Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Natural Products and Biological Activities of Plants from Genus Morus: 2011-2023

Author(s): Yan-Ao Wang, Chao Liu, Xu Guo, Meng-Qi Zhang, Shutao Sun, Jin-Yue Sun, Afsar Khan*, Lu Liu* and Ying-Ying Chen*

Volume 23, Issue 28, 2023

Published on: 05 October, 2023

Page: [2640 - 2698] Pages: 59

DOI: 10.2174/0115680266257370230920055003

Price: $65

Abstract

Species of genus Morus (family Moraceae) have been used as traditional medicinal and edible resources since ancient times. Genus Morus has been acknowledged as a promising resource for the exploration of novel compounds with various bioactivities. Phytochemical investigations of the genus have led to the discovery of more than approximately 453 natural products from 2011 to 2023, mainly including flavonoids, Diels-Alder adducts, 2-arylbenzfuran, alkaloids and stilbenes. Bioactive constituents and extracts of this genus displayed a wide range of impressive biological properties including antidiabetic, anti-inflammatory, antioxidant, anti-cancer, hepatoprotective, renoprotective, and some other activities. Herein, the research progress of this genus Morus from 2011 to 2023 on phytochemistry and pharmacology are systematically presented and discussed for the first time. This current review provides the easiest access to the information on genus Morus for readers and researchers in view of enhancing the continuity on research done on this genus.

Keywords: Genus Morus, Traditional uses, Phytochemistry, Pharmacology, Prenylated flavonoids, Diels-alder adducts.

Graphical Abstract
[1]
Chinese Academy of Sciences. Flora of China; Science Press: Beijing, 2003, 5, pp. 22-26.
[2]
National Pharmacopoeia Committee. Pharmacopoeia of the People’s Republic of China; China Medical Science and Technology Press: Beijing, , 2020; pp. 310-313.
[3]
Vijayan, K.; Chauhan, S.; Das, N.K.; Chakraborti, S.P.; Roy, B.N. Leaf yield component combining abilities in mulberry (Morus spp.). Euphytica, 1997, 98(1/2), 47-52.
[http://dx.doi.org/10.1023/A:1003066613099]
[4]
Chan, E.W.; Lye, P.Y.; Wong, S.K. Phytochemistry, pharmacology, and clinical trials of Morus alba. Chin. J. Nat. Med., 2016, 14(1), 17-30.
[PMID: 26850343]
[5]
Yan, J.; Ruan, J.; Huang, P.; Sun, F.; Zheng, D.; Zhang, Y.; Wang, T. The structure–activity relationship review of the main bioactive constituents of Morus genus plants. J. Nat. Med., 2020, 74(2), 331-340.
[http://dx.doi.org/10.1007/s11418-019-01383-8] [PMID: 31897975]
[6]
Yang, Y.; Tan, Y.X.; Chen, R.Y.; Kang, J. The latest review on the polyphenols and their bioactivities of Chinese Morus plants. J. Asian Nat. Prod. Res., 2014, 16(6), 690-702.
[http://dx.doi.org/10.1080/10286020.2014.923405] [PMID: 24911924]
[7]
Kang, J.; Cui, X.Q.; Wang, H.Q.; Yu, D.Q.; Chen, R.Y. Two new Diels–Alder-type adducts from the stem barks of Morus yunanensis. J. Asian Nat. Prod. Res., 2014, 16(6), 617-622.
[http://dx.doi.org/10.1080/10286020.2014.923407] [PMID: 24965853]
[8]
Wang, Y.N.; Liu, M.F.; Hou, W.Z.; Xu, R.M.; Gao, J.; Lu, A.Q.; Xie, M.P.; Li, L.; Zhang, J.J.; Peng, Y.; Ma, L.L.; Wang, X.L.; Shi, J.G.; Wang, S.J. Bioactive benzofuran derivatives from Cortex Mori radicis, and their neuroprotective and analgesic activities mediated by mGluR(1). Molecules, 2017, 22(2), 236.
[http://dx.doi.org/10.3390/molecules22020236]
[9]
Lu, H.P.; Jia, Y.N.; Peng, Y.L.; Yu, Y.; Sun, S.L.; Yue, M.T.; Pan, M.H.; Zeng, L.S.; Xu, L. Oxyresveratrol, a Stilbene Compound from Morus alba L. Twig Extract Active Against Trichophyton rubrum. Phytother. Res., 2017, 31(12), 1842-1848.
[http://dx.doi.org/10.1002/ptr.5926] [PMID: 29024160]
[10]
Sánchez-Salcedo, E.M.; Mena, P.; García-Viguera, C.; Hernández, F.; Martínez, J.J. (Poly)phenolic compounds and antioxidant activity of white (Morus alba) and black (Morus nigra) mulberry leaves: Their potential for new products rich in phytochemicals. J. Funct. Foods, 2015, 18, 1039-1046.
[http://dx.doi.org/10.1016/j.jff.2015.03.053]
[11]
Król, E.; Jeszka-Skowron, M.; Krejpcio, Z.; Flaczyk, E.; Wójciak, R.W. The effects of supplementary mulberry leaf (morus alba) extracts on the trace element status (Fe, Zn and Cu) in relation to diabetes management and antioxidant indices in diabetic rats. Biol. Trace Elem. Res., 2016, 174(1), 158-165.
[http://dx.doi.org/10.1007/s12011-016-0696-1] [PMID: 27071614]
[12]
Hardianti, B.; Umeyama, L.; Li, F.; Yokoyama, S.; Hayakawa, Y. Anti-inflammatory compounds moracin O and P from Morus alba Linn. (Sohakuhi) target the NF-κB pathway. Mol. Med. Rep., 2020, 22(6), 5385-5391.
[http://dx.doi.org/10.3892/mmr.2020.11615] [PMID: 33173971]
[13]
Cheng, K.C.; Wang, C.J.; Chang, Y.C.; Hung, T.W.; Lai, C.J.; Kuo, C.W.; Huang, H.P. Mulberry fruits extracts induce apoptosis and autophagy of liver cancer cell and prevent hepatocarcinogenesis in vivo. Yao Wu Shi Pin Fen Xi, 2020, 28(1), 84-93.
[http://dx.doi.org/10.38212/2224-6614.1223] [PMID: 31883611]
[14]
Dalmagro, A.P.; Camargo, A.; Zeni, A.L.B. Morus nigra and its major phenolic, syringic acid, have antidepressant-like and neuroprotective effects in mice. Metab. Brain Dis., 2017, 32(6), 1963-1973.
[http://dx.doi.org/10.1007/s11011-017-0089-y] [PMID: 28822021]
[15]
Deng, Q.; Wang, X.; Chen, H.; Zhao, C.; Gong, X.; Zhou, X. Structural characterization, modification and hepatoprotective effects of polysaccharide from Mori Fructus. Int. J. Biol. Macromol., 2020, 153, 357-363.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.300] [PMID: 32112846]
[16]
Ye, M.; Ke, Y.; Liu, B.; Yuan, Y.; Wang, F.; Bu, S.; Zhang, Y. Root bark of Morus alba ameliorates the depressive-like behaviors in diabetic rats. Neurosci. Lett., 2017, 637, 136-141.
[http://dx.doi.org/10.1016/j.neulet.2016.11.036] [PMID: 27871994]
[17]
Ahmad, A.; Gupta, G.; Afzal, M.; Kazmi, I.; Anwar, F. Antiulcer and antioxidant activities of a new steroid from Morus alba. Life Sci., 2013, 92(3), 202-210.
[http://dx.doi.org/10.1016/j.lfs.2012.11.020] [PMID: 23270943]
[18]
Seo, K.H.; Lee, D.Y.; Jeong, R.H.; Lee, D.S.; Kim, Y.E.; Hong, E.K.; Kim, Y.C.; Baek, N.I. Neuroprotective effect of prenylated arylbenzofuran and flavonoids from morus alba fruits on glutamate-induced oxidative injury in HT22 hippocampal cells. J. Med. Food, 2015, 18(4), 403-408.
[http://dx.doi.org/10.1089/jmf.2014.3196] [PMID: 25514545]
[19]
Thabti, I.; Elfalleh, W.; Hannachi, H.; Ferchichi, A.; Campos, M.D.G. Identification and quantification of phenolic acids and flavonol glycosides in Tunisian Morus species by HPLC-DAD and HPLC–MS. J. Funct. Foods, 2012, 4(1), 367-374.
[http://dx.doi.org/10.1016/j.jff.2012.01.006]
[20]
Tsuji, P.A.; Stephenson, K.K.; Wade, K.L.; Liu, H.; Fahey, J.W. Structure-activity analysis of flavonoids: Direct and indirect antioxidant, and antiinflammatory potencies and toxicities. Nutr. Cancer, 2013, 65(7), 1014-1025.
[http://dx.doi.org/10.1080/01635581.2013.809127] [PMID: 24087992]
[21]
Xu, L.; Yu, M.; Niu, L.; Huang, C.; Wang, Y.; Wu, C.; Yang, P.; Hu, X. Phenolic compounds isolated from Morus nigra and their α-glucosidase inhibitory activities. Nat. Prod. Res., 2020, 34(5), 605-612.
[http://dx.doi.org/10.1080/14786419.2018.1491041] [PMID: 30369248]
[22]
Niu, S.L.; Tong, Z.F.; Zhang, Y.; Liu, T.L.; Tian, C.L.; Zhang, D.X.; Liu, M.C.; Li, B.; Tian, J.L. Novel protein tyrosine phosphatase 1B inhibitor-geranylated flavonoid from mulberry leaves ameliorates insulin resistance. J. Agric. Food Chem., 2020, 68(31), 8223-8231.
[http://dx.doi.org/10.1021/acs.jafc.0c02720] [PMID: 32650643]
[23]
Luo, S.Y.; Zhu, J.Y.; Zou, M.F.; Yin, S.; Tang, G.H. Mulberry Diels-Alder-type adducts: Isolation, structure, bioactivity, and synthesis. Nat. Prod. Bioprospect., 2022, 12(1), 31.
[http://dx.doi.org/10.1007/s13659-022-00355-y] [PMID: 36050566]
[24]
Wu, X.; Li, M.; Wang, X.; Shen, T.; Wang, S.; Ren, D. Two new 2-arylbenzofurnan derivatives from the leaves of Morus alba. Nat. Prod. Res., 2019, 33(2), 204-211.
[http://dx.doi.org/10.1080/14786419.2018.1443095] [PMID: 29516755]
[25]
Zhou, J.; Li, S.; Wang, W.; Guo, X.; Lu, X.; Yan, X.; Huang, D.; Wei, B.; Cao, L. Variations in the levels of mulberroside A, oxyresveratrol, and resveratrol in mulberries in different seasons and during growth. ScientificWorldJournal, 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/380692] [PMID: 24023529]
[26]
Piao, S.; Chen, L.; Kang, N.; Qiu, F. Simultaneous determination of five characteristic stilbene glycosides in root bark of Morus albus L. (Cortex Mori) using high-performance liquid chromatography. Phytochem. Anal., 2011, 22(3), 230-235.
[http://dx.doi.org/10.1002/pca.1270] [PMID: 21046687]
[27]
Wang, X.; Kang, J.; Wang, H.Q.; Liu, C.; Li, B.M.; Chen, R.Y. Three new alkaloids from the fruits of Morus alba. J. Asian Nat. Prod. Res., 2014, 16(5), 453-458.
[http://dx.doi.org/10.1080/10286020.2014.900047] [PMID: 24679096]
[28]
Ali, A.; Ali, M. New triterpenoids from Morus alba L. stem bark. Nat. Prod. Res., 2013, 27(6), 524-531.
[http://dx.doi.org/10.1080/14786419.2012.676547] [PMID: 22480349]
[29]
Zeni, A.L.B.; Moreira, T.D.; Dalmagro, A.P.; Camargo, A.; Bini, L.A.; Simionatto, E.L.; Scharf, D.R. Evaluation of phenolic compounds and lipid-lowering effect of Morus nigra leaves extract. An. Acad. Bras. Cienc., 2017, 89(4), 2805-2815.
[http://dx.doi.org/10.1590/0001-3765201720160660] [PMID: 29236863]
[30]
Chen, C.; Zhang, B.; Fu, X.; Liu, R.H. A novel polysaccharide isolated from mulberry fruits (Murus alba L.) and its selenide derivative: Structural characterization and biological activities. Food Funct., 2016, 7(6), 2886-2897.
[http://dx.doi.org/10.1039/C6FO00370B] [PMID: 27241036]
[31]
Kim, J.Y.; Lee, W.S.; Kim, Y.S.; Curtis-Long, M.J.; Lee, B.W.; Ryu, Y.B.; Park, K.H. Isolation of cholinesterase-inhibiting flavonoids from Morus lhou. J. Agric. Food Chem., 2011, 59(9), 4589-4596.
[http://dx.doi.org/10.1021/jf200423g] [PMID: 21434689]
[32]
Yang, Z.G.; Matsuzaki, K.; Takamatsu, S.; Kitanaka, S. Inhibitory effects of constituents from Morus alba var. multicaulis on differentiation of 3T3-L1 cells and nitric oxide production in RAW264.7 cells. Molecules, 2011, 16(7), 6010-6022.
[http://dx.doi.org/10.3390/molecules16076010] [PMID: 21772233]
[33]
Cho, J.K.; Ryu, Y.B.; Curtis-Long, M.J.; Kim, J.Y.; Kim, D.; Lee, S.; Lee, W.S.; Park, K.H. Inhibition and structural reliability of prenylated flavones from the stem bark of Morus lhou on β-secretase (BACE-1). Bioorg. Med. Chem. Lett., 2011, 21(10), 2945-2948.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.060] [PMID: 21511472]
[34]
Hošek, J.; Bartos, M.; Chudík, S.; Dall’Acqua, S.; Innocenti, G.; Kartal, M.; Kokoška, L.; Kollár, P.; Kutil, Z.; Landa, P.; Marek, R.; Závalová, V.; Žemlička, M.; Šmejkal, K. Natural compound cudraflavone B shows promising anti-inflammatory properties in vitro. J. Nat. Prod., 2011, 74(4), 614-619.
[http://dx.doi.org/10.1021/np100638h] [PMID: 21319773]
[35]
Hu, X.; Wu, J.W.; Zhang, X.D.; Zhao, Q.S.; Huang, J.M.; Wang, H.Y.; Hou, A.J. Isoprenylated flavonoids and adipogenesis-promoting constituents from Morus nigra. J. Nat. Prod., 2011, 74(4), 816-824.
[http://dx.doi.org/10.1021/np100907d] [PMID: 21401118]
[36]
Hunyadi, A.; Martins, A.; Hsieh, T.J.; Seres, A.; Zupkó, I. Chlorogenic acid and rutin play a major role in the in vivo anti-diabetic activity of Morus alba leaf extract on type II diabetic rats. PLoS One, 2012, 7(11), e50619.
[http://dx.doi.org/10.1371/journal.pone.0050619] [PMID: 23185641]
[37]
Zheng, Z.P.; Tan, H.Y.; Wang, M. Tyrosinase inhibition constituents from the roots of Morus australis. Fitoterapia, 2012, 83(6), 1008-1013.
[http://dx.doi.org/10.1016/j.fitote.2012.06.001] [PMID: 22698714]
[38]
Zheng, Z.F.; Zhang, Q.J.; Chen, R.Y.; Yu, D.Q. Chemical constituents from Morus notabilis and their cytotoxic effect. Four new flavonoids from Morus australis. J. Asian Nat. Prod. Res., 2012, 14(3), 263-269.
[http://dx.doi.org/10.1080/10286020.2011.650917] [PMID: 22332774]
[39]
Wang, Y.; Xiang, L.; Wang, C.; Tang, C.; He, X. Antidiabetic and antioxidant effects and phytochemicals of mulberry fruit (Morus alba L.) polyphenol enhanced extract. PLoS One, 2013, 8(7), e71144.
[http://dx.doi.org/10.1371/journal.pone.0071144] [PMID: 23936259]
[40]
Pan, Z.; Gang, N.; Xiao-guang, C.; Ruo-yun, C.; Han-ze, Y.; De-quan, Y. Yao Xue Xue Bao, 2015, 50(5)
[41]
Wang, M.; Yu, B.W.; Yu, M.H.; Gao, L.X.; Li, J.Y.; Wang, H.Y.; Li, J.; Hou, A.J. New isoprenylated phenolic compounds from Morus laevigata. Chem. Biodivers., 2015, 12(6), 937-945.
[http://dx.doi.org/10.1002/cbdv.201400210] [PMID: 26080739]
[42]
Zhen, P.; Ni, G.; Tang, Y.F.; Shi, G.R.; Zhang, C.L.; Chen, R.Y.; Chen, X.G.; Yu, D.Q. Two new flavonoids from Morus notabilis. J. Asian Nat. Prod. Res., 2015, 17(9), 888-892.
[http://dx.doi.org/10.1080/10286020.2015.1035714] [PMID: 26121569]
[43]
Zhang, Y.L.; Luo, J.G.; Wan, C.X.; Zhou, Z.B.; Kong, L.Y. Four new flavonoids with α-Glucosidase inhibitory activities from morus alba var. tatarica. Chem. Biodivers., 2015, 12(11), 1768-1776.
[http://dx.doi.org/10.1002/cbdv.201500005] [PMID: 26567954]
[44]
Jeong, J.; Liu, Q.; Kim, S.; Jo, Y.; Mo, E.; Yang, H.; Song, D.; Hwang, B.; Lee, M. Characterization of melanogenesis inhibitory constituents of Morus alba leaves and optimization of extraction conditions using response surface methodology. Molecules, 2015, 20(5), 8730-8741.
[http://dx.doi.org/10.3390/molecules20058730] [PMID: 26007176]
[45]
Jeong, J.Y.; Jo, Y.H.; Kim, S.B.; Liu, Q.; Lee, J.W.; Mo, E.J.; Lee, K.Y.; Hwang, B.Y.; Lee, M.K. Pancreatic lipase inhibitory constituents from Morus alba leaves and optimization for extraction conditions. Bioorg. Med. Chem. Lett., 2015, 25(11), 2269-2274.
[http://dx.doi.org/10.1016/j.bmcl.2015.04.045] [PMID: 25935644]
[46]
Jung, J.W.; Park, J.H.; Lee, Y.G.; Seo, K.H.; Oh, E.J.; Lee, D.Y.; Lim, D.W.; Han, D.; Baek, N.I. Three new isoprenylated flavonoids from the root bark of Morus alba. Molecules, 2016, 21(9), 1112.
[http://dx.doi.org/10.3390/molecules21091112] [PMID: 27563860]
[47]
Zhang, L.; Tao, G.; Chen, J.; Zheng, Z.P. Characterization of a new flavone and tyrosinase inhibition constituents from the twigs of Morus alba L. Molecules, 2016, 21(9), 1130.
[http://dx.doi.org/10.3390/molecules21091130] [PMID: 27598113]
[48]
Liao, Y.R.; Kuo, P.C.; Tsai, W.J.; Huang, G.J.; Lee, K.H.; Wu, T.S. Bioactive chemical constituents from the root bark of Morus australis. Bioorg. Med. Chem. Lett., 2017, 27(2), 309-313.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.046] [PMID: 27908762]
[49]
Li, M.; Wu, X.; Wang, X.; Shen, T.; Ren, D. Two novel compounds from the root bark of Morus alba L. Nat. Prod. Res., 2018, 32(1), 36-42.
[http://dx.doi.org/10.1080/14786419.2017.1327862] [PMID: 28521570]
[50]
Tran, H.N.K.; Nguyen, V.T.; Kim, J.A.; Rho, S.S.; Woo, M.H.; Choi, J.S.; Lee, J.H.; Min, B.S. Anti-inflammatory activities of compounds from twigs of Morus alba. Fitoterapia, 2017, 120, 17-24.
[http://dx.doi.org/10.1016/j.fitote.2017.05.004] [PMID: 28529178]
[51]
Huang, Q.H.; Lei, C.; Wang, P.P.; Li, J.Y.; Li, J.; Hou, A.J. Isoprenylated phenolic compounds with PTP1B inhibition from Morus alba. Fitoterapia, 2017, 122, 138-143.
[http://dx.doi.org/10.1016/j.fitote.2017.09.006] [PMID: 28916258]
[52]
Gao, L.; Li, Y.D.; Zhu, B.K.; Li, Z.Y.; Huang, L.B.; Li, X.Y.; Wang, F.; Ren, F.C.; Liao, T.G. Two new prenylflavonoids from Morus alba. J. Asian Nat. Prod. Res., 2018, 20(2), 117-121.
[http://dx.doi.org/10.1080/10286020.2017.1343303] [PMID: 28644689]
[53]
Li, H.X.; Jo, E.; Myung, C.S.; Kim, Y.H.; Yang, S.Y. Lipolytic effect of compounds isolated from leaves of mulberry (Morus alba L.) in 3T3-L1 adipocytes. Nat. Prod. Res., 2018, 32(16), 1963-1966.
[http://dx.doi.org/10.1080/14786419.2017.1354190] [PMID: 28722505]
[54]
Ganzon, J.G.; Chen, L.G.; Wang, C.C. 4-O-Caffeoylquinic acid as an antioxidant marker for mulberry leaves rich in phenolic compounds. Yao Wu Shi Pin Fen Xi, 2018, 26(3), 985-993.
[PMID: 29976416]
[55]
Guo, Y.Q.; Tang, G.H.; Lou, L.L.; Li, W.; Zhang, B.; Liu, B.; Yin, S. Prenylated flavonoids as potent phosphodiesterase-4 inhibitors from Morus alba: Isolation, modification, and structure-activity relationship study. Eur. J. Med. Chem., 2018, 144, 758-766.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.057] [PMID: 29291443]
[56]
Zuo, G.Y.; Yang, C.X.; Han, J.; Li, Y.Q.; Wang, G.C. Synergism of prenylflavonoids from Morus alba root bark against clinical MRSA isolates. Phytomedicine, 2018, 39, 93-99.
[http://dx.doi.org/10.1016/j.phymed.2017.12.023] [PMID: 29433688]
[57]
Ha, M.T.; Seong, S.H.; Nguyen, T.D.; Cho, W.K.; Ah, K.J.; Ma, J.Y.; Woo, M.H.; Choi, J.S.; Min, B.S. Chalcone derivatives from the root bark of Morus alba L. act as inhibitors of PTP1B and α-glucosidase. Phytochemistry, 2018, 155, 114-125.
[http://dx.doi.org/10.1016/j.phytochem.2018.08.001] [PMID: 30103164]
[58]
Xu, L.J.; Yu, M.H.; Huang, C.Y.; Niu, L.X.; Wang, Y.F.; Wu, C.Z.; Yang, P.M.; Hu, X. Isoprenylated flavonoids from Morus nigra and their PPAR γ agonistic activities. Fitoterapia, 2018, 127, 109-114.
[http://dx.doi.org/10.1016/j.fitote.2018.02.004] [PMID: 29427594]
[59]
Duc, L. V.; Thu, H.; Thanh, T. B.; Van, B. N. J. I. J. o. P. Chemical constituents and tyrosinase inhibitory activity of aqueous fraction of the leaves of Morus alba L from Vietnam,, 2018, 5(7), 399-403.
[60]
Guo, S.; Liu, L.; Zhang, S.; Yang, C.; Yue, W.; Zhao, H.; Ho, C.T.; Du, J.; Zhang, H.; Bai, N. Chemical characterization of the main bioactive polyphenols from the roots of Morus australis(mulberry). Food Funct., 2019, 10(10), 6915-6926.
[http://dx.doi.org/10.1039/C9FO01457H] [PMID: 31588440]
[61]
Hao, M.; Huang, P.; Ruan, J.; Sun, F.; Han, L.; Liu, M.; Zhang, Y.; Wang, T. Bioactive flavonoids and stilbenes from the leaf of Morus alba var. multicaulis. Fitoterapia, 2021, 154, 105018.
[http://dx.doi.org/10.1016/j.fitote.2021.105018] [PMID: 34450202]
[62]
Qu, K.J.; Wang, B.; Jiang, C.S.; Xie, B.G.; Liu, A.H.; Li, S.W.; Guo, Y.W.; Li, J.; Mao, S.C. Rearranged Diels-Alder adducts and prenylated flavonoids as potential PTP1B inhibitors from Morus nigra. J. Nat. Prod., 2021, 84(8), 2303-2311.
[http://dx.doi.org/10.1021/acs.jnatprod.1c00403] [PMID: 34279099]
[63]
Yang, Y.; Yang, X.; Xu, B.; Zeng, G.; Tan, J.; He, X.; Hu, C.; Zhou, Y. Chemical constituents of Morus alba L. and their inhibitory effect on 3T3-L1 preadipocyte proliferation and differentiation. Fitoterapia, 2014, 98, 222-227.
[http://dx.doi.org/10.1016/j.fitote.2014.08.010] [PMID: 25128426]
[64]
Xu, L.; Huang, T.; Huang, C.; Wu, C.; Jia, A.; Hu, X. Chiral separation, absolute configuration, and bioactivity of two pairs of flavonoid enantiomers from Morus nigra. Phytochemistry, 2019, 163, 33-37.
[http://dx.doi.org/10.1016/j.phytochem.2019.03.029] [PMID: 30986688]
[65]
Kapche, G.; Amadou, D.; Waffo-Teguo, P.; Donfack, J.; Fozing, C.; Harakat, D.; Tchana, A.; Mérillon, J.; Moundipa, P.; Ngadjui, B.; Abegaz, B. Hepatoprotective and antioxidant arylbenzofurans and flavonoids from the twigs of Morus mesozygia. Planta Med., 2011, 77(10), 1044-1047.
[http://dx.doi.org/10.1055/s-0030-1270745] [PMID: 21308616]
[66]
Hu, X.; Ji, J.; Wang, M.; Wu, J.W.; Zhao, Q.S.; Wang, H.Y.; Hou, A.J. New isoprenylated flavonoids and adipogenesis-promoting constituents from Morus notabilis. Bioorg. Med. Chem. Lett., 2011, 21(15), 4441-4446.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.020] [PMID: 21737271]
[67]
Zelová, H.; Hanáková, Z.; Čermáková, Z.; Šmejkal, K.; Dalĺ Acqua, S.; Babula, P.; Cvačka, J.; Hošek, J. Evaluation of anti-inflammatory activity of prenylated substances isolated from Morus alba and Morus nigra. J. Nat. Prod., 2014, 77(6), 1297-1303.
[http://dx.doi.org/10.1021/np401025f] [PMID: 24901948]
[68]
Jung, J.W.; Ko, W.M.; Park, J.H.; Seo, K.H.; Oh, E.J.; Lee, D.Y.; Lee, D.S.; Kim, Y.C.; Lim, D.W.; Han, D.; Baek, N.I. Isoprenylated flavonoids from the root bark of Morus alba and their hepatoprotective and neuroprotective activities. Arch. Pharm. Res., 2015, 38(11), 2066-2075.
[http://dx.doi.org/10.1007/s12272-015-0613-8] [PMID: 25981820]
[69]
Zheng, X.K.; Cao, Y.G.; Ke, Y.Y.; Zhang, Y.L.; Li, F.; Gong, J.H.; Zhao, X.; Kuang, H.X.; Feng, W.S. Phenolic constituents from the root bark of Morus alba L. and their cardioprotective activity in vitro. Phytochemistry, 2017, 135, 128-134.
[http://dx.doi.org/10.1016/j.phytochem.2016.12.006] [PMID: 27974159]
[70]
Chaita, E.; Lambrinidis, G.; Cheimonidi, C.; Agalou, A.; Beis, D.; Trougakos, I.; Mikros, E.; Skaltsounis, A.L.; Aligiannis, N. Anti-melanogenic properties of greek plants. A novel depigmenting agent from Morus alba Wood. Molecules, 2017, 22(4), 514.
[http://dx.doi.org/10.3390/molecules22040514] [PMID: 28333105]
[71]
Hu, X.; Yu, M.H.; Yan, G.R.; Wang, H.Y.; Hou, A.J.; Lei, C. Isoprenylated phenolic compounds with tyrosinase inhibition from Morus nigra. J. Asian Nat. Prod. Res., 2018, 20(5), 488-493.
[http://dx.doi.org/10.1080/10286020.2017.1350653] [PMID: 29191050]
[72]
Cao, Y.; Zheng, X.; Yang, F.; Li, F.; Qi, M.; Zhang, Y.; Zhao, X.; Kuang, H.; Feng, W. Two new phenolic constituents from the root bark of Morus alba L. and their cardioprotective activity. Nat. Prod. Res., 2018, 32(4), 391-398.
[http://dx.doi.org/10.1080/14786419.2017.1309535] [PMID: 28349742]
[73]
Mascarello, A.; Orbem Menegatti, A.C.; Calcaterra, A.; Martins, P.G.A.; Chiaradia-Delatorre, L.D.; D’Acquarica, I.; Ferrari, F.; Pau, V.; Sanna, A.; De Logu, A.; Botta, M.; Botta, B.; Terenzi, H.; Mori, M. Naturally occurring Diels-Alder-type adducts from Morus nigra as potent inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatase B. Eur. J. Med. Chem., 2018, 144, 277-288.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.087] [PMID: 29275228]
[74]
Ha, M.T.; Shrestha, S.; Tran, T.H.; Kim, J.A.; Woo, M.H.; Choi, J.S.; Min, B.S. Inhibition of PTP1B by farnesylated 2-arylbenzofurans isolated from Morus alba root bark: Unraveling the mechanism of inhibition based on in vitro and in silico studies. Arch. Pharm. Res., 2020, 43(9), 961-975.
[http://dx.doi.org/10.1007/s12272-020-01269-4] [PMID: 32978714]
[75]
Won, H.; Son, M.G.; Pel, P.; Nhoek, P.; An, C.Y.; Kim, Y.M.; Chae, H.S.; Chin, Y.W. Chemical constituents from Morus alba with proprotein convertase subtilisin/kexin type 9 expression and secretion inhibitory activity. Org. Biomol. Chem., 2023, 21(13), 2801-2808.
[http://dx.doi.org/10.1039/D3OB00225J] [PMID: 36920451]
[76]
Zhu, J.Y.; Weng, H.Z.; Tang, D.K.; Long, J.C.; Tang, Z.Y.; Chen, Y.; Yin, S.; Tang, G.H. Prenylated dihydroflavones from the root barks of Morus alba. Nat. Prod. Res., 2023, 1-8.
[http://dx.doi.org/10.1080/14786419.2023.2189710] [PMID: 36927252]
[77]
Tian, J.L.; Zhao, M.; Xu, J.Y.; Lv, T.M.; Liu, X.C.; Sun, S.; Guan, Q.; Zhou, Z.C.; Wu, J.; Zhao, M.Y.; Li, Y.; Liu, H.X.; Niu, S.L.; Hu, P. Inhibitory mechanism of prenylated flavonoids isolated from mulberry leaves on α-Glucosidase by multi-spectroscopy and molecular dynamics simulation. J. Agric. Food Chem., 2023, 71(23), 9135-9147.
[http://dx.doi.org/10.1021/acs.jafc.3c00776] [PMID: 37265398]
[78]
Fozing, C.; Ali, Z.; Ngadjui, B.; Choudhary, M.; Kapche, G.; Abegaz, B.; Khan, I. Phosphodiesterase I-inhibiting Diels-Alder adducts from the leaves of Morus mesozygia. Planta Med., 2012, 78(2), 154-159.
[http://dx.doi.org/10.1055/s-0031-1280338] [PMID: 22083899]
[79]
Takahashi, M.; Takara, K.; Toyozato, T.; Wada, K. A novel bioactive chalcone of Morus australis inhibits tyrosinase activity and melanin biosynthesis in B16 melanoma cells. J. Oleo Sci., 2012, 61(10), 585-592.
[http://dx.doi.org/10.5650/jos.61.585] [PMID: 23018855]
[80]
Hu, X.; Wu, J.W.; Wang, M.; Yu, M.H.; Zhao, Q.S.; Wang, H.Y.; Hou, A.J. 2-Arylbenzofuran, flavonoid, and tyrosinase inhibitory constituents of Morus yunnanensis. J. Nat. Prod., 2012, 75(1), 82-87.
[http://dx.doi.org/10.1021/np2007318] [PMID: 22165973]
[81]
Park, J.H.; Jung, Y.J.; Jung, J.W.; Shrestha, S.; Lim, D.W.; Han, D.; Baek, N.I. A new flavonoid glycoside from the root bark of Morus alba L. Nat. Prod. Res., 2014, 28(21), 1859-1863.
[http://dx.doi.org/10.1080/14786419.2014.951852] [PMID: 25174266]
[82]
Yang, Y.; Zhang, T.; Xiao, L.; Chen, R.Y. Two novel flavanes from the leaves of Morus alba L. J. Asian Nat. Prod. Res., 2010, 12(3), 194-198.
[http://dx.doi.org/10.1080/10286020903501577] [PMID: 20390764]
[83]
Zhang, H.R.; Li, M.; Wang, M.M.; Wang, X.N.; Shen, T.; Wang, S.Q.; Ren, D.M. Antioxidant flavan derivatives from the leaves of Morus alba. Phytochem. Lett., 2019, 29, 84-90.
[http://dx.doi.org/10.1016/j.phytol.2018.11.002]
[84]
Chen, W.; Li, Y.; Bao, T.; Gowd, V. Mulberry fruit extract affords protection against ethyl carbamate-induced cytotoxicity and oxidative stress. Oxid. Med. Cell. Longev., 2017, 2017, 1-12.
[http://dx.doi.org/10.1155/2017/1594963] [PMID: 28819542]
[85]
Yimam, M.; Jiao, P.; Hong, M.; Brownell, L.; Lee, Y.C.; Kim, H.J.; Nam, J.B.; Kim, M.R.; Jia, Q. Morus alba, a medicinal plant for appetite suppression and weight loss. J. Med. Food, 2019, 22(7), 741-751.
[http://dx.doi.org/10.1089/jmf.2017.0142] [PMID: 31120370]
[86]
Kim, H.; Baburin, I.; Zaugg, J.; Ebrahimi, S.; Hering, S.; Hamburger, M. HPLC-based activity profiling--discovery of sanggenons as GABAA receptor modulators in the traditional Chinese drug Sang bai pi (Morus alba root bark). Planta Med., 2012, 78(5), 440-447.
[http://dx.doi.org/10.1055/s-0031-1298229] [PMID: 22294264]
[87]
Hou, X.D.; Ge, G.B.; Weng, Z.M.; Dai, Z.R.; Leng, Y.H.; Ding, L.L.; Jin, L.L.; Yu, Y.; Cao, Y.F.; Hou, J. Natural constituents from Cortex Mori Radicis as new pancreatic lipase inhibitors. Bioorg. Chem., 2018, 80, 577-584.
[http://dx.doi.org/10.1016/j.bioorg.2018.07.011] [PMID: 30032067]
[88]
Grienke, U.; Richter, M.; Walther, E.; Hoffmann, A.; Kirchmair, J.; Makarov, V.; Nietzsche, S.; Schmidtke, M.; Rollinger, J.M. Discovery of prenylated flavonoids with dual activity against influenza virus and Streptococcus pneumoniae. Sci. Rep., 2016, 6(1), 27156.
[http://dx.doi.org/10.1038/srep27156] [PMID: 27257160]
[89]
Lim, D.W.; Jung, J.W.; Park, J.H.; Baek, N.I.; Kim, Y.T.; Kim, I.H.; Han, D. Antidepressant-Like Effects of Sanggenon G, Isolated from the Root Bark of Morus alba, in Rats: Involvement of the Serotonergic System. Biol. Pharm. Bull., 2015, 38(11), 1772-1778.
[http://dx.doi.org/10.1248/bpb.b15-00471] [PMID: 26289125]
[90]
Phung, T.X.B.; Tran, T.H.H.; Dan, T.T.H.; Chau, V.M.; Hoang, T.H.; Nguyen, T.D. Chalcone-derived Diels–Alder adducts as NF-κB inhibitors from Morus alba. J. Asian Nat. Prod. Res., 2012, 14(6), 596-600.
[http://dx.doi.org/10.1080/10286020.2012.670221] [PMID: 22587800]
[91]
Kong, S.Y.; Park, M.H.; Lee, M.; Kim, J.O.; Lee, H.R.; Han, B.W.; Svendsen, C.N.; Sung, S.H.; Kim, H.J. Kuwanon V inhibits proliferation, promotes cell survival and increases neurogenesis of neural stem cells. PLoS One, 2015, 10(2), e0118188.
[http://dx.doi.org/10.1371/journal.pone.0118188] [PMID: 25706719]
[92]
Xia, C.L.; Tang, G.H.; Guo, Y.Q.; Xu, Y.K.; Huang, Z.S.; Yin, S. Mulberry Diels-Alder-type adducts from Morus alba as multi-targeted agents for Alzheimer’s disease. Phytochemistry, 2019, 157, 82-91.
[http://dx.doi.org/10.1016/j.phytochem.2018.10.028] [PMID: 30390605]
[93]
Su, C.; Duan, Y.; Tian, J.; Liu, J.; Xie, K.; Chen, D.; Ye, F.; Chen, R.; Dai, J.; Morusalisins, A-F. Morusalisins A-F, six new Diels-Alder type adducts, as potential PTP1B inhibitors from cell cultures of Morus alba. Fitoterapia, 2020, 146, 104682.
[http://dx.doi.org/10.1016/j.fitote.2020.104682] [PMID: 32628985]
[94]
Shu, Y.; Yuan, H.; Xu, M.; Hong, Y.; Gao, C.; Wu, Z.; Han, H.; Sun, X.; Gao, R.; Yang, S.; Li, S.; Tian, J.; Zhang, J. A novel Diels–Alder adduct of mulberry leaves exerts anticancer effect through autophagy-mediated cell death. Acta Pharmacol. Sin., 2021, 42(5), 780-790.
[http://dx.doi.org/10.1038/s41401-020-0492-5] [PMID: 32814819]
[95]
Wang, M.; Gao, L.X.; Wang, J.; Li, J.Y.; Yu, M.H.; Li, J.; Hou, A.J. Diels–Alder adducts with PTP1B inhibition from Morus notabilis. Phytochemistry, 2015, 109, 140-146.
[http://dx.doi.org/10.1016/j.phytochem.2014.10.015] [PMID: 25457492]
[96]
Zhang, D.W.; Tao, X.Y.; Yu, L.Y.; Dai, J.G. New 2-arylbenzofuran metabolite from cell cultures of Morus alba. J. Asian Nat. Prod. Res., 2015, 17(6), 683-688.
[http://dx.doi.org/10.1080/10286020.2015.1044985] [PMID: 26027676]
[97]
Fitriani, R.; Happyana, N.; Hakim, E.H. Potential cytotoxic Diels-Alder type adducts from liquid medium of Morus Alba var. shalun root cultures. Nat. Prod. Res., 2021, 35(13), 2274-2278.
[http://dx.doi.org/10.1080/14786419.2019.1667353] [PMID: 31554425]
[98]
Geng, C.A.; Ma, Y.B.; Zhang, X.M.; Yao, S.Y.; Xue, D.Q.; Zhang, R.P.; Chen, J.J. Mulberrofuran G and isomulberrofuran G from Morus alba L.: Anti-hepatitis B virus activity and mass spectrometric fragmentation. J. Agric. Food Chem., 2012, 60(33), 8197-8202.
[http://dx.doi.org/10.1021/jf302639b] [PMID: 22835135]
[99]
Zoofishan, Z.; Kúsz, N.; Csorba, A.; Tóth, G.; Hajagos-Tóth, J.; Kothencz, A.; Gáspár, R.; Hunyadi, A. Antispasmodic activity of prenylated phenolic compounds from the root bark of Morus nigra. Molecules, 2019, 24(13), 2497.
[http://dx.doi.org/10.3390/molecules24132497] [PMID: 31288489]
[100]
Kuk, E.B.; Jo, A.R.; Oh, S.I.; Sohn, H.S.; Seong, S.H.; Roy, A.; Choi, J.S.; Jung, H.A. Anti-Alzheimer’s disease activity of compounds from the root bark of Morus alba L. Arch. Pharm. Res., 2017, 40(3), 338-349.
[http://dx.doi.org/10.1007/s12272-017-0891-4] [PMID: 28093699]
[101]
Su, C.; Tao, X.; Yin, Z.; Zhang, X.; Tian, J.; Chen, R.; Liu, J.; Li, L.; Ye, F.; Zhang, P.C.; Zhang, D.; Dai, J.; Morusalones, A-D. Diels-Alder adducts with 6/7/6/6/6/6 hexacyclic ring systems as potential PTP1B inhibitors from cell cultures of Morus alba. Org. Lett., 2019, 21(23), 9463-9467.
[http://dx.doi.org/10.1021/acs.orglett.9b03664] [PMID: 31746610]
[102]
Qin, J.; Fan, M.; He, J.; Wu, X.D.; Peng, L.Y.; Su, J.; Cheng, X.; Li, Y.; Kong, L.M.; Li, R.T.; Zhao, Q.S. New cytotoxic and anti-inflammatory compounds isolated from Morus alba L. Nat. Prod. Res., 2015, 29(18), 1711-1718.
[http://dx.doi.org/10.1080/14786419.2014.999333] [PMID: 25675363]
[103]
Hu, X.; Wang, M.; Yan, G.R.; Yu, M.H.; Wang, H.Y.; Hou, A.J. 2-Arylbenzofuran and tyrosinase inhibitory constituents of Morus notabilis. J. Asian Nat. Prod. Res., 2012, 14(12), 1103-1108.
[http://dx.doi.org/10.1080/10286020.2012.724400] [PMID: 23088613]
[104]
Tan, Y.X.; Wang, H.Q.; Chen, R.Y. Anti-inflammatory and cytotoxic 2-arylbenzofurans from Morus wittiorum. Fitoterapia, 2012, 83(4), 750-753.
[http://dx.doi.org/10.1016/j.fitote.2012.03.001] [PMID: 22433397]
[105]
Zhang, Y.L.; Luo, J.G.; Wan, C.X.; Zhou, Z.B.; Kong, L.Y. Geranylated 2-arylbenzofurans from Morus alba var. tatarica and their α-glucosidase and protein tyrosine phosphatase 1B inhibitory activities. Fitoterapia, 2014, 92, 116-126.
[http://dx.doi.org/10.1016/j.fitote.2013.10.017] [PMID: 24216050]
[106]
Park, J.H.; Jung, Y.J.; Jung, J.W.; Shrestha, S.; Han, D.; Lim, D.W.; Baek, N.I. Two new isoarylbenzofuran diglucosides from the root bark of Morus alba. J. Asian Nat. Prod. Res., 2015, 17(4), 357-363.
[http://dx.doi.org/10.1080/10286020.2014.971775] [PMID: 25401999]
[107]
Naik, R.; Harmalkar, D.S.; Xu, X.; Jang, K.; Lee, K. Bioactive benzofuran derivatives: Moracins A–Z in medicinal chemistry. Eur. J. Med. Chem., 2015, 90, 379-393.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.047] [PMID: 25461329]
[108]
Pel, P.; Chae, H.S.; Nhoek, P.; Kim, Y.M.; Chin, Y.W. Chemical constituents with proprotein convertase subtilisin/kexin type 9 mRNA expression inhibitory activity from dried immature Morus alba fruits. J. Agric. Food Chem., 2017, 65(26), 5316-5321.
[http://dx.doi.org/10.1021/acs.jafc.7b02088] [PMID: 28649844]
[109]
Shrestha, S.; Seong, S.H.; Park, S.G.; Min, B.S.; Jung, H.A.; Choi, J.S. Insight into the PTP1B inhibitory activity of arylbenzofurans: an in Vitro and in silico study. Molecules, 2019, 24(16), 2893.
[http://dx.doi.org/10.3390/molecules24162893] [PMID: 31395821]
[110]
Jeon, Y.H.; Choi, S.W. Isolation, identification, and quantification of tyrosinase and alpha-glucosidase inhibitors from UVC-irradiated mulberry (Morus alba L.) leaves. Prev. Nutr. Food Sci., 2019, 24(1), 84-94.
[http://dx.doi.org/10.3746/pnf.2019.24.1.84] [PMID: 31008101]
[111]
Abdel Bar, F.M.; Abbas, G.M.; Gohar, A.A.; Lahloub, M.F.I. Antiproliferative activity of stilbene derivatives and other constituents from the stem bark of Morus nigra L. Nat. Prod. Res., 2020, 34(24), 3506-3513.
[http://dx.doi.org/10.1080/14786419.2019.1573236] [PMID: 30822142]
[112]
Chang, L.W.; Juang, L.J.; Wang, B.S.; Wang, M.Y.; Tai, H.M.; Hung, W.J.; Chen, Y.J.; Huang, M.H. Antioxidant and antityrosinase activity of mulberry (Morus alba L.) twigs and root bark. Food Chem. Toxicol., 2011, 49(4), 785-790.
[http://dx.doi.org/10.1016/j.fct.2010.11.045] [PMID: 21130832]
[113]
Arfan, M.; Khan, R.; Rybarczyk, A.; Amarowicz, R. Antioxidant activity of mulberry fruit extracts. Int. J. Mol. Sci., 2012, 13(2), 2472-2480.
[http://dx.doi.org/10.3390/ijms13022472] [PMID: 22408465]
[114]
Wang, W.; Zu, Y.; Fu, Y.; Efferth, T. In vitro antioxidant and antimicrobial activity of extracts from Morus alba L. leaves, stems and fruits. Am. J. Chin. Med., 2012, 40(2), 349-356.
[http://dx.doi.org/10.1142/S0192415X12500279] [PMID: 22419428]
[115]
Abbas, G.M.; Abdel Bar, F.M.; Baraka, H.N.; Gohar, A.A.; Lahloub, M.F. A new antioxidant stilbene and other constituents from the stem bark of Morus nigra L. Nat. Prod. Res., 2014, 28(13), 952-959.
[http://dx.doi.org/10.1080/14786419.2014.900770] [PMID: 24673367]
[116]
Jin, Q.; Yang, J.; Ma, L.; Cai, J.; Li, J. Comparison of polyphenol profile and inhibitory activities against oxidation and α-glucosidase in mulberry (genus Morus) Cultivars from China. J. Food Sci., 2015, 80(11), C2440-C2451.
[http://dx.doi.org/10.1111/1750-3841.13099] [PMID: 26469191]
[117]
Natić, M.M.; Dabić, D.Č.; Papetti, A.; Fotirić Akšić, M.M.; Ognjanov, V.; Ljubojević, M.; Tešić, Ž.L. Analysis and characterisation of phytochemicals in mulberry (Morus alba L.) fruits grown in Vojvodina, North Serbia. Food Chem., 2015, 171, 128-136.
[http://dx.doi.org/10.1016/j.foodchem.2014.08.101] [PMID: 25308652]
[118]
Turgut, N.H.; Mert, D.G.; Kara, H.; Egilmez, H.R.; Arslanbas, E.; Tepe, B.; Gungor, H.; Yilmaz, N.; Tuncel, N.B. Effect of black mulberry (Morus nigra) extract treatment on cognitive impairment and oxidative stress status of D -galactose-induced aging mice. Pharm. Biol., 2016, 54(6), 1052-1064.
[http://dx.doi.org/10.3109/13880209.2015.1101476] [PMID: 26510817]
[119]
Zhang, L.; Xu, Y.; Li, Y.; Bao, T.; Gowd, V.; Chen, W. Protective property of mulberry digest against oxidative stress – A potential approach to ameliorate dietary acrylamide-induced cytotoxicity. Food Chem., 2017, 230, 306-315.
[http://dx.doi.org/10.1016/j.foodchem.2017.03.045] [PMID: 28407916]
[120]
Seong, S.H.; Ha, M.T.; Min, B.S.; Jung, H.A.; Choi, J.S. Moracin derivatives from Morus Radix as dual BACE1 and cholinesterase inhibitors with antioxidant and anti-glycation capacities. Life Sci., 2018, 210, 20-28.
[http://dx.doi.org/10.1016/j.lfs.2018.08.060] [PMID: 30170070]
[121]
Eruygur, N.; Dural, E. Determination of 1-Deoxynojirimycin by a developed and validated HPLC-FLD method and assessment of In-vitro antioxidant, α-Amylase and α-Glucosidase inhibitory activity in mulberry varieties from Turkey. Phytomedicine, 2019, 53, 234-242.
[http://dx.doi.org/10.1016/j.phymed.2018.09.016] [PMID: 30668403]
[122]
Li, E.; Yang, S.; Zou, Y.; Cheng, W.; Li, B.; Hu, T.; Li, Q.; Wang, W.; Liao, S.; Pang, D. Purification, characterization, prebiotic preparations and antioxidant activity of oligosaccharides from mulberries. Molecules, 2019, 24(12), 2329.
[http://dx.doi.org/10.3390/molecules24122329] [PMID: 31242560]
[123]
Polumackanycz, M.; Sledzinski, T.; Goyke, E.; Wesolowski, M.; Viapiana, A. A comparative study on the phenolic composition and biological activities of Morus alba L. Commercial Samples. Molecules, 2019, 24(17), 3082.
[http://dx.doi.org/10.3390/molecules24173082] [PMID: 31450672]
[124]
Tu, J.; Shi, D.; Wen, L.; Jiang, Y.; Zhao, Y.; Yang, J.; Liu, H.; Liu, G.; Yang, B. Identification of moracin N in mulberry leaf and evaluation of antioxidant activity. Food Chem. Toxicol., 2019, 132, 110730.
[http://dx.doi.org/10.1016/j.fct.2019.110730] [PMID: 31369850]
[125]
Paudel, P.; Seong, S.H.; Wagle, A.; Min, B.S.; Jung, H.A.; Choi, J.S. Antioxidant and anti-browning property of 2-arylbenzofuran derivatives from Morus alba Linn root bark. Food Chem., 2020, 309, 125739.
[http://dx.doi.org/10.1016/j.foodchem.2019.125739] [PMID: 31787394]
[126]
Martins, B.A.; Sande, D.; Solares, M.D.; Takahashi, J.A. Antioxidant role of morusin and mulberrofuran B in ethanol extract of Morus alba roots. Nat. Prod. Res., 2021, 35(24), 5993-5996.
[http://dx.doi.org/10.1080/14786419.2020.1810036] [PMID: 32840147]
[127]
Polumackanycz, M.; Wesolowski, M.; Viapiana, A. Morus alba L. and Morus nigra L. leaves as a promising food source of phenolic compounds with antioxidant activity. Plant Foods Hum. Nutr., 2021, 76(4), 458-465.
[http://dx.doi.org/10.1007/s11130-021-00922-7] [PMID: 34570290]
[128]
Wang, R.S.; Dong, P.H.; Shuai, X.X.; Chen, M.S. Evaluation of different black mulberry fruits (Morus nigra L.) based on phenolic compounds and antioxidant activity. Foods, 2022, 11(9), 1252.
[http://dx.doi.org/10.3390/foods11091252] [PMID: 35563975]
[129]
Vukmirović, S.; Ilić, V.; Tadić, V.; Čapo, I.; Pavlović, N.; Tomas, A.; Paut Kusturica, M.; Tomić, N.; Maksimović, S.; Stilinović, N. Comprehensive analysis of antioxidant and hepatoprotective properties of Morus nigra L. Antioxidants, 2023, 12(2), 382.
[http://dx.doi.org/10.3390/antiox12020382] [PMID: 36829941]
[130]
Lee, D.; Lee, S.R.; Kang, K.S.; Kim, K.H. Bioactive phytochemicals from mulberry: Potential anti-inflammatory effects in lipopolysaccharide-stimulated RAW 264.7 macrophages. Int. J. Mol. Sci., 2021, 22(15), 8120.
[http://dx.doi.org/10.3390/ijms22158120] [PMID: 34360887]
[131]
Ko, W.; Liu, Z.; Kim, K.W.; Dong, L.; Lee, H.; Kim, N.Y.; Lee, D.S.; Woo, E.R. Kuwanon T and Sanggenon A isolated from Morus alba exert anti-Inflammatory effects by regulating NF-κB and HO-1/Nrf2 signaling pathways in BV2 and RAW264.7 cells. Molecules, 2021, 26(24), 7642.
[http://dx.doi.org/10.3390/molecules26247642] [PMID: 34946724]
[132]
Cao, H.; Ji, W.; Liu, Q.; Li, C.; Huan, Y.; Lei, L.; Fu, Y.; Gao, X.; Liu, Y.; Liu, S.; Shen, Z. Morus alba L. (Sangzhi) alkaloids (SZ-A) exert anti-inflammatory effects via regulation of MAPK signaling in macrophages. J. Ethnopharmacol., 2021, 280, 114483.
[http://dx.doi.org/10.1016/j.jep.2021.114483] [PMID: 34339793]
[133]
Baek, S.H.; Hwang, S.; Park, T.; Kwon, Y.J.; Cho, M.; Park, D. Evaluation of selective COX-2 inhibition and in silico study of kuwanon derivatives isolated from Morus alba. Int. J. Mol. Sci., 2021, 22(7), 3659.
[http://dx.doi.org/10.3390/ijms22073659] [PMID: 33915826]
[134]
Wu, Y.X.; Kim, Y.J.; Kwon, T.H.; Tan, C.P.; Son, K.H.; Kim, T. Anti-inflammatory effects of mulberry (Morus alba L.) root bark and its active compounds. Nat. Prod. Res., 2020, 34(12), 1786-1790.
[http://dx.doi.org/10.1080/14786419.2018.1527832] [PMID: 30470128]
[135]
Gao, X.; Zhang, S.; Wang, L.; Yu, L.; Zhao, X.; Ni, H.; Wang, Y.; Wang, J.; Shan, C.; Fu, Y. Anti-Inflammatory effects of neochlorogenic acid extract from mulberry leaf (Morus alba L.) against LPS-stimulated inflammatory response through mediating the AMPK/Nrf2 signaling pathway in A549 Cells. Molecules, 2020, 25(6), 1385.
[http://dx.doi.org/10.3390/molecules25061385] [PMID: 32197466]
[136]
Araujo, C.M.; Lúcio, K.P.; Silva, M.E.; Isoldi, M.C.; de Souza, G.H.B.; Brandão, G.C.; Schulz, R.; Costa, D.C. Morus nigra leaf extract improves glycemic response and redox profile in the liver of diabetic rats. Food Funct., 2015, 6(11), 3490-3499.
[http://dx.doi.org/10.1039/C5FO00474H] [PMID: 26294257]
[137]
D’Urso, G.; Mes, J.J.; Montoro, P.; Hall, R.D.; de Vos, R.C.H. Identification of bioactive phytochemicals in mulberries. Metabolites, 2019, 10(1), 7.
[http://dx.doi.org/10.3390/metabo10010007] [PMID: 31861822]
[138]
Han, X.; Song, C.; Feng, X.; Wang, Y.; Meng, T.; Li, S.; Bai, Y.; Du, B.; Sun, Q. Isolation and hypoglycemic effects of water extracts from mulberry leaves in Northeast China. Food Funct., 2020, 11(4), 3112-3125.
[http://dx.doi.org/10.1039/D0FO00012D] [PMID: 32196541]
[139]
Yan, F.; Dai, G.; Zheng, X. Mulberry anthocyanin extract ameliorates insulin resistance by regulating PI3K/AKT pathway in HepG2 cells and db/db mice. J. Nutr. Biochem., 2016, 36, 68-80.
[http://dx.doi.org/10.1016/j.jnutbio.2016.07.004] [PMID: 27580020]
[140]
Hago, S.; Mahrous, E.A.; Moawad, M.; Abdel-Wahab, S.; Abdel-Sattar, E. Evaluation of antidiabetic activity of Morus nigra L. and Bauhinia variegata L. leaves as Egyptian remedies used for the treatment of diabetes. Nat. Prod. Res., 2021, 35(5), 829-835.
[http://dx.doi.org/10.1080/14786419.2019.1601094] [PMID: 30968706]
[141]
Liu, Y.H.; Mou, X.; Zhou, D.Y.; Shou, C.M. Mechanism of effective components of Mori Folium in alleviating insulin resistance based on JNK signaling pathway Zhongguo Zhongyao Zazhi, 2019, 44(5), 1019-1025.
[PMID: 30989864]
[142]
Ren, C.; Zhang, Y.; Cui, W.; Lu, G.; Wang, Y.; Gao, H.; Huang, L.; Mu, Z. A polysaccharide extract of mulberry leaf ameliorates hepatic glucose metabolism and insulin signaling in rats with type 2 diabetes induced by high fat-diet and streptozotocin. Int. J. Biol. Macromol., 2015, 72, 951-959.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.09.060] [PMID: 25316427]
[143]
Chen, C.; Huang, Q.; Li, C.; Fu, X. Hypoglycemic effects of a Fructus Mori polysaccharide in vitro and in vivo. Food Funct., 2017, 8(7), 2523-2535.
[http://dx.doi.org/10.1039/C7FO00417F] [PMID: 28650018]
[144]
Xu, L.; Yang, F.; Wang, J.; Huang, H.; Huang, Y. Anti-diabetic effect mediated by Ramulus mori polysaccharides. Carbohydr. Polym., 2015, 117, 63-69.
[http://dx.doi.org/10.1016/j.carbpol.2014.09.052] [PMID: 25498609]
[145]
Gurukar, M.S.A.; Chilkunda, N.D. Morus alba leaf bioactives modulate peroxisome proliferator activated receptor gamma in the kidney of diabetic rat and impart beneficial effect. J. Agric. Food Chem., 2018, 66(30), 7923-7934.
[http://dx.doi.org/10.1021/acs.jafc.8b01357] [PMID: 29969905]
[146]
Choi, D.W.; Cho, S.W.; Lee, S.G.; Choi, C.Y. The beneficial effects of morusin, an isoprene flavonoid isolated from the root bark of Morus. Int. J. Mol. Sci., 2020, 21(18), 6541.
[http://dx.doi.org/10.3390/ijms21186541] [PMID: 32906784]
[147]
Park, J.E.; Jung, J.H.; Lee, H.J.; Sim, D.Y. Im, E.; Park, W.Y.; Shim, B.S.; Ko, S.G.; Kim, S.H. Ribosomal protein L5 mediated inhibition of c‐Myc is critically involved in sanggenon G induced apoptosis in non‐small lung cancer cells. Phytother. Res., 2021, 35(2), 1080-1088.
[http://dx.doi.org/10.1002/ptr.6878] [PMID: 32935429]
[148]
Won, Y.S.; Seo, K.I. Sanggenol L induces apoptosis and cell cycle arrest via activation of p53 and suppression of PI3K/Akt/mTOR signaling in human prostate cancer cells. Nutrients, 2020, 12(2), 488.
[http://dx.doi.org/10.3390/nu12020488] [PMID: 32075054]
[149]
Chen, L.D.; Liu, Z.H.; Zhang, L.F.; Yao, J.N.; Wang, C.F. Sanggenon C induces apoptosis of colon cancer cells via inhibition of NO production, iNOS expression and ROS activation of the mitochondrial pathway. Oncol. Rep., 2017, 38(4), 2123-2131.
[http://dx.doi.org/10.3892/or.2017.5912] [PMID: 28849234]
[150]
Hwang, S.; Lee, H.J.; Jung, J.; Sim, D.; Hwang, J.; Park, J.; Shim, B.; Kim, S.H. Inhibition of Wnt3a/FOXM1/β-catenin axis and activation of GSK3β and caspases are critically involved in apoptotic effect of moracin D in breast cancers. Int. J. Mol. Sci., 2018, 19(9), 2681.
[http://dx.doi.org/10.3390/ijms19092681]
[151]
Wen, L.; Shi, D.; Zhou, T.; Tu, J.; He, M.; Jiang, Y.; Yang, B. Identification of two novel prenylated flavonoids in mulberry leaf and their bioactivities. Food Chem., 2020, 315, 126236.
[http://dx.doi.org/10.1016/j.foodchem.2020.126236] [PMID: 32000079]
[152]
Wen, L.; Zhou, T.; Jiang, Y.; Gong, L.; Yang, B. Identification of prenylated phenolics in mulberry leaf and their neuroprotective activity. Phytomedicine, 2021, 90, 153641.
[http://dx.doi.org/10.1016/j.phymed.2021.153641] [PMID: 34281775]
[153]
Dalmagro, A.P.; Camargo, A.; Pedron, N.B.; Garcia, S.A.M.; Zeni, A.L.B. Morus nigra leaves extract revokes the depressive-like behavior, oxidative stress, and hippocampal damage induced by corticosterone: a pivotal role of the phenolic syringic acid. Behav. Pharmacol., 2020, 31(4), 397-406.
[http://dx.doi.org/10.1097/FBP.0000000000000549] [PMID: 32040015]
[154]
Jia, Y.N.; Lu, H.P.; Peng, Y.L.; Zhang, B.S.; Gong, X.B.; Su, J.; Zhou, Y.; Pan, M.H.; Xu, L. Oxyresveratrol prevents lipopolysaccharide/d-galactosamine-induced acute liver injury in mice. Int. Immunopharmacol., 2018, 56, 105-112.
[http://dx.doi.org/10.1016/j.intimp.2018.01.014] [PMID: 29414639]
[155]
Zhou, X.; Deng, Q.; Chen, H.; Hu, E.; Zhao, C.; Gong, X. Characterizations and hepatoprotective effect of polysaccharides from Mori Fructus in rats with alcoholic-induced liver injury. Int. J. Biol. Macromol., 2017, 102, 60-67.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.03.083] [PMID: 28322946]
[156]
Zhang, L.; Su, S.; Zhu, Y.; Guo, J.; Guo, S.; Qian, D.; Ouyang, Z.; Duan, J. Mulberry leaf active components alleviate type 2 diabetes and its liver and kidney injury in db/db mice through insulin receptor and TGF-β/Smads signaling pathway. Biomed. Pharmacother., 2019, 112, 108675.
[http://dx.doi.org/10.1016/j.biopha.2019.108675] [PMID: 30780108]
[157]
Guo, C.; Liang, T.; He, Q.; Wei, P.; Zheng, N.; Xu, L. Renoprotective effect of ramulus mori polysaccharides on renal injury in STZ-diabetic mice. Int. J. Biol. Macromol., 2013, 62, 720-725.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.09.022 ] [PMID: 24076200]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy