Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

State of the Art and Outlook of Data Science and Machine Learning in Organic Chemistry

Author(s): Ricardo Stefani*

Volume 27, Issue 16, 2023

Published on: 04 October, 2023

Page: [1393 - 1397] Pages: 5

DOI: 10.2174/0113852728249020230921072236

Price: $65

Abstract

Data Science and Machine Learning approaches have recently expanded to accelerate the discovery of new materials, drugs, synthetic substances and automated compound identification. In the field of Organic Chemistry, Machine Learning and Data Science are commonly used to predict biological and physiochemical properties of molecules and are referred to as quantitative structure–active relationship (QSAR, for biological properties) and quantitative structure– property relationship (QSPR, for nonbiological properties). Data Science and Machine Learning applications are rapidly growing in chemistry and have been successfully applied to the discovery and optimization of molecular properties, optimization of synthesis, automated structure elucidation, and even the design of novel compounds. The main strength of Data Science tools is the ability to find patterns and relationships that even an experienced researcher may not be able to find, and research in chemistry can benefit from. Moreover, this interdisciplinary field is playing a central role in changing the way not only organic chemistry but also how chemistry is done. As cutting-edge ML tools and algorithms such as tensors, natural language processing, and transformers become mature and reliable by chemists. ML will be a routine analysis in a chemistry laboratory like any other technique or equipment.

Keywords: Organic chemistry, data science, machine learning, deep learning, technique, data science.

Graphical Abstract
[1]
Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S.H. PubChem substance and compound databases. Nucleic Acids Res., 2016, 44(D1), D1202-D1213.
[http://dx.doi.org/10.1093/nar/gkv951] [PMID: 26400175]
[2]
Irwin, J.J.; Shoichet, B.K. ZINC-a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model., 2005, 45(1), 177-182.
[http://dx.doi.org/10.1021/ci049714+] [PMID: 15667143]
[3]
Gaulton, A.; Hersey, A.; Nowotka, M.; Bento, A.P.; Chambers, J.; Mendez, D.; Mutowo, P.; Atkinson, F.; Bellis, L.J.; Cibrián-Uhalte, E.; Davies, M.; Dedman, N.; Karlsson, A.; Magariños, M.P.; Overington, J.P.; Papadatos, G.; Smit, I.; Leach, A.R. The ChEMBL database in 2017. Nucleic Acids Res., 2017, 45(D1), D945-D954.
[http://dx.doi.org/10.1093/nar/gkw1074] [PMID: 27899562]
[4]
Nakata, M.; Shimazaki, T. PubChemQC Project: A large-scale first-principles electronic structure database for data-driven chemistry. J. Chem. Inf. Model., 2017, 57(6), 1300-1308.
[http://dx.doi.org/10.1021/acs.jcim.7b00083] [PMID: 28481528]
[5]
Kim, C.; Batra, R.; Chen, L.; Tran, H.; Ramprasad, R. Polymer design using genetic algorithm and machine learning. Comput. Mater. Sci., 2021, 186, 110067.
[http://dx.doi.org/10.1016/j.commatsci.2020.110067]
[6]
Ai, H.; Wu, X.; Zhang, L.; Qi, M.; Zhao, Y.; Zhao, Q.; Zhao, J.; Liu, H. QSAR modelling study of the bioconcentration factor and toxicity of organic compounds to aquatic organisms using machine learning and ensemble methods. Ecotoxicol. Environ. Saf., 2019, 179, 71-78.
[http://dx.doi.org/10.1016/j.ecoenv.2019.04.035] [PMID: 31026752]
[7]
Wang, Y.; Lamim Ribeiro, J.M.; Tiwary, P. Machine learning approaches for analyzing and enhancing molecular dynamics simulations. Curr. Opin.Struc., 61, 139-145.
[http://dx.doi.org/10.1016/j.sbi.2019.12.016]
[8]
Botu, V.; Ramprasad, R. Adaptive machine learning framework to accelerate ab initio molecular dynamics. Int. J. Quantum Chem., 2015, 115(16), 1074-1083.
[http://dx.doi.org/10.1002/qua.24836]
[9]
de Oliveira, T.A.; Medaglia, L.R.; Maia, E.H.B.; Assis, L.C.; de Carvalho, P.B.; da Silva, A.M.; Taranto, A.G. Evaluation of docking machine learning and molecular dynamics methodologies for DNA-ligand systems. Pharmaceuticals, 2022, 15(2), 132.
[http://dx.doi.org/10.3390/ph15020132] [PMID: 35215245]
[10]
Zhang, S-Q.; Xu, L-C.; Li, S-W.; Oliveira, J.C.A.; Li, X.; Ackermann, L.; Hong, X. Bridging chemical knowledge and machine learning for performance prediction of organic synthesis. Chemistry, 2022, 29(6), e202202834.
[http://dx.doi.org/10.1002/chem.202202834] [PMID: 36206170]
[11]
Luo, Y.; Zaremba, O.; Cierpka, A.; Andreo, J.; Wuttke, S.; Friederich, P.; Tsotsalas, M. MOF synthesis prediction enabled by automatic data mining and machine learning. Angew. Chem. Int. Ed. Engl., 2022, 61(19), e202200242.
[http://dx.doi.org/10.33774/chemrxiv-2021-kgd0h]
[12]
Morgan, H.L. The generation of a unique machine description for chemical structures-a technique developed at chemical abstracts service. J. Chem. Doc., 1965, 5(2), 107-113.
[http://dx.doi.org/10.1021/c160017a018]
[13]
Ritter, G.; Isenhour, T.L.; Balaban, A.T.; Moloc, I.; Read, R.C.; Cornell, D.G.; Stobaugh, R.E.; Harary, F.; Polansky, O.E.; Rouvray, D.H.; Skorobogatov, V.A.; Khvorostov, P.V.; Mekenyan, O.; Bonchev, D.; Dobrynin, A.A. Unique description of chemical structures based on hierarchical ordered extended con-nectivities (HOC Procedures). I. algorithms for finding graph orbits and canonical numbering of atoms. Analiz Metricheskikh Svoistv Grafov. Vychisl. Sist, 1989, 29(18), 133-186.
[14]
Ash, S.; Cline, M.A.; Homer, R.W.; Hurst, T.; Smith, G.B. SYBYL line notation (SLN): A versatile language for chemical structure representation. J. Chem. Inf. Comput. Sci., 1997, 37(1), 71-79.
[http://dx.doi.org/10.1021/ci960109j]
[15]
Coles, S.J.; Day, N.E.; Murray-Rust, P.; Rzepa, H.S.; Zhang, Y. Enhancement of the chemical semantic web through the use of InChI identifiers. Org. Biomol. Chem., 2005, 3(10), 1832-1834.
[http://dx.doi.org/10.1039/b502828k] [PMID: 15889163]
[16]
Stefani, R.; Nascimento, P.G.B.D.; Da Costa, F.B. Computer-aided structure elucidation of organic compounds: Recent advanced. Quim. Nova, 2007, 30(5), 1347-1356.
[17]
Rojas, J.; Rodriguez, P.; Alfonseca, M.A.N. Expert system in chemical synthesis wrllten in APLPlPC. APL Quote Quad, 1989, 1, 299-303.
[18]
Hansch, T.H.E.; Analysis, T.H.; Analysis, H. QSAR: A ABORDAGEM DE HANSCH Leoberto Costa Tavares; Statistical Modelling of Molecular Descriptors in QSAR/QSPR; São Paulo, , 2004; 27, pp. 1-31.
[19]
Yee, L.C.; Wei, Y.C. Current modeling methods used in QSAR/QSPR. In: Statistical Modelling of Molecular Descriptors in QSAR/QSPR, Volume 2; Wiley; , 2012.
[http://dx.doi.org/10.1002/9783527645121.ch1]
[20]
Yao, X.J.; Panaye, A.; Doucet, J.P.; Zhang, R.S.; Chen, H.F.; Liu, M.C.; Hu, Z.D.; Fan, B.T. Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression. J. Chem. Inf. Comput. Sci., 2004, 44(4), 1257-1266.
[http://dx.doi.org/10.1021/ci049965i] [PMID: 15272833]
[21]
Norinder, U. Support vector machine models in drug design: Applications to drug transport processes and QSAR using simplex optimisations and variable selection. Neurocomputing, 2003, 55(1-2), 337-346.
[http://dx.doi.org/10.1016/S0925-2312(03)00374-6]
[22]
Nandi, S.; Vracko, M.; Bagchi, M.C. Anticancer activity of selected phenolic compounds: QSAR studies using ridge regression and neural networks. Chem. Biol. Drug Des., 2007, 70(5), 424-436.
[http://dx.doi.org/10.1111/j.1747-0285.2007.00575.x] [PMID: 17949360]
[23]
Jalali-Heravi, M.; Asadollahi-Baboli, M.; Shahbazikhah, P. QSAR study of heparanase inhibitors activity using artificial neural networks and Levenberg–Marquardt algorithm. Eur. J. Med. Chem., 2008, 43(3), 548-556.
[http://dx.doi.org/10.1016/j.ejmech.2007.04.014] [PMID: 17602800]
[24]
Mansouri, K.; Cariello, N.F.; Korotcov, A.; Tkachenko, V.; Grulke, C.M.; Sprankle, C.S.; Allen, D.; Casey, W.M.; Kleinstreuer, N.C.; Williams, A.J. Open-source QSAR models for pKa prediction using multiple machine learning approaches. J. Cheminform., 2019, 11(1), 60.
[http://dx.doi.org/10.1186/s13321-019-0384-1] [PMID: 33430972]
[25]
Khashkhashi-Moghadam, S.; Ezazi-Toroghi, S.; Kamkar-Vatanparast, M.; Jouyaeian, P.; Mokaberi, P.; Yazdyani, H.; Amiri-Tehranizadeh, Z.; Reza Saberi, M.; Chamani, J. Novel perspective into the interaction behavior study of the cyanidin with human serum albumin-holo transferrin complex: Spectroscopic, calorimetric and molecular modeling approaches. J. Mol. Liq., 2022, 356, 119042.
[http://dx.doi.org/10.1016/j.molliq.2022.119042]
[26]
Assaran Darban, R.; Shareghi, B.; Asoodeh, A.; Chamani, J. Multi-spectroscopic and molecular modeling studies of interaction between two different angiotensin I converting enzyme inhibitory peptides from gluten hydrolysate and human serum albumin. J. Biomol. Struct. Dyn., 2017, 35(16), 3648-3662.
[http://dx.doi.org/10.1080/07391102.2016.1264892] [PMID: 27897084]
[27]
Haghighatlari, M.; Hachmann, J. Advances of machine learning in molecular modeling and simulation. Curr. Opin. Chem. Eng., 2019, 23, 51-57.
[http://dx.doi.org/10.1016/j.coche.2019.02.009]
[28]
Korshunova, M.; Ginsburg, B.; Tropsha, A.; Isayev, O. OpenChem: A deep learning toolkit for computational chemistry and drug design. J. Chem. Inf. Model., 2021, 61(1), 7-13.
[http://dx.doi.org/10.1021/acs.jcim.0c00971] [PMID: 33393291]
[29]
Yang, Y.; Lin, T.; Weng, X.L.; Darr, J.A.; Wang, X.Z. Data flow modeling, data mining and QSAR in high-throughput discovery of functional nanomaterials. Comput. Chem. Eng., 2011, 35(4), 671-678.
[http://dx.doi.org/10.1016/j.compchemeng.2010.04.018]
[30]
Golin, A.F.; Stefani, R. Quantitative structure-property relationships of electroluminescent materials: Artificial neural networks and support vector machines to predict electroluminescence of organic molecules. Bull. Mater. Sci., 2013, 36(7), 1307-1313.
[http://dx.doi.org/10.1007/s12034-013-0588-3]
[31]
Zhao, Y.; Fu, C.; Fu, L.; Liu, Y.; Lu, Z.; Pu, X. Data-driven machine learning models for quick prediction of thermal stability properties of OLED materials. Mater. Today Chem., 2021, 22, 100625.
[http://dx.doi.org/10.1016/j.mtchem.2021.100625]
[32]
Ding, Y.; Chen, M.; Guo, C.; Zhang, P.; Wang, J. Molecular fingerprint-based machine learning assisted QSAR model development for prediction of ionic liquid properties. J. Mol. Liq., 2021, 326, 115212.
[http://dx.doi.org/10.1016/j.molliq.2020.115212]
[33]
D’Souza, S.; Prema, K.V.; Balaji, S. Machine learning models for drug-target interactions: Current knowledge and future directions. Drug Discov. Today, 2020, 25(4), 748-756.
[http://dx.doi.org/10.1016/j.drudis.2020.03.003]
[34]
Rafiee, R.; Mahdavi, M. Characterizing nanotube–polymer interaction using molecular dynamics simulation. Comput. Mater. Sci., 2016, 112, 356-363.
[http://dx.doi.org/10.1016/j.commatsci.2015.10.041]
[35]
Li, R.; Herreros, J.M.; Tsolakis, A.; Yang, W. Machine learning-quantitative structure property relationship (ML-QSPR) method for fuel physicochemical properties prediction of multiple fuel types. Fuel, 2021, 304, 121437.
[http://dx.doi.org/10.1016/j.fuel.2021.121437]
[36]
Zhang, H.; Chen, Q.Y.; Xiang, M.L.; Ma, C.Y.; Huang, Q.; Yang, S.Y. In silico prediction of mitochondrial toxicity by using GA-CG-SVM approach. Toxicol. In Vitro, 2009, 23(1), 134-140.
[http://dx.doi.org/10.1016/j.tiv.2008.09.017] [PMID: 18940245]
[37]
Niazi, A.; Jameh-Bozorghi, S.; Nori-Shargh, D. Prediction of toxicity of nitrobenzenes using ab initio and least squares support vector machines. J. Hazard. Mater., 2008, 151(2-3), 603-609.
[http://dx.doi.org/10.1016/j.jhazmat.2007.06.030] [PMID: 17630186]
[38]
Lindsay, R.K.; Buchanan, B.G.; Feigenbaum, E.A.; Lederberg, J.; Lindsay, R.K. DENDRAL: A case study of the first expert system for scientific hypothesis formation. Artificial Intelligence, 1993, 61(2), 209-261.
[39]
Funatsu, K.; Nishizaki, M.; Sasaki, S. Introduction of NOE data to an automated structure elucidation system, CHEMICS. Three-dimensional structure elucidation using the distance geometry method. J. Chem. Inf. Comput. Sci., 1994, 34(4), 745-751.
[http://dx.doi.org/10.1021/ci00020a008]
[40]
Will, M.; Fachinger, W.; Richert, J.R. Fully automated structure elucidationa spectroscopist’s dream comes true. J. Chem. Inf. Comput. Sci., 1996, 36(2), 221-227.
[http://dx.doi.org/10.1021/ci950092p]
[41]
Emerenciano, V.P.; Rodrigues, G.V.; Macari, P.A.T.; Vesti, S.A.; Borges, J.H.G.; Gastmans, J.P.; Fromanteau, D.L.G. Artificial intelligence applications in organic chemistry. XVII. New Programs of the SISTEMAT Project. Spectroscopy, 1994, 12(2), 91-98.
[http://dx.doi.org/10.1155/1994/702697]
[42]
Meiler, J.; Will, M. Automated structure elucidation of organic molecules from (13)c NMR spectra using genetic algorithms and neural networks. J. Chem. Inf. Comput. Sci., 2001, 41(6), 1535-1546.
[http://dx.doi.org/10.1021/ci0102970] [PMID: 11749580]
[43]
Masui, H.; Hong, H. Spec2D: A structure elucidation system based On1H NMR and H-H COSY spectra in organic chemistry. J. Chem. Inf. Model., 2006, 46, 775-787.
[http://dx.doi.org/10.1021/ci0502810]
[44]
Han, H.; Choi, S. Transfer learning from simulation to experimental data: NMR chemical shift predictions. J. Phys. Chem. Lett., 2021, 12(14), 3662-3668.
[http://dx.doi.org/10.1021/acs.jpclett.1c00578] [PMID: 33826849]
[45]
Martínez-Treviño, S.H.; Uc-Cetina, V.; Fernández-Herrera, M.A.; Merino, G. Prediction of natural product classes using machine learning and 13C NMR spectroscopic data. J. Chem. Inf. Model., 2020, 60(7), 3376-3386.
[http://dx.doi.org/10.1021/acs.jcim.0c00293] [PMID: 32538625]
[46]
Scotti, M.; Herrera-Acevedo, C.; Oliveira, T.; Costa, R.; Santos, S.; Rodrigues, R.; Scotti, L.; Da-Costa, F. SistematX, an online web-based cheminformatics tool for data management of secondary metabolites. Molecules, 2018, 23(1), 103.
[http://dx.doi.org/10.3390/molecules23010103] [PMID: 29301376]
[47]
Benstock, J.D.; Berndt, D.J. Graph embedding in synchem2, an expert system for organic synthesis discovery. Discrete Appl. Math., 1979, 1988, 45-63.
[48]
Gao, H.; Struble, T.J.; Coley, C.W.; Wang, Y.; Green, W.H.; Jensen, K.F. Using machine learning to predict suitable conditions for organic reactions. ACS Cent. Sci., 2018, 4(11), 1465-1476.
[http://dx.doi.org/10.1021/acscentsci.8b00357] [PMID: 30555898]
[49]
Yao, C.; Li, X.; Yang, Y.; Li, L.; Bo, M.; Peng, C.; Wang, J. Machine learning with quantum chemistry descriptors: Predicting the solubility of small-molecule optoelec-tronic materials for organic solar cells. J. Mater. Chem. A Mater. Energy Sustain., 2022, 10(30), 15999-16006.
[http://dx.doi.org/10.1039/D2TA03728A]
[50]
Ramakrishnan, R.; Dral, P.O.; Rupp, M.; von Lilienfeld, O.A. Big data meets quantum chemistry approximations: The δ-machine learning approach. J. Chem. Theory Comput., 2015, 11(5), 2087-2096.
[http://dx.doi.org/10.1021/acs.jctc.5b00099] [PMID: 26574412]
[51]
Shields, B.J.; Stevens, J.; Li, J.; Parasram, M.; Damani, F.; Alvarado, J.I.M.; Janey, J.M.; Adams, R.P.; Doyle, A.G. Bayesian reaction optimization as a tool for chemical synthesis. Nature, 2021, 590(7844), 89-96.
[http://dx.doi.org/10.1038/s41586-021-03213-y] [PMID: 33536653]
[52]
The fourth paradigm: Data-intensive scientific discovery. Proc. IEEE, 2011, 99(8), 287.
[53]
Pollice, R.; dos Passos Gomes, G.; Aldeghi, M.; Hickman, R.J.; Krenn, M.; Lavigne, C.; Lindner-D’Addario, M.; Nigam, A.; Ser, C.T.; Yao, Z.; Aspuru-Guzik, A. Data-driven strategies for accelerated materials design. Acc. Chem. Res., 2021, 54(4), 849-860.
[http://dx.doi.org/10.1021/acs.accounts.0c00785] [PMID: 33528245]
[54]
Himanen, L.; Geurts, A.; Foster, A.S.; Rinke, P. Data‐driven materials science: Status, challenges, and perspectives. Adv. Sci., 2019, 6(21), 1900808.
[http://dx.doi.org/10.1002/advs.201900808] [PMID: 31728276]
[55]
Abdullah-Zawawi, M.R.; Govender, N.; Karim, M.B.; Altaf-Ul-Amin, M.; Kanaya, S.; Mohamed-Hussein, Z.A. Chemoinformatics-driven classification of Angiosperms using sulfur-containing compounds and machine learning algorithm. Plant Methods, 2022, 18(1), 118.
[http://dx.doi.org/10.1186/s13007-022-00951-6] [PMID: 36335358]
[56]
Leonelli, S. Process-sensitive naming: Trait descriptors and the shifting semantics of plant (data) science. PTPBio, 2022, 14
[http://dx.doi.org/10.3998/ptpbio.3364]
[57]
Ehrman, T.M.; Barlow, D.J.; Hylands, P.J. Phytochemical databases of Chinese herbal constituents and bioactive plant compounds with known target specificities. J. Chem. Inf. Model., 2007, 47(2), 254-263.
[http://dx.doi.org/10.1021/ci600288m] [PMID: 17381164]
[58]
Geetha, P.; Sivaram, A.J.; Jayakumar, R.; Gopi Mohan, C. Integration of in silico modeling, prediction by binding energy and experimental approach to study the amorphous chitin nanocarriers for cancer drug delivery. Carbohydr. Polym., 2016, 142, 240-249.
[http://dx.doi.org/10.1016/j.carbpol.2016.01.059] [PMID: 26917396]
[59]
Dürig, A.; Kouskoumvekaki, I.; Vejborg, R.M.; Klemm, P. Chemoinformatics-assisted development of new anti-biofilm compounds. Appl. Microbiol. Biotechnol., 2010, 87(1), 309-317.
[http://dx.doi.org/10.1007/s00253-010-2471-0] [PMID: 20204615]
[60]
Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.W.; da Silva Santos, L.B.; Bourne, P.E.; Bouwman, J.; Brookes, A.J.; Clark, T.; Crosas, M.; Dillo, I.; Dumon, O.; Edmunds, S.; Evelo, C.T.; Finkers, R.; Gonzalez-Beltran, A.; Gray, A.J.G.; Groth, P.; Goble, C.; Grethe, J.S.; Heringa, J.; ’t Hoen, P.A.C.; Hooft, R.; Kuhn, T.; Kok, R.; Kok, J.; Lusher, S.J.; Martone, M.E.; Mons, A.; Packer, A.L.; Persson, B.; Rocca-Serra, P.; Roos, M.; van Schaik, R.; Sansone, S.A.; Schultes, E.; Sengstag, T.; Slater, T.; Strawn, G.; Swertz, M.A.; Thompson, M.; van der Lei, J.; van Mulligen, E.; Velterop, J.; Waagmeester, A.; Wittenburg, P.; Wolstencroft, K.; Zhao, J.; Mons, B. The FAIR guiding principles for scientific data management and stewardship. Sci. Data, 2016, 3(1), 160018.
[http://dx.doi.org/10.1038/sdata.2016.18] [PMID: 26978244]
[61]
Lafuente, D.; Cohen, B.; Fiorini, G.; García, A.A.; Bringas, M.; Morzan, E.; Onna, D. A gentle introduction to machine learning for chemists: An undergraduate workshop using python notebooks for visualization, data processing, analysis, and modeling. J. Chem. Educ., 2021, 98(9), 2892-2898.
[http://dx.doi.org/10.1021/acs.jchemed.1c00142]
[62]
Mater, A.C.; Coote, M.L. Deep learning in chemistry. J. Chem. Inf. Model., 2019, 59(6), 2545-2559.
[http://dx.doi.org/10.1021/acs.jcim.9b00266] [PMID: 31194543]
[63]
Ge, M.; Su, F.; Zhao, Z.; Su, D. Deep learning analysis on microscopic imaging in materials science. Materials Today Nano, 2020, 11, 100087.
[http://dx.doi.org/10.1016/j.mtnano.2020.100087]
[64]
Kim, H.; Na, J.; Lee, W.B. Generative chemical transformer: Neural machine learning of molecular geometric structures from chemical language via attention. J. Chem. Inf. Model., 2021, 61(12), 5804-5814.
[http://dx.doi.org/10.1021/acs.jcim.1c01289]
[65]
Rodríguez-Martínez, X.; Pascual-San-José, E.; Campoy-Quiles, M. Accelerating organic solar cell material’s discovery: High-throughput screening and big data. Energy Environ. Sci., 2021, 14, 3301-3322.
[http://dx.doi.org/10.1039/D1EE00559F]
[66]
Kalinin, S.V.; Sumpter, B.G.; Archibald, R.K. Big–deep–smart data in imaging for guiding materials design. Nat. Mater., 2015, 14(10), 973-980.
[http://dx.doi.org/10.1038/nmat4395] [PMID: 26395941]
[67]
Ciallella, H.L.; Zhu, H. Advancing computational toxicology in the big data era by artificial intelligence: Data-driven and mechanism-driven modeling for chemical toxicity. Chem. Res. Toxicol., 2019, 32(4), 536-547.
[http://dx.doi.org/10.1021/acs.chemrestox.8b00393] [PMID: 30907586]
[68]
de Almeida, A.F.; Moreira, R.; Rodrigues, T. Synthetic organic chemistry driven by artificial intelligence. Nat. Rev. Chem., 2019, 3(10), 589-604.
[http://dx.doi.org/10.1038/s41570-019-0124-0]
[69]
Jiang, Y.; Salley, D.; Sharma, A.; Keenan, G.; Mullin, M.; Cronin, L. An artificial intelligence enabled chemical synthesis robot for exploration and optimization of nanomaterials. Sci. Adv., 2022, 8(40), eabo2626.
[70]
Fooshee, D.; Mood, A.; Gutman, E.; Tavakoli, M.; Urban, G.; Liu, F.; Huynh, N.; Van Vranken, D.; Baldi, P. Deep learning for chemical reaction prediction. Mol. Syst. Des. Eng., 2018, 3(3), 442-452.
[http://dx.doi.org/10.1039/C7ME00107J]
[71]
Coley, C.W.; Barzilay, R.; Jaakkola, T.S.; Green, W.H.; Jensen, K.F. Prediction of organic reaction outcomes using machine learning. ACS Cent. Sci., 2017, 3(5), 434-443.
[http://dx.doi.org/10.1021/acscentsci.7b00064] [PMID: 28573205]
[72]
Segler, M.H.S.; Preuss, M.; Waller, M.P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature, 2018, 555(7698), 604-610.
[http://dx.doi.org/10.1038/nature25978] [PMID: 29595767]
[73]
Kuntz, D.; Wilson, A.K. Machine learning, artificial intelligence, and chemistry: How smart algorithms are reshaping simulation and the laboratory. Pure Appl. Chem., 2022, 94(8), 1019-1054.
[http://dx.doi.org/10.1515/pac-2022-0202]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy