Research Article

T辅助分化转录因子(T-bet、GATA-3、RORγt和FOXP3)、MIF受体(CD44、CD74、CXCR2、4,7)和Th1、Th2和Th17细胞因子在对照组和类风湿关节炎患者PBMC中的表达

卷 24, 期 9, 2024

发表于: 03 October, 2023

页: [1169 - 1182] 页: 14

弟呕挨: 10.2174/0115665240260976230925095330

价格: $65

摘要

介绍:巨噬细胞迁移抑制因子(MIF)在类风湿关节炎(RA)的发展中起着关键作用。先前的研究表明,MIF可以触发RA患者和对照组(CS)外周血单核细胞(PBMC)中与Th1、Th2和Th17反应相关的细胞因子谱的表达。尽管如此,迄今为止很少有研究能准确地阐明所涉及的分子机制。本研究旨在探讨CS和RA患者PBMC中Th分化TF (T-bet、GATA-3、RORγt)与MIF受体(CD44、CD74、CXCR2、4,7)和Th1、Th2、Th17细胞因子的表达关系。 方法:两组PBMC培养24 h,流式细胞术检测典型和非典型MIF受体及TF的表达。此外,采用多重头分析来评估培养上清液中细胞因子的水平。研究结果显示,CS组的T CD4+淋巴细胞CD74表达升高(p<0.05),而RA患者的CXCR7表达升高(p<0.001)。此外,与CS组相比,RA患者的T CD4+淋巴细胞表现出更高的GATA3, RORγt和FOXP3表达,以及促炎细胞因子水平升高(p<0.001)。 结果:这些结果表明CD74在CS组的PBMC中表达更显著,而CXCR7在RA患者的PBMC中表达更多。 结论:我们还注意到RA中Th17谱细胞因子的分泌增加,这可能受到CD74和rr γt通过CXCR7通过内噬途径激活FOXP3的影响。

关键词: 类风湿关节炎,MIF, CD74, CD44, CXCR,转录因子,细胞因子。

[1]
Jankauskas SS, Wong DWL, Bucala R, Djudjaj S, Boor P. Evolving complexity of MIF signaling. Cell Signal 2019; 57: 76-88.
[http://dx.doi.org/10.1016/j.cellsig.2019.01.006] [PMID: 30682543]
[2]
Lue H, Kleemann R, Calandra T, Roger T, Bernhagen J. Macrophage migration inhibitory factor (MIF): Mechanisms of action and role in disease. Microbes Infect 2002; 4(4): 449-60.
[http://dx.doi.org/10.1016/S1286-4579(02)01560-5] [PMID: 11932196]
[3]
Sinitski D, Kontos C, Krammer C, Asare Y, Kapurniotu A, Bernhagen J. Macrophage Migration Inhibitory Factor (MIF)-based therapeutic concepts in atherosclerosis and inflammation. Thromb Haemost 2019; 119(4): 553-66.
[http://dx.doi.org/10.1055/s-0039-1677803] [PMID: 30716779]
[4]
Hernández-Palma LA, García-Arellano S, Bucala R, et al. Functional MIF promoter haplotypes modulate Th17-related cytokine expression in peripheral blood mononuclear cells from control subjects and rheumatoid arthritis patients. Cytokine 2019; 115: 89-96.
[http://dx.doi.org/10.1016/j.cyto.2018.11.014] [PMID: 30467094]
[5]
Lee YH, Bae SC. Associations between circulating IL-17 levels and rheumatoid arthritis and between IL-17 gene polymorphisms and disease susceptibility: A meta-analysis. Postgrad Med J 2017; 93(1102): 465-71.
[http://dx.doi.org/10.1136/postgradmedj-2016-134637] [PMID: 28069745]
[6]
Llamas-Covarrubias MA, Valle Y, Navarro-Hernández RE, et al. Serum levels of macrophage migration inhibitory factor are associated with rheumatoid arthritis course. Rheumatol Int 2012; 32(8): 2307-11.
[http://dx.doi.org/10.1007/s00296-011-1951-6] [PMID: 21607559]
[7]
Wakabayashi K, Otsuka K, Sato M, et al. Elevated serum levels of macrophage migration inhibitory factor and their significant correlation with rheumatoid vasculitis disease activity. Mod Rheumatol 2012; 22(1): 59-65.
[http://dx.doi.org/10.3109/s10165-011-0466-z] [PMID: 21607712]
[8]
García-Arellano S, Hernández-Palma LA, Bucala R, et al. Th1/Th17 cytokine profile is induced by macrophage migration inhibitory factor in peripheral blood mononuclear cells from rheumatoid arthritis patients. Curr Mol Med 2019; 18(10): 679-88.
[http://dx.doi.org/10.2174/1566524019666190129123240]
[9]
McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol 2007; 7(6): 429-42.
[http://dx.doi.org/10.1038/nri2094] [PMID: 17525752]
[10]
Ayoub S, Hickey MJ, Morand EF. Mechanisms of Disease: Macrophage migration inhibitory factor in SLE, RA and atherosclerosis. Nat Clin Pract Rheumatol 2008; 4(2): 98-105.
[http://dx.doi.org/10.1038/ncprheum0701] [PMID: 18235539]
[11]
Kamali AN, Noorbakhsh SM, Hamedifar H, et al. A role for Th1-like Th17 cells in the pathogenesis of inflammatory and autoimmune disorders. Mol Immunol 2019; 105: 107-15.
[http://dx.doi.org/10.1016/j.molimm.2018.11.015] [PMID: 30502718]
[12]
Santos LL, Morand EF. Macrophage migration inhibitory factor: A key cytokine in RA, SLE and atherosclerosis. Clin Chim Acta 2009; 399(1-2): 1-7.
[http://dx.doi.org/10.1016/j.cca.2008.09.014] [PMID: 18838066]
[13]
Sánchez-Zuno GA, Bucala R, Hernández-Bello J, et al. Canonical (CD74/CD44) and non-canonical (CXCR2, 4 and 7) MIF receptors are differentially expressed in rheumatoid arthritis patients evaluated by DAS28-ESR. J Clin Med 2021; 11(1): 120.
[http://dx.doi.org/10.3390/jcm11010120]
[14]
Harris J, VanPatten S, Deen NS, Al-Abed Y, Morand EF. Rediscovering MIF: New tricks for an old cytokine. Trends Immunol 2019; 40(5): 447-62.
[http://dx.doi.org/10.1016/j.it.2019.03.002] [PMID: 30962001]
[15]
De la Cruz-Mosso U, García-Iglesias T, Bucala R, et al. MIF promotes a differential Th1/Th2/Th17 inflammatory response in human primary cell cultures: Predominance of Th17 cytokine profile in PBMC from healthy subjects and increase of IL-6 and TNF- α in PBMC from active SLE patients. Cell Immunol 2018; 324: 42-9.
[http://dx.doi.org/10.1016/j.cellimm.2017.12.010] [PMID: 29397904]
[16]
Yoo SA, Leng L, Kim BJ, et al. MIF allele-dependent regulation of the MIF coreceptor CD44 and role in rheumatoid arthritis. Proc Natl Acad Sci 2016; 113(49): E7917-26.
[http://dx.doi.org/10.1073/pnas.1612717113] [PMID: 27872288]
[17]
Xie L, Qiao X, Wu Y, Tang J. β -Arrestin1 mediates the endocytosis and functions of macrophage migration inhibitory factor. PLoS One 2011; 6(1): e16428.
[http://dx.doi.org/10.1371/journal.pone.0016428] [PMID: 21283538]
[18]
Alampour-Rajabi S, El Bounkari O, Rot A, et al. MIF interacts with CXCR7 to promote receptor internalization, ERK1/2 and ZAP-70 signaling, and lymphocyte chemotaxis. FASEB J 2015; 29(11): 4497-511.
[http://dx.doi.org/10.1096/fj.15-273904] [PMID: 26139098]
[19]
Koenen J, Bachelerie F, Balabanian K, Schlecht-Louf G, Gallego C. Atypical Chemokine Receptor 3 (ACKR3): A comprehensive overview of its expression and potential roles in the immune system. Mol Pharmacol 2019; 96(6): 809-18.
[http://dx.doi.org/10.1124/mol.118.115329] [PMID: 31040166]
[20]
Guggino G, Giardina AR, Raimondo S, et al. Targeting IL-6 signalling in early rheumatoid arthritis is followed by Th1 and Th17 suppression and Th2 expansion. Clin Exp Rheumatol 2014; 32(1): 77-81.
[PMID: 24429356]
[21]
Jiang Q, Yang G, Liu Q, Wang S, Cui D. Function and role of regulatory T cells in rheumatoid arthritis. Front Immunol 2021; 12: 626193.
[http://dx.doi.org/10.3389/fimmu.2021.626193] [PMID: 33868244]
[22]
Baharlou R, Rashidi N, Ahmadi-Vasmehjani A, Khoubyari M, Sheikh M, Erfanian S. Immunomodulatory effects of human adipose tissue-derived mesenchymal stem cells on T cell subsets in patients with rheumatoid arthritis. Iran J Allergy Asthma Immunol 2019; 18(1): 114-9.
[http://dx.doi.org/10.18502/ijaai.v18i1.637]
[23]
Aletaha D, Neogi T, Silman AJ, et al. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum 2010; 62(9): 2569-81.
[http://dx.doi.org/10.1002/art.27584] [PMID: 20872595]
[24]
Youssef J, Novosad SA, Winthrop KL. Infection risk and safety of corticosteroid use. Rheum Dis Clin North Am 2016; 42(1): 157-76. [ix-x].
[http://dx.doi.org/10.1016/j.rdc.2015.08.004] [PMID: 26611557]
[25]
Chikanza IC. Mechanisms of corticosteroid resistance in rheumatoid arthritis: A putative role for the corticosteroid receptor beta isoform. Ann N Y Acad Sci 2002; 966(1): 39-48.
[http://dx.doi.org/10.1111/j.1749-6632.2002.tb04200.x] [PMID: 12114257]
[26]
Kim H-R, Park M-K, Cho M-L, et al. Macrophage migration inhibitory factor upregulates angiogenic factors and correlates with clinical measures in rheumatoid arthritis. J Rheumatol 2007; 34(5): 927-36.
[PMID: 17407222]
[27]
David L, Gokhale A, Jois S, et al. CD74/DQA1 dimers predispose to the development of arthritis in humanized mice. Immunology 2016; 147(2): 204-11.
[http://dx.doi.org/10.1111/imm.12551] [PMID: 26524976]
[28]
Doherty E H, Piecychna M, Leng L, Bucala R. Adoptive transfer of a novel MIF receptor (CD74+) expressing memory T cell subpopulation is sufficient to transfer inflammatory arthritis. J Immunol 2017; 198: 156-3.
[http://dx.doi.org/10.4049/jimmunol.198.Supp.156.3]
[29]
Aizman E, Mor A, Levy A, George J, Kloog Y. Ras inhibition by FTS attenuates brain tumor growth in mice directly and by enhancing reactivity of cytotoxic lymphocytes. Oncotarget 2012; 3(2): 144-57.
[http://dx.doi.org/10.18632/oncotarget.420] [PMID: 22323550]
[30]
Farr L, Ghosh S, Moonah S. Role of MIF cytokine/CD74 receptor pathway in protecting against injury and promoting repair. Front Immunol 2020; 11: 1273.
[http://dx.doi.org/10.3389/fimmu.2020.01273] [PMID: 32655566]
[31]
Su H, Na N, Zhang X, Zhao Y. The biological function and significance of CD74 in immune diseases. Inflamm Res 2017; 66(3): 209-16.
[http://dx.doi.org/10.1007/s00011-016-0995-1] [PMID: 27752708]
[32]
Canals M, Scholten DJ, de Munnik S, Han MKL, Smit MJ, Leurs R. Ubiquitination of CXCR7 controls receptor trafficking. PLoS One 2012; 7(3): e34192.
[http://dx.doi.org/10.1371/journal.pone.0034192] [PMID: 22457824]
[33]
Pastor-Fernández G, Mariblanca IR, Navarro MN. Decoding IL-23 signaling cascade for new therapeutic opportunities. Cells 2020; 9(9): 2044.
[http://dx.doi.org/10.3390/cells9092044] [PMID: 32906785]
[34]
Tang M, Tian L, Luo G, Yu X. Interferon-gamma-mediated osteoimmunology. Front Immunol 2018; 9: 1508.
[http://dx.doi.org/10.3389/fimmu.2018.01508] [PMID: 30008722]
[35]
Brennan FR, Mikecz K, Glant TT, et al. CD44 expression by leucocytes in rheumatoid arthritis and modulation by specific antibody: Implications for lymphocyte adhesion to endothelial cells and synoviocytes in vitro. Scand J Immunol 1997; 45(2): 213-20.
[http://dx.doi.org/10.1046/j.1365-3083.1997.d01-382.x] [PMID: 9042434]
[36]
Haynes BF, Hale LP, Patton KL, Martin ME, McCallum RM. Measurement of an adhesion molecule as an indicator of inflammatory disease activity: Up-regulation of the receptor for hyaluronate (CD44) in rheumatoid arthritis. Arthritis Rheum 1991; 34(11): 1434-43.
[http://dx.doi.org/10.1002/art.1780341115] [PMID: 1719988]
[37]
Naor D, Nedvetzki S. CD44 in rheumatoid arthritis. Arthritis Res 2003; 5(3): 105-15.
[http://dx.doi.org/10.1186/ar746] [PMID: 12723975]
[38]
Ray P, Mihalko LA, Coggins NL, et al. Carboxy-terminus of CXCR7 regulates receptor localization and function. Int J Biochem Cell Biol 2012; 44(4): 669-78.
[http://dx.doi.org/10.1016/j.biocel.2012.01.007] [PMID: 22300987]
[39]
Zheng Y, Sun L, Jiang T, Zhang D, He D, Nie H. TNF α promotes Th17 cell differentiation through IL-6 and IL-1β produced by monocytes in rheumatoid arthritis. J Immunol Res 2014; 2014: 1-12.
[http://dx.doi.org/10.1155/2014/385352] [PMID: 25436214]
[40]
Hu S, Guo P, Wang Z, et al. Down-regulation of A3AR signaling by IL-6-induced GRK2 activation contributes to Th17 cell differentiation. Exp Cell Res 2021; 399(2): 112482.
[http://dx.doi.org/10.1016/j.yexcr.2021.112482] [PMID: 33434531]
[41]
Croce M, Rigo V, Ferrini S. IL-21: A pleiotropic cytokine with potential applications in oncology. J Immunol Res 2015; 2015: 1-15.
[http://dx.doi.org/10.1155/2015/696578] [PMID: 25961061]
[42]
Liu Y, Ma X, Yang H, et al. APLNR Regulates IFN-γ; signaling via β-arrestin 1 mediated JAK-STAT1 pathway in melanoma cells. Biochem J 2022; 479(3): 385-99.
[http://dx.doi.org/10.1042/BCJ20210813] [PMID: 35084016]
[43]
Mo W, Zhang L, Yang G, et al. Nuclear β-arrestin1 functions as a scaffold for the dephosphorylation of STAT1 and moderates the antiviral activity of IFN-γ. Mol Cell 2008; 31(5): 695-707.
[http://dx.doi.org/10.1016/j.molcel.2008.06.017] [PMID: 18775329]
[44]
Lin DA, Boyce JA. IL-4 regulates MEK expression required for lysophosphatidic acid-mediated chemokine generation by human mast cells. J Immunol 2005; 175(8): 5430-8.
[http://dx.doi.org/10.4049/jimmunol.175.8.5430] [PMID: 16210650]
[45]
Tripathi P, Sahoo N, Ullah U, et al. A novel mechanism for ERK dependent regulation of IL4 transcription during human Th2 cell differentiation. Immunol Cell Biol 2012; 90(7): 676-87.
[http://dx.doi.org/10.1038/icb.2011.87] [PMID: 21989417]
[46]
Nakayama T, Yoshimura M, Higashioka K, et al. Type 1 helper T cells generate CXCL9/10-producing T-bet+ effector B cells potentially involved in the pathogenesis of rheumatoid arthritis. Cell Immunol 2021; 360: 104263.
[http://dx.doi.org/10.1016/j.cellimm.2020.104263] [PMID: 33387686]
[47]
Aryaeian N, Shahram F, Mahmoudi M, et al. The effect of ginger supplementation on some immunity and inflammation intermediate genes expression in patients with active rheumatoid arthritis. Gene 2019; 698: 179-85.
[http://dx.doi.org/10.1016/j.gene.2019.01.048] [PMID: 30844477]
[48]
Zhou H, Deng Y, Xie Q. The modulatory effects of the volatile oil of ginger on the cellular immune response in vitro and in vivo in mice. J Ethnopharmacol 2006; 105(1-2): 301-5.
[http://dx.doi.org/10.1016/j.jep.2005.10.022] [PMID: 16338110]
[49]
Peter J, Sabu V, Aswathy IS, et al. Dietary amaranths modulate the immune response via balancing Th1/Th2 and Th17/Treg response in collagen-induced arthritis. Mol Cell Biochem 2020; 472(1-2): 57-66.
[http://dx.doi.org/10.1007/s11010-020-03783-x] [PMID: 32529499]
[50]
van Hamburg JP, Tas SW. Molecular mechanisms underpinning T helper 17 cell heterogeneity and functions in rheumatoid arthritis. J Autoimmun 2018; 87: 69-81.
[http://dx.doi.org/10.1016/j.jaut.2017.12.006] [PMID: 29254845]
[51]
Boissier MC, Assier E, Falgarone G, Bessis N. Shifting the imbalance from Th1/Th2 to Th17/treg: The changing rheumatoid arthritis paradigm. Joint Bone Spine 2008; 75(4): 373-5.
[http://dx.doi.org/10.1016/j.jbspin.2008.04.005] [PMID: 18571969]
[52]
Wang D, Lei L. Interleukin 35 regulates the balance of Th17 and Treg responses during the pathogenesis of connective tissue diseases. Int J Rheum Dis 2021; 24(1): 21-7.
[http://dx.doi.org/10.1111/1756-185X.13962] [PMID: 32918357]
[53]
Yang P, Qian FY, Zhang MF, et al. Th17 cell pathogenicity and plasticity in rheumatoid arthritis. J Leukoc Biol 2019; 106(6): 1233-40.
[http://dx.doi.org/10.1002/JLB.4RU0619-197R] [PMID: 31497905]
[54]
Sarkar S, Fox DA. Targeting IL-17 and Th17 cells in rheumatoid arthritis. Rheum Dis Clin North Am 2010; 36(2): 345-66.
[http://dx.doi.org/10.1016/j.rdc.2010.02.006]
[55]
Lin SC, Chen KH, Lin CH, Kuo CC, Ling QD, Chan CH. The quantitative analysis of peripheral blood FOXP3-expressing T cells in systemic lupus erythematosus and rheumatoid arthritis patients. Eur J Clin Invest 2007; 37(12): 987-96.
[http://dx.doi.org/10.1111/j.1365-2362.2007.01882.x] [PMID: 18036033]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy