Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Research Article

Montelukast Ameliorates Scopolamine-induced Alzheimer’s Disease: Role on Cholinergic Neurotransmission, Antioxidant Defence System, Neuroinflammation and Expression of BDNF

Author(s): Bhavana Yerraguravagari, Naga Pavani Penchikala, Aravinda Sai Kolusu, Grandhi Sandeep Ganesh, Prasad Konduri, Kumar V.S. Nemmani and Pavan Kumar Samudrala*

Volume 23, Issue 8, 2024

Published on: 27 September, 2023

Page: [1040 - 1055] Pages: 16

DOI: 10.2174/0118715273258337230925040049

Price: $65

Abstract

Background: Alzheimer's disease (AD) is an overwhelming neurodegenerative disease with progressive loss of memory. AD is characterized by the deposition of the senile plaques mainly composed of β-amyloid (Aβ) fragment, BDNF decline, Cholinergic system overactivity and neuroinflammation. Montelukast (MTK), a leukotriene receptor antagonist, showed astounding neuroprotective effects in a variety of neurodegenerative disorders.

Objective: This study aims to investigate the ameliorative effects of Montelukast in the scopolamineinduced Alzheimer’s disease (AD) model in rats and evaluate its activity against neuroinflammation.

Methods: Thirty rats were split into five groups: Control group (1 mL/kg normal saline, i.p.), Montelukast perse (10 mg/kg, i.p.), Disease group treated with Scopolamine (3 mg/kg, i.p.), Donepezil group (3 mg/kg, i.p.), Montelukast treatment group (10 mg/kg, i.p.) and behavioural and biochemical tests were carried out to assess the neuro protective effect.

Results: Scopolamine treatment led to a significant reduction in learning and memory and an elevation in cholinesterase levels when compared with the control group (p < 0.01). Additionally, elevated oxidative stress and Amyloid-β levels were associated with enhanced neuroinflammation (p < 0.05, p < 0.01). Furthermore, the decline in neurotrophic factor BDNF is also observed when compared with the normal control group (p < 0.01). Montelukast pre-treatment significantly attenuated learning and memory impairment and cholinesterase levels. Besides, Montelukast and standard drug donepezil administration significantly suppressed the oxidative stress markers (p < 0.01), Amyloid-β levels, neuroinflammatory mediators (p < 0.05) and caused a significant increase in BDNF levels (p < 0.05).

Conclusion: Montelukast bestowed ameliorative effects in scopolamine-induced AD animal models as per the previous studies via attenuation of memory impairment, cholinesterase neurotransmission, oxidative stress, Amyloid-β levels, neuroinflammatory mediators and enhanced BDNF levels.

Keywords: Cognitive impairment, scopolamine, montelukast, BDNF expression, oxidative stress, neuroinflammation.

Graphical Abstract
[1]
Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med 2010; 362(4): 329-44.
[http://dx.doi.org/10.1056/NEJMra0909142] [PMID: 20107219]
[2]
Moya-Alvarado G, Gershoni-Emek N, Perlson E, Bronfman FC. Neurodegeneration and Alzheimer’s disease (AD). What can proteomics tell us about the Alzheimer’s brain? 2016. Available from: www.mcponline.org
[3]
Nichols E. Global prevalence of dementia expected to grow rapidly through 2050 To more accurately forecast global dementia prevalence and produce country-level estimates. 2021. Available from: www.alz.org/aaic/pressroom.asp
[4]
Nichols E, Steinmetz JD, Vollset SE, Fukutaki K, Chalek J, Abd-Allah F, et al. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2022; 7e105
[5]
Michael J, Marschallinger J, Aigner L. The leukotriene signaling pathway: a druggable target in Alzheimer’s disease. Drug Discov Today 2019; 24(2): 505-16.
[http://dx.doi.org/10.1016/j.drudis.2018.09.008] [PMID: 30240876]
[6]
Terry A v., Buccafusco JJ. The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: Recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 2003.
[7]
Kamat PK, Kalani A, Rai S, Tota SK, Kumar A, Ahmad AS. Streptozotocin intracerebroventricular-induced neurotoxicity and brain insulin resistance: a therapeutic intervention for treatment of Sporadic Alzheimer’s Disease (sAD)-like pathology. Mol Neurobiol 2016; 53(7): 4548-62.
[http://dx.doi.org/10.1007/s12035-015-9384-y] [PMID: 26298663]
[8]
Chen ZR, Huang JB, Yang SL, Hong FF. Role of cholinergic signaling in Alzheimer’s disease. Molecules 2022; 27(6): 1816.
[http://dx.doi.org/10.3390/molecules27061816]
[9]
Ramos-Rodriguez JJ, Pacheco-Herrero M, Thyssen D, et al. Rapid β-amyloid deposition and cognitive impairment after cholinergic denervation in APP/PS1 mice. J Neuropathol Exp Neurol 2013; 72(4): 272-85.
[http://dx.doi.org/10.1097/NEN.0b013e318288a8dd] [PMID: 23481704]
[10]
Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics. Int J Nanomedicine 2019; 14: 5541-54.
[http://dx.doi.org/10.2147/IJN.S200490]
[11]
Majdi A, Sadigh-Eteghad S, Rahigh Aghsan S, et al. Amyloid-β, tau, and the cholinergic system in Alzheimer’s disease: Seeking direction in a tangle of clues. Rev Neurosci 2020; 31(4): 391-413.
[http://dx.doi.org/10.1515/revneuro-2019-0089] [PMID: 32017704]
[12]
Bischofberger J, Dranovsky A, Matias-Guiu J, Ferreira FF, Ribeiro FF, Rodrigues RS, et al. Brain-Derived Neurotrophic Factor (BDNF) role in cannabinoid-mediated neurogenesis. 2018. Available from: www.frontiersin.org
[13]
Allen SJ, Watson JJ, Dawbarn D. The neurotrophins and their role in alzheimer’s disease. Curr Neuropharmacol 2011; 9(4): 559-73.
[14]
Gao L, Zhang Y, Sterling K, Song W. Brain-derived neurotrophic factor in Alzheimer’s disease and its pharmaceutical potential. Transl Neurodegener 2022; 11(1): 4.
[http://dx.doi.org/10.1186/s40035-022-00279-0] [PMID: 35090576]
[15]
Michael J, Zirknitzer J, Unger MS, et al. The leukotriene receptor antagonist montelukast attenuates neuroinflammation and affects cognition in transgenic 5xfad mice. Int J Mol Sci 2021; 22(5): 2782.
[http://dx.doi.org/10.3390/ijms22052782] [PMID: 33803482]
[16]
Wallin J, Svenningsson P. Potential effects of leukotriene receptor antagonist montelukast in treatment of neuroinflammation in parkinson’s disease. Int J Mol Sci 2021; 22(11): 5606.
[http://dx.doi.org/10.3390/ijms22115606] [PMID: 34070609]
[17]
Bäck M, Powell WS, Dahlén SE, et al. Update on leukotriene, lipoxin and oxoeicosanoid receptors: IUPHAR Review 7. Br J Pharmacol 2014; 171(15): 3551-74.
[http://dx.doi.org/10.1111/bph.12665] [PMID: 24588652]
[18]
Wang Y, Yang Y, Zhang S, Li C, Zhang L. Modulation of neuroinflammation by cysteinyl leukotriene 1 and 2 receptors: implications for cerebral ischemia and neurodegenerative diseases. Neurobiol Aging 2020; 87: 1-10.
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.12.013] [PMID: 31986345]
[19]
Theron AJ, Steel HC, Tintinger GR, Gravett CM, Anderson R, Feldman C. Cysteinyl leukotriene receptor-1 antagonists as modulators of innate immune cell function. Immunol Res 2014; 2014608930
[20]
Marschallinger J, Schäffner I, Klein B, et al. Structural and functional rejuvenation of the aged brain by an approved anti-asthmatic drug. Nat Commun 2015; 6(1): 8466.
[http://dx.doi.org/10.1038/ncomms9466] [PMID: 26506265]
[21]
Xiong LY, Ouk M, Wu CY, et al. Leukotriene receptor antagonist use and cognitive decline in normal cognition, mild cognitive impairment, and Alzheimer’s dementia. Alzheimers Res Ther 2021; 13(1): 147.
[http://dx.doi.org/10.1186/s13195-021-00892-7] [PMID: 34479635]
[22]
Lee HR, Park HJ, Park JS, et al. Montelukast microsuspension with hypromellose for improved stability and oral absorption. Int J Biol Macromol 2021; 183: 1732-42.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.05.151] [PMID: 34051251]
[23]
Michael J, Bessa de Sousa D, Conway J, et al. Improved bioavailability of montelukast through a novel oral mucoadhesive film in humans and mice. Pharmaceutics 2020; 13(1): 12.
[http://dx.doi.org/10.3390/pharmaceutics13010012] [PMID: 33374646]
[24]
Zhang CT, Lin JR, Wu F, et al. Montelukast ameliorates streptozotocin-induced cognitive impairment and neurotoxicity in mice. Neurotoxicology 2016; 57: 214-22.
[http://dx.doi.org/10.1016/j.neuro.2016.09.022] [PMID: 27702591]
[25]
Kalonia H, Kumar P, Kumar A, Nehru B. Protective effect of montelukast against quinolinic acid/malonic acid induced neurotoxicity: possible behavioral, biochemical, mitochondrial and tumor necrosis factor-α level alterations in rats. Neuroscience 2010; 171(1): 284-99.
[http://dx.doi.org/10.1016/j.neuroscience.2010.08.039] [PMID: 20813166]
[26]
Jang H, Kim S, Lee JM, Oh YS, Park SM, Kim SR. Montelukast treatment protects nigral dopaminergic neurons against microglial activation in the 6-hydroxydopamine mouse model of Parkinson’s disease. Neuroreport 2017; 28(5): 242-9.
[http://dx.doi.org/10.1097/WNR.0000000000000740] [PMID: 28178069]
[27]
Mansour RM, Ahmed MAE, El-Sahar AE, El Sayed NS. Montelukast attenuates rotenone-induced microglial activation/p38 MAPK expression in rats: Possible role of its antioxidant, anti-inflammatory and antiapoptotic effects. Toxicol Appl Pharmacol 2018; 358: 76-85.
[http://dx.doi.org/10.1016/j.taap.2018.09.012] [PMID: 30222980]
[28]
Zhao R, Shi WZ, Zhang YM, Fang SH, Wei EQ. Montelukast, a cysteinyl leukotriene receptor-1 antagonist, attenuates chronic brain injury after focal cerebral ischaemia in mice and rats. J Pharm Pharmacol 2011; 63(4): 550-7.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01238.x] [PMID: 21401607]
[29]
Lai J, Mei ZL, Wang H, et al. Montelukast rescues primary neurons against Aβ1-42-induced toxicity through inhibiting CysLT1R-mediated NF-κB signaling. Neurochem Int 2014; 75: 26-31.
[http://dx.doi.org/10.1016/j.neuint.2014.05.006] [PMID: 24879954]
[30]
Kumar A, Prakash A, Pahwa D, Mishra J. Montelukast potentiates the protective effect of rofecoxib against kainic acid-induced cognitive dysfunction in rats. Pharmacol Biochem Behav 2012; 103(1): 43-52.
[http://dx.doi.org/10.1016/j.pbb.2012.07.015] [PMID: 22878042]
[31]
Marschallinger J, Altendorfer B, Rockenstein E, et al. The leukotriene receptor antagonist montelukast reduces alpha-synuclein load and restores memory in an animal model of dementia with lewy bodies. Neurotherapeutics 2020; 17(3): 1061-74.
[http://dx.doi.org/10.1007/s13311-020-00836-3] [PMID: 32072462]
[32]
Lenz QF, Arroyo DS, Temp FR, et al. Cysteinyl leukotriene receptor (CysLT) antagonists decrease pentylenetetrazol-induced seizures and blood-brain barrier dysfunction. Neuroscience 2014; 277: 859-71.
[http://dx.doi.org/10.1016/j.neuroscience.2014.07.058] [PMID: 25090924]
[33]
Ishola IO, Adamson FM, Adeyemi OO. Ameliorative effect of kolaviron, a biflavonoid complex from Garcinia kola seeds against scopolamine-induced memory impairment in rats: role of antioxidant defense system. Metab Brain Dis 2017; 32(1): 235-45.
[http://dx.doi.org/10.1007/s11011-016-9902-2] [PMID: 27631100]
[34]
Shabani S, Mirshekar MA. Diosmin is neuroprotective in a rat model of scopolamine-induced cognitive impairment. Biomed Pharmacother 2018; 108: 1376-83.
[http://dx.doi.org/10.1016/j.biopha.2018.09.127] [PMID: 30372840]
[35]
Stanford medicine. Open Field | Behavioral and Functional Neuroscience Laboratory | Stanford Medicine [Internet]. Behavioral and Functional Neuroscience Laboratory. 2022. Available from: https://med.stanford.edu/sbfnl/services/bm/sm/openfield.html
[36]
Lueptow LM. Novel object recognition test for the investigation of learning and memory in mice. J Vis Exp 2017; 2017: 55718.
[37]
Kraeuter AK, Guest PC, Sarnyai Z. The Y-maze for assessment of spatial working and reference memory in mice. Methods Mol Biol 2019; 1916: 105-11.
[http://dx.doi.org/10.1007/978-1-4939-8994-2_10] [PMID: 30535688]
[38]
Vorhees CV, Williams MT. Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nat Protoc 2006; 1(2): 848-58.
[39]
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72(1-2): 248-54.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[40]
Ellman GL, Courtney KD, Andres V Jr, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961; 7(2): 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[41]
Barai P, Raval N, Acharya S, Acharya N. Bergenia ciliata ameliorates Streptozotocin-induced spatial memory deficits through dual cholinesterase inhibition and attenuation of oxidative stress in rats. Biomed Pharmacother 2018; 102: 966-80.
[http://dx.doi.org/10.1016/j.biopha.2018.03.115] [PMID: 29710552]
[42]
Al-Amin MM, Mahmud W, Pervin MS, Ridwanul Islam SM, Ashikur Rahman M, Zinchenko A. Astaxanthin ameliorates scopolamine-induced spatial memory deficit via reduced cortical-striato-hippocampal oxidative stress. Brain Res 2019; 1710: 74-81.
[http://dx.doi.org/10.1016/j.brainres.2018.12.014] [PMID: 30552898]
[43]
Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys 1959; 82(1): 70-7.
[http://dx.doi.org/10.1016/0003-9861(59)90090-6] [PMID: 13650640]
[44]
Deshmukh R, Kaundal M, Bansal V. Samardeep. Caffeic acid attenuates oxidative stress, learning and memory deficit in intra-cerebroventricular streptozotocin induced experimental dementia in rats. Biomed Pharmacother 2016; 81: 56-62.
[http://dx.doi.org/10.1016/j.biopha.2016.03.017] [PMID: 27261577]
[45]
Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95(2): 351-8.
[http://dx.doi.org/10.1016/0003-2697(79)90738-3] [PMID: 36810]
[46]
Nandi A, Chatterjee IB. Assay of superoxide dismutase activity in animal tissues. J Biosci 1988; 13: 305-15.
[http://dx.doi.org/10.1007/BF02712155]
[47]
Tang KS. The cellular and molecular processes associated with scopolamine-induced memory deficit: A model of Alzheimer’s biomarkers. Life Sci 2019; 233116695
[http://dx.doi.org/10.1016/j.lfs.2019.116695] [PMID: 31351082]
[48]
Ishola IO, Jacinta AA, Adeyemi OO. Cortico-hippocampal memory enhancing activity of hesperetin on scopolamine-induced amnesia in mice: Role of antioxidant defense system, cholinergic neurotransmission and expression of BDNF. Metab Brain Dis 2019; 34(4): 979-89.
[http://dx.doi.org/10.1007/s11011-019-00409-0] [PMID: 30949953]
[49]
Antunes M, Biala G. The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process 2012; 13(2): 93-110.
[http://dx.doi.org/10.1007/s10339-011-0430-z] [PMID: 22160349]
[50]
Nazir N, Nisar M, Zahoor M, et al. Phytochemical analysis, in vitro anticholinesterase, antioxidant activity and in vivo nootropic effect of Ferula ammoniacum (Dorema ammoniacum) D. Don. in scopolamine-induced memory impairment in mice. Brain Sci 2021; 11(2): 259.
[http://dx.doi.org/10.3390/brainsci11020259] [PMID: 33669503]
[51]
Kim S-K, Kwon D-A, Kim YS, Lee HS, Kim HK, Kim W-K. Standardized Extract (HemoHIM) protects against scopolamine-induced amnesia in a murine model. Evid Based Complement Alternat Med 2021; 20218884243
[http://dx.doi.org/10.1155/2021/8884243]
[52]
Üçel Uİ, Can ÖD, Demir Özkay Ü, Ulupinar E. Antiamnesic effects of tofisopam against scopolamine-induced cognitive impairments in rats. Pharmacol Biochem Behav 2020; 190172858
[http://dx.doi.org/10.1016/j.pbb.2020.172858] [PMID: 31981560]
[53]
Chen Z-R, Huang J-B. Role of cholinergic signaling in Alzheimer’s disease. Molecules 2022; 27(6): 1816.
[http://dx.doi.org/10.3390/molecules27061816]
[54]
Sam C, Bordoni B. Physiology, Acetylcholine. StatPearls 2021.
[55]
Easton A, Douchamps V, Eacott M, Lever C. A specific role for septohippocampal acetylcholine in memory? Neuropsychologia 2012; 50(13): 3156-68.
[http://dx.doi.org/10.1016/j.neuropsychologia.2012.07.022] [PMID: 22884957]
[56]
Mufson EJ, Counts SE, Perez SE, Ginsberg SD. Cholinergic system during the progression of Alzheimer’s disease: therapeutic implications. Expert Rev Neurother 2008; 8: 1703.
[http://dx.doi.org/10.1586/14737175.8.11.1703]
[57]
Buccellato FR, D’Anca M, Fenoglio C, Scarpini E, Galimberti D. Role of oxidative damage in alzheimer’s disease and neurodegeneration: From pathogenic mechanisms to biomarker discovery. Antioxidants 2021; 10(9): 1353.
[http://dx.doi.org/10.3390/antiox10091353] [PMID: 34572985]
[58]
Yargicoglu P, Şahin E, Gümüşlü S, Ağar A. The effect of sulfur dioxide inhalation on active avoidance learning, antioxidant status and lipid peroxidation during aging. Neurotoxicol Teratol 2007; 29(2): 211-8.
[http://dx.doi.org/10.1016/j.ntt.2006.11.002] [PMID: 17197156]
[59]
Saeed SA, Shad KF, Saleem T, Javed F, Khan MU. Some new prospects in the understanding of the molecular basis of the pathogenesis of stroke. Exp Brain Res 2007; 182(1): 1-10.
[http://dx.doi.org/10.1007/s00221-007-1050-9] [PMID: 17665180]
[60]
Chauhan V, Chauhan A. Oxidative stress in Alzheimer’s disease. Pathophysiology 2006; 13(3): 195-208.
[http://dx.doi.org/10.1016/j.pathophys.2006.05.004] [PMID: 16781128]
[61]
Ishola IO, Tota S, Adeyemi OO, Agbaje EO, Narender T, Shukla R. Protective effect of Cnestis ferruginea and its active constituent on scopolamine-induced memory impairment in mice: A behavioral and biochemical study. Pharm Biol 2013; 51(7): 825-35.
[http://dx.doi.org/10.3109/13880209.2013.767360] [PMID: 23627469]
[62]
Ishola I, Awoyemi A, Afolayan G. Involvement of antioxidant system in the amelioration of scopolamine-induced memory impairment by grains of paradise (Aframomum melegueta KSchum.) extract. Drug Res (Stuttg) 2016; 66(9): 455-63.
[http://dx.doi.org/10.1055/s-0042-109391] [PMID: 27403576]
[63]
Salehi A, Delcroix JD, Swaab DF. Alzheimer?s disease and NGF signaling. J Neural Transm (Vienna) 2004; 111(3): 323-45.
[http://dx.doi.org/10.1007/s00702-003-0091-x] [PMID: 14991458]
[64]
Hernández-Rodríguez M, Arciniega-Martínez IM, García-Marín ID, Correa-Basurto J, Rosales-Hernández MC. Chronic administration of scopolamine increased GSK3βP9, beta secretase, amyloid beta, and oxidative stress in the hippocampus of wistar rats. Mol Neurobiol 2020; 57(9): 3979-88.
[http://dx.doi.org/10.1007/s12035-020-02009-x] [PMID: 32638218]
[65]
Baek SY, Li FY, Kim DH, Kim SJ, Kim MR. Enteromorpha prolifera extract improves memory in scopolamine-treated mice via downregulating amyloid-β expression and upregulating BDNF/TrkB pathway. Antioxidants 2020; 9(7): 620.
[http://dx.doi.org/10.3390/antiox9070620] [PMID: 32679768]
[66]
Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci 2015; 11: 1164.
[http://dx.doi.org/10.5114/aoms.2015.56342]
[67]
Cunha C, Brambilla R, Thomas KL. A simple role for BDNF in learning and memory? Front Mol Neurosci 2010; 3: 1.
[http://dx.doi.org/10.3389/neuro.02.001.2010] [PMID: 20162032]
[68]
Allen SJ, Watson JJ, Dawbarn D. The neurotrophins and their role in Alzheimer’s disease. Curr Neuropharmacol 2011; 9(4): 559-73.
[69]
Lee B, Sur B, Shim I, Lee H, Hahm DH. Phellodendron amurense and its major alkaloid compound, berberine ameliorates scopolamine-induced neuronal impairment and memory dysfunction in rats. Korean J Physiol Pharmacol 2012; 16(2): 79-89.
[http://dx.doi.org/10.4196/kjpp.2012.16.2.79] [PMID: 22563252]
[70]
Lee JS, Kim HG, Lee HW, et al. Hippocampal memory enhancing activity of pine needle extract against scopolamine-induced amnesia in a mouse model. Sci Rep 2015; 5(1): 9651.
[http://dx.doi.org/10.1038/srep09651] [PMID: 25974329]
[71]
Park HR, Lee H, Park H, Cho WK, Ma JY. Fermented sipjeondaebo-tang alleviates memory deficits and loss of hippocampal neurogenesis in scopolamine-induced amnesia in mice. Sci Rep 2016; 6(1): 22405.
[http://dx.doi.org/10.1038/srep22405] [PMID: 26939918]
[72]
Anoush M, Pourmansouri Z, Javadi R, et al. Clavulanic acid: A novel potential agent in prevention and treatment of scopolamine-induced alzheimer’s disease. ACS Omega 2022; 7(16): 13861-9.
[http://dx.doi.org/10.1021/acsomega.2c00231] [PMID: 35559146]
[73]
Chen Z, Huang C, Ding W. Z-Guggulsterone improves the scopolamine-induced memory impairments through enhancement of the BDNF signal in C57BL/6J mice. Neurochem Res 2016; 41(12): 3322-32.
[http://dx.doi.org/10.1007/s11064-016-2064-0] [PMID: 27677871]
[74]
Zou J, Cai P-S, Xiong C-M, Ruan J-L. Neuroprotective effect of peptides extracted from walnut (Juglans Sigilata Dode) proteins on Aβ25-35-induced memory impairment in mice. J Huazhong Univ Sci Technolog Med Sci 2016; 36(1): 21-30.
[75]
Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther 2017; 2: 17023.
[http://dx.doi.org/10.1038/sigtrans.2017.23] [PMID: 29158945]
[76]
Ye SM, Johnson RW. An age-related decline in interleukin-10 may contribute to the increased expression of interleukin-6 in brain of aged mice. Neuroimmunomodulation 2001; 9(4): 183-92.
[http://dx.doi.org/10.1159/000049025] [PMID: 11847480]
[77]
Syed Z, Shal B, Azhar A, et al. Pharmacological mechanism of xanthoangelol underlying Nrf-2/TRPV1 and anti-apoptotic pathway against scopolamine-induced amnesia in mice. Biomed Pharmacother 2022; 150113073
[http://dx.doi.org/10.1016/j.biopha.2022.113073] [PMID: 35658216]
[78]
Sandhu M, Irfan HM, Shah SA, et al. Friedelin attenuates neuronal dysfunction and memory impairment by inhibition of the activated JNK/NF-κB signalling pathway in scopolamine-induced mice model of neurodegeneration. Molecules 2022; 27(14): 4513.
[http://dx.doi.org/10.3390/molecules27144513] [PMID: 35889382]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy