.
[http://dx.doi.org/10.3389/fphar.2020.572870] [PMID: 33041814]
[132]
Manickam C, Sugawara S, Reeves RK. Friends or foes? The knowns and unknowns of natural killer cell biology in COVID-19 and other coronaviruses in July 2020. PLoS Pathog 2020; 16(8): e1008820.
[http://dx.doi.org/10.1371/journal.ppat.1008820] [PMID: 32845937]
[133]
Leyfman Y, Erick TK, Reddy SS, et al. Potential immunotherapeutic targets for hypoxia due to COVI-FLU. Shock 2020; 54(4): 438-50.
[http://dx.doi.org/10.1097/SHK.0000000000001627] [PMID: 32649367]
[134]
Feng Y, Huang J, Wu J, et al. Safety and feasibility of umbilical cord mesenchymal stem cells in patients with COVID-19 pneumonia: A pilot study. Cell Prolif 2020; 53(12): e12947.
[http://dx.doi.org/10.1111/cpr.12947] [PMID: 33205469]
[135]
Liu B, Li M, Zhou Z, Guan X, Xiang Y. Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)? J Autoimmun 2020; 111: 102452.
[http://dx.doi.org/10.1016/j.jaut.2020.102452] [PMID: 32291137]
[136]
Bhagavathula AS, Aldhaleei W, Rovetta A, Rahmani J. Vaccines and Drug Therapeutics to Lock Down Novel Coronavirus Disease 2019 (COVID-19): A Systematic Review of Clinical Trials. Cureus 2020; 12(5): e8342.
[http://dx.doi.org/10.7759/cureus.8342] [PMID: 32494546]
[137]
Sahu KK, Mishra AK, Lal A. Comprehensive update on current outbreak of novel coronavirus infection (2019-nCoV). Ann Transl Med 2020; 8(6): 393.
[http://dx.doi.org/10.21037/atm.2020.02.92] [PMID: 32355837]
[138]
Shafiee A, Moradi L, Lim M, Brown J. Coronavirus disease 2019: A tissue engineering and regenerative medicine perspective. Stem Cells Trans Med 2019; 10(1): 27-38.
[139]
Karami A. A Summary of Effective Management of COVID-19 in Iran Collaboration of Civil and Defense forces. CBW Magazine 2020; 13.(2)
[140]
Atluri S, Manchikanti L, Hirsch JA. H. is Vice, and L. Manchikanti, Expanded umbilical cord mesenchymal stem cells (UC-MSCs) as a therapeutic strategy in managing critically ill COVID-19 patients: the case for compassionate use. Pain Physician 2020; 23(2): E71-83.
[PMID: 32214286]
[141]
Singh VK, Mishra A, Singh S, et al. Emerging prevention and treatment strategies to control COVID-19. Pathogens 2020; 9(6): 501.
[http://dx.doi.org/10.3390/pathogens9060501] [PMID: 32585805]
[142]
Deshmukh V. COVID-19: A conundrum to decipher. Eur Rev Med Pharmacol Sci 2020; 24(10): 5830-41.
[143]
DE EVIDÊNCIAS SDP. Rapid review of therapeutic alternatives for Human Coronavirus: update. . Virtual Health Library 2020.
[144]
Qiu R, et al. Outcome reporting from protocols of clinical trials of Coronavirus Disease 2019 (COVID-19): A review. medRxiv 2020; 2020-03.
[http://dx.doi.org/10.1101/2020.03.04.20031401]
[145]
Mallikarjuna C. Coronavirus-Bibliography. IITHLibrary 2020.
[146]
Maron BA, Gladwin MT, Bonnet S, et al. Perspectives on Cardiopulmonary Critical Care for Patients With COVID-19: From Members of the American Heart Association Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation. J Am Heart Assoc 2020; 9(14): e017111.
[http://dx.doi.org/10.1161/JAHA.120.017111] [PMID: 32552164]
[147]
Gorman E, Shankar-Hari M, Hopkins P, et al. Repair of Acute Respiratory Distress Syndrome by Stromal Cell Administration in COVID-19 (REALIST-COVID-19): A structured summary of a study protocol for a randomised, controlled trial. Trials 2020; 21(1): 462.
[http://dx.doi.org/10.1186/s13063-020-04416-w] [PMID: 32493473]
[148]
Banking CB, Blood C, Works HI. Could umbilical cord stem cells help treat patients with Coronavirus (COVID-19)?. Blue print biobank 2020.
[149]
Raza SS, Seth P, Khan MA. ‘Primed’Mesenchymal Stem Cells: a Potential Novel Therapeutic for COVID19 Patients. Stem Cell Rev Rep 2020; 1-10.
[PMID: 32592163]
[150]
Abraham A, Krasnodembskaya A. Mesenchymal stem cell-derived extracellular vesicles for the treatment of acute respiratory distress syndrome. Stem Cells Transl Med 2020; 9(1): 28-38.
[http://dx.doi.org/10.1002/sctm.19-0205] [PMID: 31647191]
[151]
Horie S, McNicholas B, Rezoagli E, et al. Emerging pharmacological therapies for ARDS: COVID-19 and beyond. Intensive Care Med 2020; 46(12): 2265-83.
[http://dx.doi.org/10.1007/s00134-020-06141-z] [PMID: 32654006]
[152]
Millar JE, von Bahr V, Malfertheiner MV, et al. Administration of mesenchymal stem cells during ECMO results in a rapid decline in oxygenator performance. Thorax 2019; 74(2): 194-6.
[http://dx.doi.org/10.1136/thoraxjnl-2017-211439] [PMID: 29622695]
[153]
Cruz FF, Rocco PRM. Cell therapy for acute respiratory distress syndrome patients: the START study. J Thorac Dis 2019; 11(S9) (Suppl. 9): S1329-32.
[http://dx.doi.org/10.21037/jtd.2019.04.22] [PMID: 31245124]
[154]
Han J, Liu Y, Liu H, Li Y. Genetically modified mesenchymal stem cell therapy for acute respiratory distress syndrome. Stem Cell Res Ther 2019; 10(1): 386.
[http://dx.doi.org/10.1186/s13287-019-1518-0] [PMID: 31843004]
[155]
Boyle AJ, O’Kane CM, McAuley DF. Where next for cell-based therapy in ARDS. Thorax 2019; 74(1): 13-5.
[http://dx.doi.org/10.1136/thoraxjnl-2018-212272] [PMID: 30420408]
[156]
Hussain M, Xu C, Ahmad M, et al. Acute respiratory distress syndrome: bench-to-bedside approaches to improve drug development. Clin Pharmacol Ther 2018; 104(3): 484-94.
[http://dx.doi.org/10.1002/cpt.1034] [PMID: 29484641]
[157]
Laffey JG, Matthay MA. Fifty years of research in ARDS. Cell-based therapy for acute respiratory distress syndrome. Biology and potential therapeutic value. Am J Respir Crit Care Med 2017; 196(3): 266-73.
[http://dx.doi.org/10.1164/rccm.201701-0107CP] [PMID: 28306336]
[158]
Chrzanowski W, Kim SY, McClements L. Can Stem Cells Beat COVID-19: Advancing Stem Cells and Extracellular Vesicles Toward Mainstream Medicine for Lung Injuries Associated With SARS-CoV-2 Infections. Front Bioeng Biotechnol 2020; 8: 554.
[http://dx.doi.org/10.3389/fbioe.2020.00554] [PMID: 32574317]
[159]
Amann EM. Immunomodulatory and regenerative effects of mesenchymal stromal cells in trauma. Doctoral dissertation, Universität Ulm 2019.
[160]
Guillamat-Prats R, Camprubí-Rimblas M, Bringué J, Tantinyà N, Artigas A. Cell therapy for the treatment of sepsis and acute respiratory distress syndrome. Ann Transl Med 2017; 5(22): 446.
[http://dx.doi.org/10.21037/atm.2017.08.28] [PMID: 29264363]
[161]
Robinson MJ, Krasnodembskaya AD. Therapeutic targeting of metabolic alterations in acute respiratory distress syndrome. Eur Respir Rev 2020; 29(156): 200114.
[http://dx.doi.org/10.1183/16000617.0114-2020] [PMID: 32620587]
[162]
Matthay MA, McAuley DF, Ware LB. Clinical trials in acute respiratory distress syndrome: challenges and opportunities. Lancet Respir Med 2017; 5(6): 524-34.
[http://dx.doi.org/10.1016/S2213-2600(17)30188-1] [PMID: 28664851]
[163]
Horie S, Gonzalez HE, Laffey JG, Masterson CH. Cell therapy in acute respiratory distress syndrome. J Thorac Dis 2018; 10(9): 5607-20.
[http://dx.doi.org/10.21037/jtd.2018.08.28] [PMID: 30416812]
[164]
Shaw TD, McAuley DF, O’Kane CM. Emerging drugs for treating the acute respiratory distress syndrome. Expert Opin Emerg Drugs 2019; 24(1): 29-41.
[http://dx.doi.org/10.1080/14728214.2019.1591369] [PMID: 30841764]
[165]
Laroye C, Gibot S, Reppel L, Bensoussan D. Concise review: mesenchymal stromal/stem cells: a new treatment for sepsis and septic shock? Stem Cells 2017; 35(12): 2331-9.
[http://dx.doi.org/10.1002/stem.2695] [PMID: 28856759]
[166]
Patry C, Doniga T, Lenz F, et al. Increased mobilization of mesenchymal stem cells in patients with acute respiratory distress syndrome undergoing extracorporeal membrane oxygenation. PLoS One 2020; 15(1): e0227460.
[http://dx.doi.org/10.1371/journal.pone.0227460] [PMID: 31986159]
[167]
Lian J, Lin J, Zakaria N, Yahaya BH. Acute lung injury: Disease modelling and the therapeutic potential of stem cells. In: Cell Biology and Translational Medicine. . Cham: Springer 2020; 10: pp. 149-66.
[168]
Rezoagli E. The Safety and Efficiency of Addressing ARDS Using Stem Cell Therapies in Clinical Trials. In: Stem Cell-Based Therapy for Lung Disease. Cham: Springer 2019; pp. 219-38.
[http://dx.doi.org/10.1007/978-3-030-29403-8_12]
[169]
Silva PL, Pelosi P, Rocco PRM. Personalized pharmacological therapy for ARDS: a light at the end of the tunnel. Expert Opin Investig Drugs 2020; 29(1): 49-61.
[http://dx.doi.org/10.1080/13543784.2020.1699531] [PMID: 31778609]
[170]
Guillamat-Prats R, Artigas A. Current Status of Stem Cell Therapy for Sepsis and Acute Respiratory Distress Syndrome. In: Innovations in Cell Research and Therapy. IntechOpen 2019.
[171]
Kyriazopoulou E, Giamarellos-Bourboulis EJ. Pharmacological management of sepsis in adults with a focus on the current gold standard treatments and promising adjunctive strategies: evidence from the last five years. Expert Opin Pharmacother 2019; 20(8): 991-1007.
[http://dx.doi.org/10.1080/14656566.2019.1589451] [PMID: 30879348]
[172]
Vasudevan A, Mantan M, Krishnamurthy S, et al. Managing children with renal diseases during the COVID-19 pandemic. Indian Pediatr 2020; 57(7): 641-51.
[http://dx.doi.org/10.1007/s13312-020-1893-8] [PMID: 32727941]
[173]
Lewis SR. Pharmacological agents for adults with acute respiratory distress syndrome. Cochrane Database Syst Rev 2019; 7(7): CD004477.
[http://dx.doi.org/10.1002/14651858.CD004477.pub3]
[174]
Rosenheck J, Pietras C, Cantu E. Early graft dysfunction after lung transplantation. Curr Pulmonol Rep 2018; 7(4): 176-87.
[http://dx.doi.org/10.1007/s13665-018-0213-4] [PMID: 31548919]
[175]
Artigas A. 25th International Symposium on Infections in the Critically Ill. Patient Med Sci 2020; 8: 13.
[176]
Homolak J, Kodvanj I. Widely available lysosome targeting agents should be considered as potential therapy for COVID-19. Int J Antimicrob Agents 2020; 56(2): 106044.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106044] [PMID: 32522674]
[177]
Lotfi M, Rezaei N. SARS-CoV-2: A comprehensive review from pathogenicity of the virus to clinical consequences. J Med Virol 2020; 92(10): 1864-74.
[http://dx.doi.org/10.1002/jmv.26123] [PMID: 32492197]
[178]
Gentile P, Sterodimas A, Pizzicannella J, Calabrese C, Garcovich S. Research progress on Mesenchymal Stem Cells (MSCs), Adipose-Derived Mesenchymal Stem Cells (AD-MSCs), Drugs, and Vaccines in Inhibiting COVID-19 Disease. Aging Dis 2020; 11(5): 1191-201.
[http://dx.doi.org/10.14336/AD.2020.0711] [PMID: 33014532]
[179]
Jeyaraman M, Somasundaram R, Anudeep TC, et al. Mesenchymal Stem Cells (MSCs) as a Novel Therapeutic Option for nCOVID-19—A Review. Open Journal of Regenerative Medicine 2020; 9(2): 20-35.
[http://dx.doi.org/10.4236/ojrm.2020.92004]
[180]
Jeyaraman M, Ranjan R, Kumar R, et al. Cellular therapy: shafts of light emerging for COVID-19. Stem Cell Investig 2020; 7: 11.
[http://dx.doi.org/10.21037/sci-2020-022] [PMID: 32695804]
[181]
Özkan S, Koyutürk M. Covid-19 Hastalarında Mezenkimal Kök Hücre Tedavisi ve Yeni Yaklaşımlar. Cerrahpasa Medical Journal 2020; 44(2): 57-64.
[http://dx.doi.org/10.5152/cjm.2020.20017]
[182]
Pooladanda V, Thatikonda S, Godugu C. The current understanding and potential therapeutic options to combat COVID-19. Life Sci 2020; 254: 117765.
[http://dx.doi.org/10.1016/j.lfs.2020.117765] [PMID: 32437797]
[183]
Tavakoli S, Ghaderi Jafarbeigloo HR, Shariati A, et al. Mesenchymal stromal cells; a new horizon in regenerative medicine. J Cell Physiol 2020; 235(12): 9185-210.
[http://dx.doi.org/10.1002/jcp.29803] [PMID: 32452052]
[184]
Agrawal M, Saraf S, Saraf S, et al. In-line treatments and clinical initiatives to fight against COVID-19 outbreak. Respir Med 2022; 191: 106192.
[http://dx.doi.org/10.1016/j.rmed.2020.106192] [PMID: 33199136]
[185]
Zhao RC. Stem Cell–Based Therapy for Coronavirus Disease 2019. Stem Cells Dev 2020; 29(11): 679-81.
[http://dx.doi.org/10.1089/scd.2020.0071] [PMID: 32292113]
[186]
Rajarshi K, Chatterjee A, Ray S. Combating COVID-19 with mesenchymal stem cell therapy. Biotechnol Rep (Amst) 2020; 26: e00467.
[http://dx.doi.org/10.1016/j.btre.2020.e00467] [PMID: 32420049]
[187]
Ghosh A. A review of mesenchymal stem cell therapy for severe SARS-CoV-2 infection. Praxis Undergraduate Medical Research Journal 2020.
[188]
Ribeiro TB, et al. Iniciativas brasileiras de estudos de intervenção em andamento para a COVID-19. SciELO Preprints 2020.
[189]
Sahu K, Kumar R. Preventive and treatment strategies of COVID-19: From community to clinical trials. J Family Med Prim Care 2020; 9(5): 2149-57.
[http://dx.doi.org/10.4103/jfmpc.jfmpc_728_20] [PMID: 32754463]
[190]
Ahamad S, Branch S, Harrelson S, Hussain MK, Saquib M, Khan S. Primed for global coronavirus pandemic: Emerging research and clinical outcome. Eur J Med Chem 2021; 209: 112862.
[http://dx.doi.org/10.1016/j.ejmech.2020.112862] [PMID: 33070079]
[191]
Ribeiro TB, Mazotti TA, Silva NAO, Stein AT, Diaz-Quijano FA, Melo DO. Avaliação da resposta inicial de desenvolvimento de ensaios clínicos para COVID-19 no Brasil. Rev Bras Epidemiol 2020; 23: e200104.
[http://dx.doi.org/10.1590/1980-549720200104]
[192]
Hossein-khannazer N, Shokoohian B, Shpichka A, Aghdaei HA, Timashev P, Vosough M. Novel therapeutic approaches for treatment of COVID-19. J Mol Med 2020; 98(6): 789-803.
[http://dx.doi.org/10.1007/s00109-020-01927-6] [PMID: 32494931]
[193]
Baklaushev V, et al. COVID-19. Aetiology, pathogenesis, diagnosis and treatment. Journal of Clinical Practice 2020; 11(1): 7-20.
[194]
Бaклayшeв BП, et al. COVID-19COVID-19. Etiology, pathogenesis, diagnosis and treatment. Clin Pract 2020; 11(1): 7-20.
[195]
Song X, Hu W, Yu H, Zhao L, Zhao Y, Zhao Y. High expression of angiotensin-converting enzyme-2 (ACE2) on tissue macrophages that may be targeted by virus SARS-CoV-2 in COVID-19 patients. bioRxiv 2020; 2020-07.
[http://dx.doi.org/10.1101/2020.07.18.210120]
[196]
Wang J, Jiang M, Chen X, Montaner LJ. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J Leukoc Biol 2020; 108(1): 17-41.
[http://dx.doi.org/10.1002/JLB.3COVR0520-272R] [PMID: 32534467]
[197]
Chakhalian D, Shultz RB, Miles CE, Kohn J. Opportunities for biomaterials to address the challenges of COVID -19. J Biomed Mater Res A 2020; 108(10): 1974-90.
[http://dx.doi.org/10.1002/jbm.a.37059] [PMID: 32662571]
[198]
Solinas C, Perra L, Aiello M, Migliori E, Petrosillo N. A critical evaluation of glucocorticoids in the management of severe COVID-19. Cytokine Growth Factor Rev 2020; 54: 8-23.
[http://dx.doi.org/10.1016/j.cytogfr.2020.06.012] [PMID: 32616381]
[199]
Monpara JD, Sodha SJ, Gupta PK. COVID-19 associated complications and potential therapeutic targets. Eur J Pharmacol 2020; 886: 173548.
[http://dx.doi.org/10.1016/j.ejphar.2020.173548] [PMID: 32926918]
[200]
Oseltamivir no tratamento da cOVID-19. Revisão sistemática rápida 2020. Available from: https://oxfordbrazilebm.com/wp-content/uploads/2020/05/RS_rapida_oseltamivir_Covid_19.pdf
[201]
Krawczenko A, Klimczak A. Adipose tissue-derived mesenchymal stem/stromal cells and their contribution to angiogenic processes in tissue regeneration. Int J Mol Sci 2022; 23(5): 2425.
[http://dx.doi.org/10.3390/ijms23052425] [PMID: 35269568]
[202]
Li JP, Wu KH, Chao WR, Lee YJ, Yang SF, Chao YH. Immunomodulation of mesenchymal stem cells in acute lung injury: from preclinical animal models to treatment of severe COVID-19. Int J Mol Sci 2022; 23(15): 8196.
[http://dx.doi.org/10.3390/ijms23158196] [PMID: 35897770]
[203]
Hao J. Stem cell therapy for COVID-19, ARDS and pulmonary fibrosis. Cell Prolif 2020; 53(12): e12939.
[204]
Afarid M, Sanie-Jahromi F. Mesenchymal stem cells and COVID-19: Cure, prevention, and vaccination. Stem Cells Int 2021; 2021: 1-12.
[http://dx.doi.org/10.1155/2021/6666370] [PMID: 34035820]
[205]
Dauletova M, Hafsan H, Mahhengam N, Zekiy AO, Ahmadi M, Siahmansouri H. Mesenchymal stem cell alongside exosomes as a novel cell-based therapy for COVID-19: A review study. Clin Immunol 2021; 226: 108712.
[http://dx.doi.org/10.1016/j.clim.2021.108712] [PMID: 33684527]
[206]
Zambrano GMT. Stem cell nebulization therapy for COVID-19 infection: radiological and clinical outcomes. Egypt J Radiol Nucl Med 2021; 52(1): 1-11.
[207]
Saburi E. The use of mesenchymal stem cells in the process of treatment and tissue regeneration after recovery in patients with Covid-19. Gene 2021; 777: 145471.
[http://dx.doi.org/10.1016/j.gene.2021.145471]
[208]
Rodriguez HC. Mesenchymal Stem Cells and Extracellular Vesicles: An Emerging Alternative to Combat COVID-19. intechopen 2021.
[209]
Shi L, et al. Treatment with Human Umbilical Cord-Derived Mesenchymal Stem Cells for Severe COVID-19 Patients with Lung Damage: A Randomised, Double-Blind, Placebo-Controlled Phase 2 Trial. medrxiv 2020; 2020: 20213553.
[210]
Lanzoni G. Umbilical Cord Mesenchymal Stem Cells for COVID-19 ARDS: A Double Blind, Phase 1/2a, Randomized Controlled Trial. Stem Cells Trans Med 2020; 10(5): 660-73.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy