Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Review Article

Research Progress on the Anticancer Activity of Plant Polysaccharides

Author(s): Qiaoyan Liu, Bo Song, Sen Tong, Qiuqiong Yang, Huanhuan Zhao, Jia Guo, Xuexia Tian, Renjie Chang* and Junzi Wu*

Volume 19, Issue 5, 2024

Published on: 22 September, 2023

Page: [573 - 598] Pages: 26

DOI: 10.2174/1574892819666230915103434

Price: $65

Abstract

Tumor is a serious threat to human health, with extremely high morbidity and mortality rates. However, tumor treatment is challenging, and the development of antitumor drugs has always been a significant research focus. Plant polysaccharides are known to possess various biological activities. They have many pharmacological properties such as immunomodulation, antitumor, antiviral, antioxidative, antithrombotic, and antiradiation effects, reduction of blood pressure and blood sugar levels, and protection from liver injury. Among these effects, the antitumor effect of plant polysaccharides has been widely studied. Plant polysaccharides can inhibit tumor proliferation and growth by inhibiting tumor cell invasion and metastasis, inducing cell apoptosis, affecting the cell cycle, and regulating the tumor microenvironment. They also have the characteristics of safety, high efficiency, and low toxicity, which can alleviate, to a certain extent, the adverse reactions caused by traditional tumor treatment methods such as surgery, radiotherapy, and chemotherapy. Therefore, this paper systematically summarizes the direct antitumor effects of plant polysaccharides, their regulatory effects on the tumor microenvironment, and intervening many common high-incidence tumors in other ways. It also provides data support for the administration of plant polysaccharides in modern tumor drug therapy, enabling the identification of new targets and development of new drugs for tumor therapy.

Keywords: Plant polysaccharide, tumor, tumor microenvironment, tumor treatment, antineoplastic activity, pharmacological properties.

[1]
Sebastián C, Zwaans BMM, Silberman DM, et al. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 2012; 151(6): 1185-99.
[http://dx.doi.org/10.1016/j.cell.2012.10.047] [PMID: 23217706]
[2]
Goldstein MR, Mascitelli L. The increasing incidence of early-onset colorectal cancer. N Engl J Med 2022; 387(1): 93.
[PMID: 35793216]
[3]
Liu Z, Jiang Y, Yuan H, et al. The trends in incidence of primary liver cancer caused by specific etiologies: Results from the Global Burden of Disease Study 2016 and implications for liver cancer prevention. J Hepatol 2019; 70(4): 674-83.
[http://dx.doi.org/10.1016/j.jhep.2018.12.001] [PMID: 30543829]
[4]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020; 70(1): 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[5]
Zhang Y, Luo G, Etxeberria J, Hao Y. Global patterns and trends in lung cancer incidence: A population-based study. J Thorac Oncol 2021; 16(6): 933-44.
[http://dx.doi.org/10.1016/j.jtho.2021.01.1626] [PMID: 33607309]
[6]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[7]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[8]
Milea AȘ, Vasile AM, Cîrciumaru A, et al. Valorizations of sweet cherries skins phytochemicals by extraction, microencapsulation and development of value-added food products. Foods 2019; 8(6): 188.
[http://dx.doi.org/10.3390/foods8060188] [PMID: 31159360]
[9]
Peters V, Dijkstra G, Campmans-Kuijpers MJE. Are all dietary fibers equal for patients with inflammatory bowel disease? A systematic review of randomized controlled trials. Nutr Rev 2022; 80(5): 1179-93.
[http://dx.doi.org/10.1093/nutrit/nuab062] [PMID: 34486663]
[10]
Bang SJ, Kim G, Lim MY, et al. The influence of in vitro pectin fermentation on the human fecal microbiome. AMB Express 2018; 8(1): 98.
[http://dx.doi.org/10.1186/s13568-018-0629-9] [PMID: 29909506]
[11]
Li W, Zhang K, Yang H. Pectin alleviates high fat (Lard) diet-induced nonalcoholic fatty liver disease in mice: Possible role of short-chain fatty acids and gut microbiota regulated by pectin. J Agric Food Chem 2018; 66(30): 8015-25.
[http://dx.doi.org/10.1021/acs.jafc.8b02979] [PMID: 29987933]
[12]
Yang J, Ding C, Dai X, et al. Soluble dietary fiber ameliorates radiation-induced intestinal epithelial-to-mesenchymal transition and fibrosis. JPEN J Parenter Enteral Nutr 2017; 41(8): 1399-410.
[http://dx.doi.org/10.1177/0148607116671101] [PMID: 27660288]
[13]
Buyel JF. Plants as sources of natural and recombinant anti-cancer agents. Biotechnol Adv 2018; 36(2): 506-20.
[http://dx.doi.org/10.1016/j.biotechadv.2018.02.002] [PMID: 29408560]
[14]
Panzeri D, Guzzetti L, Sacco G, et al. Effectiveness of Vigna unguiculata seed extracts in preventing colorectal cancer. Food Funct 2020; 11(7): 5853-65.
[http://dx.doi.org/10.1039/D0FO00913J] [PMID: 32589172]
[15]
Wong AST, Che CM, Leung KW. Recent advances in ginseng as cancer therapeutics: A functional and mechanistic overview. Nat Prod Rep 2015; 32(2): 256-72.
[http://dx.doi.org/10.1039/C4NP00080C] [PMID: 25347695]
[16]
Zhao L, Zhang Y, Li Y, et al. Therapeutic effects of ginseng and ginsenosides on colorectal cancer. Food Funct 2022; 13(12): 6450-66.
[http://dx.doi.org/10.1039/D2FO00899H] [PMID: 35661189]
[17]
Sheik A, Kim K, Varaprasad GL, et al. The anti-cancerous activity of adaptogenic herb Astragalus membranaceus. Phytomedicine 2021; 91: 153698.
[http://dx.doi.org/10.1016/j.phymed.2021.153698] [PMID: 34479785]
[18]
Jiang JW, Chen XM, Chen XH, Zheng SS. Ginsenoside Rg3 inhibit hepatocellular carcinoma growth via intrinsic apoptotic pathway. World J Gastroenterol 2011; 17(31): 3605-13.
[http://dx.doi.org/10.3748/wjg.v17.i31.3605] [PMID: 21987607]
[19]
Lee DY, Park CW, Lee SJ, et al. Anti-cancer effects of panax ginseng berry polysaccharides via activation of immune-related cells. Front Pharmacol 2019; 10: 1411.
[http://dx.doi.org/10.3389/fphar.2019.01411] [PMID: 32038228]
[20]
Xu GL, Geng D, Xie M, et al. Chemical composition, antioxidative and anticancer activities of the essential oil: Curcumae rhizoma-sparganii rhizoma, a traditional herb pair. Molecules 2015; 20(9): 15781-96.
[http://dx.doi.org/10.3390/molecules200915781] [PMID: 26343630]
[21]
Zeng Z, Nian Q, Chen N, et al. Ginsenoside Rg3 inhibits angiogenesis in gastric precancerous lesions through downregulation of Glut1 and Glut4. Biomed Pharmacother 2022; 145: 112086.
[http://dx.doi.org/10.1016/j.biopha.2021.112086] [PMID: 34799220]
[22]
Wang M, Li F, Li X, Zhang L, e Z. [Effects of ginseng volatile oil on cytochemical components of SGC-823 gastric carcinoma in cell culture]. Zhongguo Zhongyao Zazhi 1992; 17(2): 110-112, 128.
[PMID: 1418525]
[23]
Li M, Wang X, Wang Y, et al. Strategies for remodeling the tumor microenvironment using active ingredients of ginseng-A promising approach for cancer therapy. Front Pharmacol 2021; 12: 797634.
[http://dx.doi.org/10.3389/fphar.2021.797634] [PMID: 35002732]
[24]
Jung Y, Jerng U, Lee S. A systematic review of anticancer effects of Radix Astragali. Chin J Integr Med 2016; 22(3): 225-36.
[http://dx.doi.org/10.1007/s11655-015-2324-x] [PMID: 26643507]
[25]
Wang S, Mou J, Cui L, Wang X, Zhang Z. Astragaloside IV inhibits cell proliferation of colorectal cancer cell lines through down-regulation of B7-H3. Biomed Pharmacother 2018; 102: 1037-44.
[http://dx.doi.org/10.1016/j.biopha.2018.03.127] [PMID: 29710520]
[26]
Zheng Y, Ren W, Zhang L, Zhang Y, Liu D, Liu Y. A review of the pharmacological action of astragalus polysaccharide. Front Pharmacol 2020; 11: 349.
[http://dx.doi.org/10.3389/fphar.2020.00349] [PMID: 32265719]
[27]
Zhang D, Zheng J, Ni M, et al. Comparative efficacy and safety of Chinese herbal injections combined with the FOLFOX regimen for treating gastric cancer in China: A network meta-analysis. Oncotarget 2017; 8(40): 68873-89.
[http://dx.doi.org/10.18632/oncotarget.20320] [PMID: 28978164]
[28]
Szu SC, Lin KFY, Hunt S, Chu C, Thinh ND. Phase I clinical trial of O-acetylated pectin conjugate, a plant polysaccharide based typhoid vaccine. Vaccine 2014; 32(22): 2618-22.
[http://dx.doi.org/10.1016/j.vaccine.2014.03.023] [PMID: 24657719]
[29]
Beyea JA, Rotenberg BW. Comparison of purified plant polysaccharide (HemoStase) versus gelatin-thrombin matrix (FloSeal) in controlling bleeding during sinus surgery: A randomized controlled trial. Ann Otol Rhinol Laryngol 2011; 120(8): 495-8.
[http://dx.doi.org/10.1177/000348941112000801] [PMID: 21922971]
[30]
Guo L, Bai SP, Zhao L, Wang XH. Astragalus polysaccharide injection integrated with vinorelbine and cisplatin for patients with advanced non-small cell lung cancer: Effects on quality of life and survival. Med Oncol 2012; 29(3): 1656-62.
[http://dx.doi.org/10.1007/s12032-011-0068-9] [PMID: 21928106]
[31]
Hsieh CH, Lin CY, Hsu CL, et al. Incorporation of Astragalus polysaccharides injection during concurrent chemoradiotherapy in advanced pharyngeal or laryngeal squamous cell carcinoma: Preliminary experience of a phase II double-blind, randomized trial. J Cancer Res Clin Oncol 2020; 146(1): 33-41.
[http://dx.doi.org/10.1007/s00432-019-03033-8] [PMID: 31728618]
[32]
Tsao SM, Wu TC, Chen J, Chang F, Tsao T. Astragalus polysaccharide injection (PG2) normalizes the neutrophil-to-lymphocyte ratio in patients with advanced lung cancer receiving immunotherapy. Integr Cancer Ther 2021; 20.
[http://dx.doi.org/10.1177/1534735421995256] [PMID: 33583212]
[33]
Zhang D, Wang K, Zheng J, et al. Comparative efficacy and safety of Chinese herbal injections combined with transcatheter hepatic arterial chemoembolization in treatment of liver cancer: A bayesian network Meta-analysis. J Tradit Chin Med 2020; 40(2): 167-87.
[PMID: 32242383]
[34]
Xie F, Zeng Z, Huang H, Zhao C, Lu T. Clinical observation on nasopharyngeal carcinoma treated with combined therapy of radiotherapy and ginseng polysaccharide injection. Chinese J Integrated Trad Western Med 2001; 7(4): 273-6.
[http://dx.doi.org/10.1007/BF02934369] [PMID: 12577414]
[35]
Xie L, Shen M, Hong Y, Ye H, Huang L, Xie J. Chemical modifications of polysaccharides and their anti-tumor activities. Carbohydr Polym 2020; 229: 115436.
[http://dx.doi.org/10.1016/j.carbpol.2019.115436] [PMID: 31826393]
[36]
Johnson SC, McClelland SE. Watching cancer cells evolve through chromosomal instability. Nature 2019; 570(7760): 166-7.
[http://dx.doi.org/10.1038/d41586-019-01709-2] [PMID: 31182831]
[37]
Han Y, Zhou Y, Shan T, Li W, Liu H. Immunomodulatory effect of lycium barbarum polysaccharides against liver fibrosis based on the intelligent medical internet of things. J Healthc Eng 2022; 2022: 1-13.
[http://dx.doi.org/10.1155/2022/6280265] [PMID: 35126934]
[38]
Fan S, Zhang J, Nie W, et al. Antitumor effects of polysaccharide from Sargassum fusiforme against human hepatocellular carcinoma HepG2 cells. Food Chem Toxicol 2021; 150: 112083.
[http://dx.doi.org/10.1016/j.fct.2021.112083] [PMID: 33663893]
[39]
Yan L, Xiong C, Xu P, et al. Structural characterization and in vitro antitumor activity of A polysaccharide from Artemisia annua L. (Huang Huahao). Carbohydr Polym 2019; 213: 361-9.
[http://dx.doi.org/10.1016/j.carbpol.2019.02.081] [PMID: 30879680]
[40]
(a) Lai X, Xia W, Wei J, Ding X. Therapeutic effect of astragalus polysaccharides on hepatocellular carcinoma H22-bearing mice. Dose Response 2017; 15(1)
[http://dx.doi.org/10.1177/1559325816685182] [PMID: 28210201];
(b) Deng XK, Jiang SQ, Ren YS. Application of panax notoginseng polysaccharide in the preparation of drugs for liver cancer prevention and treatment. cn-20.04.2018, 2018.
[41]
Chen J, Jin X, Chen J, Liu C. Glycyrrhiza polysaccharide induces apoptosis and inhibits proliferation of human hepatocellular carcinoma cells by blocking PI3K/AKT signal pathway. Tumour Biol 2013; 34(3): 1381-9.
[http://dx.doi.org/10.1007/s13277-013-0746-7] [PMID: 23580179]
[42]
Huagang L. Research progress on the anticancer activity of plant polysaccharides. CN101947232, 2012.
[43]
Olech M, Nowacka-Jechalke N, Masłyk M, et al. Polysaccharide-rich fractions from rosa rugosa thunb.—composition and chemopreventive potential. Molecules 2019; 24(7): 1354.
[http://dx.doi.org/10.3390/molecules24071354] [PMID: 30959857]
[44]
Wu CY, Ke Y, Zeng YF, Zhang YW, Yu HJ. Anticancer activity of Astragalus polysaccharide in human non-small cell lung cancer cells. Cancer Cell Int 2017; 17(1): 115.
[http://dx.doi.org/10.1186/s12935-017-0487-6] [PMID: 29225515]
[45]
Zhang YM, Liu YQ, Liu D, et al. The effects of astragalus polysaccharide on bone marrow-derived mesenchymal stem cell proliferation and morphology induced by A549 Lung cancer cells. Med Sci Monit 2019; 25: 4110-21.
[http://dx.doi.org/10.12659/MSM.914219] [PMID: 31154455]
[46]
Long T, Liu Z, Shang J, et al. Polygonatum sibiricum polysaccharides play anti-cancer effect through TLR4-MAPK/NF-κB signaling pathways. Int J Biol Macromol 2018; 111: 813-21.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.070] [PMID: 29343453]
[47]
Liu B, Li QM, Shang ZZ, Zha XQ, Pan LH, Luo JP. Anti-gastric cancer activity of cultivated Dendrobium huoshanense stem polysaccharide in tumor-bearing mice: Effects of molecular weight and O-acetyl group. Int J Biol Macromol 2021; 192: 590-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.10.016] [PMID: 34648801]
[48]
Pressi G, Dal Toso R, Sgaravatti E. Preparation and use of meristematic cells belonging to the Dendrobium phalaenopsis, Ansellia, Polyrrhiza, Vanilla, Cattleya and Vanda genera with high content of phenylpropanoids, hydrosoluble polysaccharides and extensins. US8709810, 2014.
[49]
Yu J, Ji H, Dong X, Feng Y, Liu A. Apoptosis of human gastric carcinoma MGC-803 cells induced by a novel Astragalus membranaceus polysaccharide via intrinsic mitochondrial pathways. Int J Biol Macromol 2019; 126: 811-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.268] [PMID: 30605746]
[50]
Wang B, Diao Q, Zhang Z, et al. Antitumor activity of bee pollen polysaccharides from Rosa rugosa. Mol Med Rep 2013; 7(5): 1555-8.
[http://dx.doi.org/10.3892/mmr.2013.1382] [PMID: 23525233]
[51]
Tao S, Ren Z, Yang Z, et al. Effects of different molecular weight polysaccharides from dendrobium officinale kimura & migo on human colorectal cancer and transcriptome analysis of differentially expressed genes. Front Pharmacol 2021; 12: 704486.
[http://dx.doi.org/10.3389/fphar.2021.704486] [PMID: 34925000]
[52]
Jin Y, Jin Z, Jiang S. Antiproliferative and pro apoptotic effects of Cyclocarya paliurus polysaccharide and X ray irradiation combination on SW480 colorectal cancer cells. Mol Med Rep 2019; 20(4): 3535-42.
[http://dx.doi.org/10.3892/mmr.2019.10642] [PMID: 31485627]
[53]
Wang HY, Ge JC, Zhang FY, et al. Dendrobium officinale polysaccharide promotes M1 polarization of TAMs to inhibit tumor growth by targeting TLR2. Carbohydr Polym 2022; 292: 119683.
[http://dx.doi.org/10.1016/j.carbpol.2022.119683] [PMID: 35725176]
[54]
Croset M, Pantano F, Kan CWS, et al. miRNA-30 family members inhibit breast cancer invasion, osteomimicry, and bone destruction by directly targeting multiple bone metastasis–associated genes. Cancer Res 2018; 78(18): 5259-73.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-3058] [PMID: 30042152]
[55]
Lang L, Shay C, Xiong Y, et al. Combating head and neck cancer metastases by targeting Src using multifunctional nanoparticle-based saracatinib. J Hematol Oncol 2018; 11(1): 85.
[http://dx.doi.org/10.1186/s13045-018-0623-3] [PMID: 29925404]
[56]
Wu J, Lin C, Chen X, Pan N, Liu Z. Polysaccharides isolated from Bangia fuscopurpurea induce apoptosis and autophagy in human ovarian cancer A2780 cells. Food Sci Nutr 2021; 9(12): 6707-19.
[http://dx.doi.org/10.1002/fsn3.2621] [PMID: 34925800]
[57]
(a) Xin T, Zhang F, Jiang Q, et al. The inhibitory effect of a polysaccharide from Codonopsis pilosula on tumor growth and metastasis in vitro. Int J Biol Macromol 2012; 51(5): 788-93.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.07.019] [PMID: 22829051];
(b) Sun Q, Dong M, Wang Z, et al. Selenium-enriched polysaccharides from Pyracantha fortuneana (Se-PFPs) inhibit the growth and invasive potential of ovarian cancer cells through inhibiting β-catenin signaling. Oncotarget 2016; 7(19): 28369-83.
[http://dx.doi.org/10.18632/oncotarget.8619.] [PMID: 27058760]
[58]
Huaguo C, Xin Z, Rong L, Xi T, Ruixi X. Application of mulberry polysaccharide MFP-90-2 in preparation of antitumor drugs. CN111481564, 2022.
[59]
Sun Q, Dong M, Wang Z, et al. Selenium-enriched polysaccharides from Pyracantha fortuneana (Se-PFPs) inhibit the growth and invasive potential of ovarian cancer cells through inhibiting β -catenin signaling. Oncotarget 2016; 7(19): 28369-83.
[http://dx.doi.org/10.18632/oncotarget.8619] [PMID: 27058760]
[60]
Zhang Y, Wu W, Kang L, Yu D, Liu C. Effect of Aconitum coreanum polysaccharide and its sulphated derivative on the migration of human breast cancer MDA-MB-435s cell. Int J Biol Macromol 2017; 103: 477-83.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.084] [PMID: 28527995]
[61]
Park JY, Shin MS, Kim SN, et al. Polysaccharides from Korean Citrus hallabong peels inhibit angiogenesis and breast cancer cell migration. Int J Biol Macromol 2016; 85: 522-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.01.015] [PMID: 26778161]
[62]
Luo Z, Zeng H, Ye Y, et al. Safflower polysaccharide inhibits the proliferation and metastasis of MCF-7 breast cancer cells. Mol Med Rep 2015; 11(6): 4611-6.
[http://dx.doi.org/10.3892/mmr.2015.3310] [PMID: 25673029]
[63]
Guo T, Yang Y, Gao M, et al. Lepidium meyenii Walpers polysaccharide and its cationic derivative re-educate tumor-associated macrophages for synergistic tumor immunotherapy. Carbohydr Polym 2020; 250: 116904.
[http://dx.doi.org/10.1016/j.carbpol.2020.116904] [PMID: 33049880]
[64]
Yang S, Sun S, Xu W, Yu B, Wang G, Wang H. Astragalus polysaccharide inhibits breast cancer cell migration and invasion by regulating epithelial mesenchymal transition via the Wnt/β catenin signaling pathway. Mol Med Rep 2020; 21(4): 1819-32.
[http://dx.doi.org/10.3892/mmr.2020.10983] [PMID: 32319619]
[65]
Liu Y, Zou X, Sun G, Bao Y. Codonopsis lanceolata polysaccharide CLPS inhibits melanoma metastasis via regulating integrin signaling. Int J Biol Macromol 2017; 103: 435-40.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.093] [PMID: 28527988]
[66]
Tong H, Jiang G, Qi D, et al. Bupleurum chinense polysaccharide inhibit adhesion of human melanoma cells via blocking β1 integrin function. Carbohydr Polym 2017; 156: 244-52.
[http://dx.doi.org/10.1016/j.carbpol.2016.09.034] [PMID: 27842819]
[67]
Yang JJ, Wang YH, Yin J, Leng H, Shen S. Polysaccharides from Ulva prolifera O.F. Müller inhibit cell proliferation via activating MAPK signaling in A549 and H1650 cells. Food Funct 2021; 12(15): 6915-24.
[http://dx.doi.org/10.1039/D1FO00294E] [PMID: 34132294]
[68]
Tao X, Zhang X, Feng F. <i>Astragalus</i> polysaccharide suppresses cell proliferation and invasion by up-regulation of miR-195-5p in non-small cell lung cancer. Biol Pharm Bull 2022; 45(5): 553-60.
[http://dx.doi.org/10.1248/bpb.b21-00634] [PMID: 35315366]
[69]
ZHICAI W, MEINA W, JIANBING C, et al. Analysis method and application of anticancer activity of dendrobium polysaccharides and application of dendrobium polysaccharides. CN111254182, 2020.
[70]
Zhang XJ, Yu HY, Cai Y, Ke M. Lycium barbarum polysaccharides inhibit proliferation and migration of bladder cancer cell lines BIU87 by suppressing Pi3K/AKT pathway. Oncotarget 2017; 8(4): 5936-42.
[http://dx.doi.org/10.18632/oncotarget.13963] [PMID: 27992374]
[71]
Shirjang S, Mansoori B, Asghari S, et al. MicroRNAs in cancer cell death pathways: apoptosis and necroptosis. Free Radic Biol Med 2019; 139: 1-15.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.05.017] [PMID: 31102709]
[72]
Liu LQ, Li HS, Nie SP, Shen MY, Hu JL, Xie MY. Tea polysaccharide prevents colitis-associated carcinogenesis in mice by inhibiting the proliferation and invasion of tumor cells. Int J Mol Sci 2018; 19(2): 506.
[http://dx.doi.org/10.3390/ijms19020506] [PMID: 29419740]
[73]
Wu Q, Qu H, Jia J, et al. Characterization, antioxidant and antitumor activities of polysaccharides from purple sweet potato. Carbohydr Polym 2015; 132: 31-40.
[http://dx.doi.org/10.1016/j.carbpol.2015.06.045] [PMID: 26256321]
[74]
Li S, Li Y, Sun H, et al. Mulberry fruit polysaccharides alleviate diethylnitrosamine/phenobarbital-induced hepatocarcinogenesis in vivo: The roles of cell apoptosis and inflammation. Bioengineered 2021; 12(2): 11599-611.
[http://dx.doi.org/10.1080/21655979.2021.1993716] [PMID: 34866538]
[75]
Wei Y, Wang L, Wang D, et al. Characterization and anti-tumor activity of a polysaccharide isolated from Dendrobium officinale grown in the Huoshan County. Chin Med 2018; 13(1): 47.
[http://dx.doi.org/10.1186/s13020-018-0205-x] [PMID: 30214471]
[76]
Wang Y, Wang S, Song R, et al. Ginger polysaccharides induced cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells. Int J Biol Macromol 2019; 123: 81-90.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.169] [PMID: 30414900]
[77]
He JQ, Zheng MX, Ying HZ, et al. PRP1, a heteropolysaccharide from Platycodonis Radix, induced apoptosis of HepG2 cells via regulating miR-21-mediated PI3K/AKT pathway. Int J Biol Macromol 2020; 158: 542-51.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.193] [PMID: 32380108]
[78]
Deng X, Li X, Luo S, Zheng Y, Luo X, Zhou L. Antitumor activity of Lycium barbarum polysaccharides with different molecular weights: An in vitro and in vivo study. Food Nutr Res 2017; 61(1): 1399770.
[http://dx.doi.org/10.1080/16546628.2017.1399770] [PMID: 31139040]
[79]
Qin N, Lu S, Chen N, et al. Yulangsan polysaccharide inhibits 4T1 breast cancer cell proliferation and induces apoptosis in vitro and in vivo. Int J Biol Macromol 2019; 121: 971-80.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.082] [PMID: 30340007]
[80]
Liu Y, Li H, Zheng Z, et al. Rosa rugosa polysaccharide induces autophagy-mediated apoptosis in human cervical cancer cells via the PI3K/AKT/mTOR pathway. Int J Biol Macromol 2022; 212: 257-74.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.05.023] [PMID: 35533849]
[81]
Zhao R, Gao X, Cai Y, et al. Antitumor activity of Portulaca oleracea L. polysaccharides against cervical carcinoma in vitro and in vivo. Carbohydr Polym 2013; 96(2): 376-83.
[http://dx.doi.org/10.1016/j.carbpol.2013.04.023] [PMID: 23768576]
[82]
Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature 2001; 411(6835): 342-8.
[http://dx.doi.org/10.1038/35077213] [PMID: 11357141]
[83]
Otto T, Sicinski P. Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer 2017; 17(2): 93-115.
[http://dx.doi.org/10.1038/nrc.2016.138] [PMID: 28127048]
[84]
Li M, Liu Y, Zhang H, et al. Anti-cancer potential of polysaccharide extracted from polygonatum sibiricum on HepG2 cells via cell cycle arrest and apoptosis. Front Nutr 2022; 9: 938290.
[http://dx.doi.org/10.3389/fnut.2022.938290] [PMID: 35903453]
[85]
Shi S, Chang M, Liu H, et al. The structural characteristics of an acidic water-soluble polysaccharide from bupleurum chinense DC and its in vivo anti-tumor activity on H22 tumor-bearing mice. Polymers 2022; 14(6): 1119.
[http://dx.doi.org/10.3390/polym14061119] [PMID: 35335457]
[86]
Li Y, Mei L, Niu Y, et al. Low molecular weight apple polysaccharides induced cell cycle arrest in colorectal tumor. Nutr Cancer 2012; 64(3): 439-63.
[http://dx.doi.org/10.1080/01635581.2012.658951] [PMID: 22429028]
[87]
Zhong S, Ji DF, Li YG, Lin TB, Lv ZQ, Chen HP. Activation of P27kip1-cyclin D1/E-CDK2 pathway by polysaccharide from Phellinus linteus leads to S-phase arrest in HT-29 cells. Chem Biol Interact 2013; 206(2): 222-9.
[http://dx.doi.org/10.1016/j.cbi.2013.09.008] [PMID: 24060681]
[88]
Cheng H, Li S, Fan Y, et al. Comparative studies of the antiproliferative effects of ginseng polysaccharides on HT-29 human colon cancer cells. Med Oncol 2011; 28(1): 175-81.
[http://dx.doi.org/10.1007/s12032-010-9449-8] [PMID: 20165990]
[89]
Qu J, He Y, Shi Y, et al. Polysaccharides derived from Balanophora polyandra significantly suppressed the proliferation of ovarian cancer cells through P53‐mediated pathway. J Cell Mol Med 2020; 24(14): 8115-25.
[http://dx.doi.org/10.1111/jcmm.15468] [PMID: 32519803]
[90]
Zhang F, Song X, Li L, et al. Polygala tenuifolia polysaccharide PTP induced apoptosis in ovarian cancer cells via a mitochondrial pathway. Tumour Biol 2015; 36(4): 2913-9.
[http://dx.doi.org/10.1007/s13277-014-2921-x] [PMID: 25501282]
[91]
Shen L, Du G. Lycium barbarum polysaccharide stimulates proliferation of MCF-7 cells by the ERK pathway. Life Sci 2012; 91(9-10): 353-7.
[http://dx.doi.org/10.1016/j.lfs.2012.08.012] [PMID: 22921303]
[92]
Eleftheriadis T, Antoniadi G, Pissas G, Liakopoulos V, Stefanidis I. The renal endothelium in diabetic nephropathy. Ren Fail 2013; 35(4): 592-9.
[http://dx.doi.org/10.3109/0886022X.2013.773836] [PMID: 23472883]
[93]
Hao J, Ding X, Yang X, Wu X. Prunella vulgaris polysaccharide inhibits growth and migration of breast carcinoma-associated fibroblasts by suppressing expression of basic fibroblast growth factor. Chin J Integr Med 2020; 26(4): 270-6.
[http://dx.doi.org/10.1007/s11655-016-2587-x] [PMID: 27586473]
[94]
Liu L, Nie S, Xie M. Tumor microenvironment as a new target for tumor immunotherapy of polysaccharides. Crit Rev Food Sci Nutr 2016; 56(S1): S85-94.
[http://dx.doi.org/10.1080/10408398.2015.1077191] [PMID: 26463881]
[95]
Anderson NM, Simon MC. The tumor microenvironment. Curr Biol 2020; 30(16): R921-5.
[http://dx.doi.org/10.1016/j.cub.2020.06.081] [PMID: 32810447]
[96]
Danovi S. As time goes by. Nat Rev Cancer 2016; 16(6): 342-3.
[http://dx.doi.org/10.1038/nrc.2016.53] [PMID: 27150015]
[97]
Cassetta L, Pollard JW. Targeting macrophages: Therapeutic approaches in cancer. Nat Rev Drug Discov 2018; 17(12): 887-904.
[http://dx.doi.org/10.1038/nrd.2018.169] [PMID: 30361552]
[98]
Zhu S, Yi M, Wu Y, Dong B, Wu K. Roles of tumor-associated macrophages in tumor progression: Implications on therapeutic strategies. Exp Hematol Oncol 2021; 10(1): 60.
[http://dx.doi.org/10.1186/s40164-021-00252-z] [PMID: 34965886]
[99]
Verbiscar Anthony J. Immunomodulatory polysaccharide fractions from Astragalus plants. US5268467, 1993.
[100]
Jae-kwan H, Ah-jin K, Jong-hee S, Kyu-lee H, Sun-hee L, Jeong-han C. Immunostimulating polysaccharides isolated from curcuma xanthorrhiza and manufacturing method thereof. US20100048885, 2010.
[101]
Shu G, Jiang S, Mu J, Yu H, Duan H, Deng X. Antitumor immunostimulatory activity of polysaccharides from Panax japonicus C. A. Mey: Roles of their effects on CD4 + T cells and tumor associated macrophages. Int J Biol Macromol 2018; 111: 430-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.011] [PMID: 29317237]
[102]
Pu Y, Zhu J, Xu J, Zhang S, Bao Y. Antitumor effect of a polysaccharide from Pseudostellaria heterophylla through reversing tumor-associated macrophages phenotype. Int J Biol Macromol 2022; 220: 816-26.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.08.111] [PMID: 35988728]
[103]
Yao F, Jiang GR, Liang GQ, et al. The antitumor effect of the combination of aconitine and crude monkshood polysaccharide on hepatocellular carcinoma. Pak J Pharm Sci 2021; 34(3): 971-9.
[PMID: 34602421]
[104]
Li C, Pan XY, Ma M, Zhao J, Zhao F, Lv YP. Astragalus polysacharin inhibits hepatocellular carcinoma-like phenotypes in a murine HCC model through repression of M2 polarization of tumour-associated macrophages. Pharm Biol 2021; 59(1): 1531-7.
[http://dx.doi.org/10.1080/13880209.2021.1991384] [PMID: 34726570]
[105]
Lee EH, Park HR, Shin MS, Cho SY, Choi HJ, Shin KS. Antitumor metastasis activity of pectic polysaccharide purified from the peels of Korean Citrus Hallabong. Carbohydr Polym 2014; 111: 72-9.
[http://dx.doi.org/10.1016/j.carbpol.2014.04.073] [PMID: 25037331]
[106]
Jo M, Jung JH, Kim HW, et al. Polysaccharide isolated from fermented barley activates innate immune system and anti-tumor metastasis in mice. J Cereal Sci 2020; 92: 102919.
[http://dx.doi.org/10.1016/j.jcs.2020.102919]
[107]
Wang Q, Huang Y, Jia M, et al. Safflower polysaccharide inhibits AOM/DSS-induced mice colorectal cancer through the regulation of macrophage polarization. Front Pharmacol 2021; 12: 761641.
[http://dx.doi.org/10.3389/fphar.2021.761641] [PMID: 34744741]
[108]
Sun Y, Diao F, Niu Y, et al. Apple polysaccharide prevents from colitis-associated carcinogenesis through regulating macrophage polarization. Int J Biol Macromol 2020; 161: 704-11.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.121] [PMID: 32544579]
[109]
Li W, Song K, Wang S, et al. Anti-tumor potential of astragalus polysaccharides on breast cancer cell line mediated by macrophage activation. Mater Sci Eng C 2019; 98: 685-95.
[http://dx.doi.org/10.1016/j.msec.2019.01.025] [PMID: 30813073]
[110]
Ding J, Guo Y, Jiang X, et al. Polysaccharides derived from saposhnikovia divaricata may suppress breast cancer through activating macrophages. OncoTargets Ther 2020; 13: 10749-57.
[http://dx.doi.org/10.2147/OTT.S267984] [PMID: 33132702]
[111]
Crunkhorn S. Enhancing NK cell anti-tumour efficacy. Nat Rev Drug Discov 2022; 21(6): 416.
[PMID: 35523891]
[112]
Shimasaki N, Jain A, Campana D. NK cells for cancer immunotherapy. Nat Rev Drug Discov 2020; 19(3): 200-18.
[http://dx.doi.org/10.1038/s41573-019-0052-1] [PMID: 31907401]
[113]
Hwanmook K, Ikhwan K, Sangbae H, Kyungseop A, Namdoo H. Pectic polysaccharides purified from Angelica gigas nakai and purification method and use as immunostimulating agent thereof. US6420348, 2002.
[114]
Kim SH, Lee SW, Park HJ, et al. Anti-cancer activity of Angelica gigas by increasing immune response and stimulating natural killer and natural killer T cells. BMC Complement Altern Med 2018; 18(1): 218.
[http://dx.doi.org/10.1186/s12906-018-2277-7] [PMID: 30021579]
[115]
Lee DY, Park CW, Lee SJ, et al. Immunostimulating and antimetastatic effects of polysaccharides purified from ginseng berry. Am J Chin Med 2019; 47(4): 823-39.
[http://dx.doi.org/10.1142/S0192415X19500435] [PMID: 31091972]
[116]
Dong X D, Liu Y N, Zhao Y, et al. Structural characterization of a water-soluble polysaccharide from Angelica dahurica and its antitumor activity in H22 tumor-bearing mice. Int J Biol Macromol 2021; 193((Pt A)): 219-7.
[117]
Yu J, Ji H Y, Liu A J. Alcohol-soluble polysaccharide from Astragalus membranaceus: Preparation, characteristics and antitumor activity. Int J Biol Macromol 2018; 118((Pt B)): 2057-64.
[118]
Yelithao K, Surayot U, Park W, Lee S, Lee DH, You S. Effect of sulfation and partial hydrolysis of polysaccharides from Polygonatum sibiricum on immune-enhancement. Int J Biol Macromol 2019; 122: 10-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.119] [PMID: 30336240]
[119]
Sun D, Xie H, Xia Y. A study on the inhibitory effect of polysaccharides from <i>Radix ranunculus ternate</i> on human breast cancer MCF-7 cell lines. Afr J Tradit Complement Altern Med 2013; 10(6): 439-43.
[http://dx.doi.org/10.4314/ajtcam.v10i6.6] [PMID: 24311864]
[120]
Xu L, Zhang W, Zeng L, Jin JO. Rehmannia glutinosa polysaccharide induced an anti-cancer effect by activating natural killer cells. Int J Biol Macromol 2017; 105(Pt 1): 680-5.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.090] [PMID: 28716751]
[121]
Shin MS, Hwang SH, Yoon TJ, Kim SH, Shin KS. Polysaccharides from ginseng leaves inhibit tumor metastasis via macrophage and NK cell activation. Int J Biol Macromol 2017; 103: 1327-33.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.055] [PMID: 28522391]
[122]
Ruhland MK, Roberts EW, Cai E, et al. Visualizing synaptic transfer of tumor antigens among dendritic cells. Cancer Cell 2020; 37(6): 786-799.e5.
[http://dx.doi.org/10.1016/j.ccell.2020.05.002] [PMID: 32516589]
[123]
Gupta YH, Khanom A, Acton SE. Control of dendritic cell function within the tumour microenvironment. Front Immunol 2022; 13: 733800.
[http://dx.doi.org/10.3389/fimmu.2022.733800] [PMID: 35355992]
[124]
Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer 2012; 12(4): 265-77.
[http://dx.doi.org/10.1038/nrc3258] [PMID: 22437871]
[125]
Kim HS, Shin BR, Lee HK, et al. A polysaccharide isolated from Pueraria lobata enhances maturation of murine dendritic cells. Int J Biol Macromol 2013; 52: 184-91.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.09.011] [PMID: 23000254]
[126]
Park MJ, Ryu HS, Kim JS, et al. Platycodon grandiflorum polysaccharide induces dendritic cell maturation via TLR4 signaling. Food Chem Toxicol 2014; 72: 212-20.
[http://dx.doi.org/10.1016/j.fct.2014.07.011] [PMID: 25019244]
[127]
Tian J, Zhang Y, Yang X, et al. Ficus carica polysaccharides promote the maturation and function of dendritic cells. Int J Mol Sci 2014; 15(7): 12469-79.
[http://dx.doi.org/10.3390/ijms150712469] [PMID: 25026176]
[128]
Zhang Z, Meng Y, Guo Y, et al. Rehmannia glutinosa polysaccharide induces maturation of murine bone marrow derived Dendritic cells (BMDCs). Int J Biol Macromol 2013; 54: 136-43.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.12.005] [PMID: 23246902]
[129]
Zhu J, Zhang Y, Shen Y, Zhou H, Yu X. Lycium barbarum polysaccharides induce Toll-like receptor 2- and 4-mediated phenotypic and functional maturation of murine dendritic cells via activation of NF-κB. Mol Med Rep 2013; 8(4): 1216-20.
[http://dx.doi.org/10.3892/mmr.2013.1608] [PMID: 23904044]
[130]
Du J, Chen X, Wang C, Sun H. Pathway analysis of global gene expression change in dendritic cells induced by the polysaccharide from the roots of Actinidia eriantha. J Ethnopharmacol 2018; 214: 141-52.
[http://dx.doi.org/10.1016/j.jep.2017.12.009] [PMID: 29247698]
[131]
Liu W, Gong X, Luo J, et al. A purified acidic polysaccharide from Sarcandra glabra as vaccine adjuvant to enhance anti-tumor effect of cancer vaccine. Carbohydr Polym 2021; 263: 117967.
[http://dx.doi.org/10.1016/j.carbpol.2021.117967] [PMID: 33858570]
[132]
Gao J, Zhang YN, Cui J, et al. A polysaccharide from the whole plant of plantago asiatica L. Front Pharmacol 2021; 12: 678865.
[http://dx.doi.org/10.3389/fphar.2021.678865] [PMID: 34504423]
[133]
Jia G, Shao X, Zhao R, et al. Portulaca oleracea L. polysaccharides enhance the immune efficacy of dendritic cell vaccine for breast cancer. Food Funct 2021; 12(9): 4046-59.
[http://dx.doi.org/10.1039/D0FO02522D] [PMID: 33977945]
[134]
Xu L, Kwak M, Zhang W, Zeng L, Lee PCW, Jin JO. Rehmannia glutinosa polysaccharide induces toll-like receptor 4 dependent spleen dendritic cell maturation and anti-cancer immunity. OncoImmunology 2017; 6(7): e1325981.
[http://dx.doi.org/10.1080/2162402X.2017.1325981] [PMID: 28811960]
[135]
Zhao R, Shao X, Jia G, et al. Anti-cervical carcinoma effect of Portulaca oleracea L. polysaccharides by oral administration on intestinal dendritic cells. BMC Complement Altern Med 2019; 19(1): 161.
[http://dx.doi.org/10.1186/s12906-019-2582-9] [PMID: 31277622]
[136]
Bamodu OA, Kuo KT, Wang CH, et al. Astragalus polysaccharides (PG2) enhances the m1 polarization of macrophages, functional maturation of dendritic cells, and T cell-mediated anticancer immune responses in patients with lung cancer. Nutrients 2019; 11(10): 2264.
[http://dx.doi.org/10.3390/nu11102264] [PMID: 31547048]
[137]
Sherwood LM, Parris EE, Folkman J. Tumor angiogenesis: Therapeutic implications. N Engl J Med 1971; 285(21): 1182-6.
[http://dx.doi.org/10.1056/NEJM197111182852108] [PMID: 4938153]
[138]
Zhao B, Wu M, Hu Z, et al. Thrombin is a therapeutic target for non-small-cell lung cancer to inhibit vasculogenic mimicry formation. Signal Transduct Target Ther 2020; 5(1): 117.
[http://dx.doi.org/10.1038/s41392-020-0167-1] [PMID: 32647187]
[139]
Lopez A, Harada K, Vasilakopoulou M, Shanbhag N, Ajani JA. Targeting angiogenesis in colorectal carcinoma. Drugs 2019; 79(1): 63-74.
[http://dx.doi.org/10.1007/s40265-018-1037-9] [PMID: 30617958]
[140]
Wu F, Li F, Lin X, et al. Exosomes increased angiogenesis in papillary thyroid cancer microenvironment. Endocr Relat Cancer 2019; 26(5): 525-38.
[http://dx.doi.org/10.1530/ERC-19-0008] [PMID: 30870812]
[141]
Huang Y, Zhao K, Hu Y, et al. Wogonoside inhibits angiogenesis in breast cancer via suppressing Wnt/β-catenin pathway. Mol Carcinog 2016; 55(11): 1598-612.
[http://dx.doi.org/10.1002/mc.22412] [PMID: 26387984]
[142]
Li Y, Qu X, Cao B, et al. Selectively suppressing tumor angiogenesis for targeted breast cancer therapy by genetically engineered phage. Adv Mater 2020; 32(29): 2001260.
[http://dx.doi.org/10.1002/adma.202001260] [PMID: 32495365]
[143]
Mazzieri R, Pucci F, Moi D, et al. Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell 2011; 19(4): 512-26.
[http://dx.doi.org/10.1016/j.ccr.2011.02.005] [PMID: 21481792]
[144]
Li W, Xiao H. Scutellaria barbata D. Don polysaccharides inhibit high glucose-induced proliferation and angiogenesis of retinal vascular endothelial cells. Diabetes Metab Syndr Obes 2021; 14: 2431-40.
[http://dx.doi.org/10.2147/DMSO.S296164] [PMID: 34103952]
[145]
Park JY, Shin MS. Inhibitory effects of pectic polysaccharide isolated from diospyros kaki leaves on tumor cell angiogenesis via VEGF and MMP-9 regulation. Polymers 2020; 13(1): 64.
[http://dx.doi.org/10.3390/polym13010064] [PMID: 33375243]
[146]
Zhang J, Song Z, Li Y, et al. Structural analysis and biological effects of a neutral polysaccharide from the fruits of Rosa laevigata. Carbohydr Polym 2021; 265: 118080.
[http://dx.doi.org/10.1016/j.carbpol.2021.118080] [PMID: 33966844]
[147]
Adami ER, Corso CR, Turin-Oliveira NM, et al. Antineoplastic effect of pectic polysaccharides from green sweet pepper (Capsicum annuum) on mammary tumor cells in vivo and in vitro. Carbohydr Polym 2018; 201: 280-92.
[http://dx.doi.org/10.1016/j.carbpol.2018.08.071] [PMID: 30241820]
[148]
Adami ER, Corso CR, Turin-Oliveira NM, et al. Polysaccharides from green sweet pepper increase the antineoplastic effect of methotrexate on mammary tumor cells. Int J Biol Macromol 2020; 158: 1071-81.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.001] [PMID: 32387356]
[149]
Yao H, Cui P, Xu D, et al. A water-soluble polysaccharide from the roots of Polygala tenuifolia suppresses ovarian tumor growth and angiogenesis in vivo. Int J Biol Macromol 2018; 107((Pt A)): 71-718.
[150]
Wu J, Ma L, Lin S, et al. Anticancer and anti-angiogenic activities of extract from Actinidia eriantha Benth root. J Ethnopharmacol 2017; 203: 1-10.
[http://dx.doi.org/10.1016/j.jep.2017.03.013] [PMID: 28323051]
[151]
Tang D, Zhang S, Shi X, et al. Combination of astragali polysaccharide and curcumin improves the morphological structure of tumor vessels and induces tumor vascular normalization to inhibit the growth of hepatocellular carcinoma. Integr Cancer Ther 2019; 18.
[http://dx.doi.org/10.1177/1534735418824408] [PMID: 30762443]
[152]
Lin B, Du L, Li H, Zhu X, Cui L, Li X. Tumor-infiltrating lymphocytes: Warriors fight against tumors powerfully. Biomed Pharmacother 2020; 132: 110873.
[http://dx.doi.org/10.1016/j.biopha.2020.110873] [PMID: 33068926]
[153]
Robins HS, Ericson NG, Guenthoer J, et al. Digital genomic quantification of tumor-infiltrating lymphocytes. Sci Transl Med 2013; 5(214): 214ra169.
[http://dx.doi.org/10.1126/scitranslmed.3007247] [PMID: 24307693]
[154]
Elkoshi Z. On the prognostic power of tumor-infiltrating lymphocytes - A critical commentary. Front Immunol 2022; 13: 892543.
[http://dx.doi.org/10.3389/fimmu.2022.892543] [PMID: 35634289]
[155]
Al-Shibli KI, Donnem T, Al-Saad S, Persson M, Bremnes RM, Busund LT. Prognostic effect of epithelial and stromal lymphocyte infiltration in non-small cell lung cancer. Clin Cancer Res 2008; 14(16): 5220-7.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0133] [PMID: 18698040]
[156]
Cho Y, Miyamoto M, Kato K, et al. CD4+ and CD8+ T cells cooperate to improve prognosis of patients with esophageal squamous cell carcinoma. Cancer Res 2003; 63(7): 1555-9.
[PMID: 12670904]
[157]
Adams S, Gray RJ, Demaria S, et al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol 2014; 32(27): 2959-66.
[http://dx.doi.org/10.1200/JCO.2013.55.0491] [PMID: 25071121]
[158]
Deng X, Luo S, Luo X, et al. Polysaccharides from chinese herbal lycium barbarum induced systemic and local immune responses in H22 tumor-bearing mice. J Immunol Res 2018; 2018: 1-12.
[http://dx.doi.org/10.1155/2018/3431782] [PMID: 29967800]
[159]
Zhou F, Chen Y, Jin C, et al. Polysaccharide isolated from tetrastigma hemsleyanum activates TLR4 in macrophage cell lines and enhances immune responses in OVA-immunized and LLC-bearing mouse models. Front Pharmacol 2021; 12: 609059.
[http://dx.doi.org/10.3389/fphar.2021.609059] [PMID: 33841142]
[160]
Sha X, Xu X, Liao S, Chen H, Rui W. Evidence of immunogenic cancer cell death induced by honey-processed Astragalus polysaccharides in vitro and in vivo. Exp Cell Res 2022; 410(1): 112948.
[http://dx.doi.org/10.1016/j.yexcr.2021.112948] [PMID: 34826423]
[161]
Bao XL, Yuan HH, Wang CZ, Fan W, Lan MB. Polysaccharides from Cymbopogon citratus with antitumor and immunomodulatory activity. Pharm Biol 2015; 53(1): 117-24.
[http://dx.doi.org/10.3109/13880209.2014.911921] [PMID: 25255928]
[162]
Park SD, Lai YS, Kim CH. Immunopontentiating and antitumor activities of the purified polysaccharides from Phellodendron chinese SCHNEID. Life Sci 2004; 75(22): 2621-32.
[http://dx.doi.org/10.1016/j.lfs.2004.03.036] [PMID: 15369698]
[163]
El Hout M, Dos Santos L, Hamaï A, Mehrpour M. A promising new approach to cancer therapy: Targeting iron metabolism in cancer stem cells. Semin Cancer Biol 2018; 53: 125-38.
[http://dx.doi.org/10.1016/j.semcancer.2018.07.009] [PMID: 30071257]
[164]
Qu L, He X, Tang Q, Fan X, Liu J, Lin A. Iron metabolism, ferroptosis, and lncRNA in cancer: Knowns and unknowns. J Zhejiang Univ Sci B 2022; 23(10): 844-62.
[http://dx.doi.org/10.1631/jzus.B2200194] [PMID: 36226538]
[165]
Jeong SM, Lee J, Finley LWS, Schmidt PJ, Fleming MD, Haigis MC. SIRT3 regulates cellular iron metabolism and cancer growth by repressing iron regulatory protein 1. Oncogene 2015; 34(16): 2115-24.
[http://dx.doi.org/10.1038/onc.2014.124] [PMID: 24909164]
[166]
Cheng Y, Zhou J, Li Q, Liu Y, Wang K, Zhang Y. The effects of polysaccharides from the root of Angelica sinensis on tumor growth and iron metabolism in H22-bearing mice. Food Funct 2016; 7(2): 1033-9.
[http://dx.doi.org/10.1039/C5FO00855G] [PMID: 26757699]
[167]
Ren F, Li J, Wang Y, et al. The effects of angelica sinensis polysaccharide on tumor growth and iron metabolism by regulating hepcidin in tumor-bearing mice. Cell Physiol Biochem 2018; 47(3): 1084-94.
[http://dx.doi.org/10.1159/000490185] [PMID: 29843136]
[168]
Ren F, Yang Y, Wu K, et al. The effects of dandelion polysaccharides on iron metabolism by regulating hepcidin via JAK/STAT signaling pathway. Oxid Med Cell Longev 2021; 2021: 1-8.
[http://dx.doi.org/10.1155/2021/7184760] [PMID: 33488942]
[169]
Du X, Zhang J, Liu L, et al. A novel anticancer property of Lycium barbarum polysaccharide in triggering ferroptosis of breast cancer cells. J Zhejiang Univ Sci B 2022; 23(4): 286-99.
[http://dx.doi.org/10.1631/jzus.B2100748] [PMID: 35403384]
[170]
Zhai F, Liang Q, Wu Y, Liu J, Liu J. Red ginseng polysaccharide exhibits anticancer activity through GPX4 downregulation-induced ferroptosis. Pharm Biol 2022; 60(1): 909-14.
[http://dx.doi.org/10.1080/13880209.2022.2066139] [PMID: 35575436]
[171]
Ouchi T, Matsumoto M, Ihara K, Ohya Y. Synthesis and cytotoxic activity of oxidized galactomannan/ADR conjugate. J Macromol Sci Part A Pure Appl Chem 1997; 34(6): 975-89.
[http://dx.doi.org/10.1080/10601329708015005]
[172]
Vishchuk O, Ermakova S, Zvyagintseva T. The effect of sulfated (1→3)-α-l-fucan from the brown alga Saccharina cichorioides Miyabe on resveratrol-induced apoptosis in colon carcinoma Cells. Mar Drugs 2013; 11(12): 194-212.
[http://dx.doi.org/10.3390/md11010194] [PMID: 23337253]
[173]
Wang Y, Mao J, Zhou M, et al. Polysaccharide from Phellinus Igniarius activates TLR4-mediated signaling pathways in macrophages and shows immune adjuvant activity in mice. Int J Biol Macromol 2019; 123: 157-66.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.066] [PMID: 30439422]
[174]
Li XL, Wang ZH, Zhao YX, et al. Isolation and antitumor activities of acidic polysaccharide from Gynostemma pentaphyllum Makino. Carbohydr Polym 2012; 89(3): 942-7.
[http://dx.doi.org/10.1016/j.carbpol.2012.04.040] [PMID: 24750884]
[175]
Abe MM, Martins JR, Sanvezzo PB, et al. Advantages and disadvantages of bioplastics production from starch and lignocellulosic components. Polymers 2021; 13(15): 2484.
[http://dx.doi.org/10.3390/polym13152484] [PMID: 34372086]
[176]
Gieroba B, Kalisz G, Krysa M, Khalavka M, Przekora A. Application of vibrational spectroscopic techniques in the study of the natural polysaccharides and their cross-linking process. Int J Mol Sci 2023; 24(3): 2630.
[http://dx.doi.org/10.3390/ijms24032630] [PMID: 36768949]
[177]
Gong H, Li W, Sun J, et al. A review on plant polysaccharide based on drug delivery system for construction and application, with emphasis on traditional Chinese medicine polysaccharide. Int J Biol Macromol 2022; 211: 711-28.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.05.087] [PMID: 35588976]
[178]
Golovchenko V, Popov S, Smirnov V, et al. Polysaccharides of salsola passerina: extraction, structural characterization and antioxidant activity. Int J Mol Sci 2022; 23(21): 13175.
[http://dx.doi.org/10.3390/ijms232113175] [PMID: 36361966]
[179]
Wang H, Pang AP, Wang W, et al. Discovery of ER-localized sugar transporters for cellulase production with lac1 being essential. Biotechnol Biofuels Biopro 2022; 15(1): 132.
[http://dx.doi.org/10.1186/s13068-022-02230-x] [PMID: 36443855]
[180]
Wu X, Cai X, Ai J, Zhang C, Liu N, Gao W. Extraction, structures, bioactivities and structure-function analysis of the polysaccharides from safflower (Carthamus tinctorius L.). Front Pharmacol 2021; 12: 767947.
[http://dx.doi.org/10.3389/fphar.2021.767947] [PMID: 34744747]
[181]
Kareem B, Irondi EA, Alamu EO, et al. Influence of traditional processing and genotypes on the antioxidant and antihyperglycaemic activities of yellow-fleshed cassava. Front Nutr 2022; 9: 894843.
[http://dx.doi.org/10.3389/fnut.2022.894843] [PMID: 36313071]
[182]
Han L, Song H, Fu L, Li J, Yang L, Liu H. Effect of extraction method on the chemical profiles and bioactivities of soybean hull polysaccharides. Food Sci Nutr 2021; 9(11): 5928-38.
[http://dx.doi.org/10.1002/fsn3.2483] [PMID: 34760226]
[183]
Chen JY, Sun XY, Ouyang JM. Modulation of calcium oxalate crystal growth and protection from oxidatively damaged renal epithelial cells of corn silk polysaccharides with different molecular weights. Oxid Med Cell Longev 2020; 2020: 1-19.
[http://dx.doi.org/10.1155/2020/6982948] [PMID: 32089775]
[184]
Jiangwei M, Zengyong Q, Xia X. Optimisation of extraction procedure for black fungus polysaccharides and effect of the polysaccharides on blood lipid and myocardium antioxidant enzymes activities. Carbohydr Polym 2011; 84(3): 1061-8.
[http://dx.doi.org/10.1016/j.carbpol.2010.12.068]
[185]
Wang J, Hu S, Nie S, Yu Q, Xie M. Reviews on mechanisms of in vitro antioxidant activity of polysaccharides. Oxid Med Cell Longev 2016; 2016: 1-13.
[http://dx.doi.org/10.1155/2016/5692852] [PMID: 26682009]
[186]
Xu Z, Li X, Feng S, et al. Characteristics and bioactivities of different molecular weight polysaccharides from camellia seed cake. Int J Biol Macromol 2016; 91: 1025-32.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.06.067] [PMID: 27341780]
[187]
Zhang X, Luo Y, Wei G, et al. Physictochemical and antioxidant properties of the degradations of polysaccharides from dendrobium officinale and their suitable molecular weight range on inducing hela cell apoposis. Evid Based Complement Alternat Med 2019; 2019: 1-11.
[http://dx.doi.org/10.1155/2019/4127360] [PMID: 31915445]
[188]
Im SA, Oh ST, Song S, et al. Identification of optimal molecular size of modified Aloe polysaccharides with maximum immunomodulatory activity. Int Immunopharmacol 2005; 5(2): 271-9.
[http://dx.doi.org/10.1016/j.intimp.2004.09.031] [PMID: 15652758]
[189]
Joosang P, Zhichao B, Qunyi Z, Kan H, Troy S, Zhaoyang X. Acetylation of aloe polysaccharides. US11547719, 2023.
[190]
Zhihua Q, Belaid M. Process for the preparation of immunomodulatory polysaccharides from aloe. US6133440, 2000.
[191]
Xu K, Guo M, Du J, Zhang Z. Okra polysaccharide: Effect on the texture and microstructure of set yoghurt as a new natural stabilizer. Int J Biol Macromol 2019; 133: 117-26.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.035] [PMID: 30965076]
[192]
Zhu H, Liu C, Hou J, et al. Gastrodia elata blume polysaccharides: A review of their acquisition, analysis, modification, and pharmacological activities. Molecules 2019; 24(13): 2436.
[http://dx.doi.org/10.3390/molecules24132436] [PMID: 31269719]
[193]
Li XL, Xiao JJ, Zha XQ, Pan LH, Asghar MN, Luo JP. Structural identification and sulfated modification of an antiglycation Dendrobium huoshanense polysaccharide. Carbohydr Polym 2014; 106: 247-54.
[http://dx.doi.org/10.1016/j.carbpol.2014.02.029] [PMID: 24721075]
[194]
Wang Z, Chen JH, Wang LS, Ding J, Zhao MW, Liu R. GlPP2C1 silencing increases the content of ganodermalingzhi polysaccharide (GL-PS) and enhances Slt2 phosphorylation. J Fungi 2022; 8(9): 949.
[http://dx.doi.org/10.3390/jof8090949] [PMID: 36135674]
[195]
Kirakossian H, Pease J, Schelp C, Pirio M, Stöhr U, Wiegand A. Carriers coated with polysaccharides, their preparation and use. US7179660, 2007.
[196]
Pachuau L, Mazumder B. Colonic drug delivery systems based on natural polysaccharides and their evaluation. Mini Rev Med Chem 2013; 13(13): 1982-91.
[http://dx.doi.org/10.2174/13895575113136660085] [PMID: 24032514]
[197]
Wu Y, Liu H, Li Z, et al. Purification of polysaccharides from Phellinus linteus by using an aqueous two-phase system and evaluation of the physicochemical and antioxidant properties of polysaccharides in vitro. Prep Biochem Biotechnol 2022; 52(1): 89-98.
[http://dx.doi.org/10.1080/10826068.2021.1911815] [PMID: 33939578]
[198]
Yong W, Martin R, Xiaofeng L, et al. Method for preparing linseed polysaccharide having antiviral activity and immunological activity, and use of the linseed polysaccharide. US20180193373, 2018.
[199]
Cheng W, Cheng Z, Weng L, Xing D, Zhang M. Asparagus polysaccharide inhibits the hypoxia-induced migration, invasion and angiogenesis of hepatocellular carcinoma cells partly through regulating HIF1α/VEGF expression via MAPK and PI3K signaling pathway. J Cancer 2021; 12(13): 3920-9.
[http://dx.doi.org/10.7150/jca.51407] [PMID: 34093799]
[200]
Zhao R, Zhang T, Ma B, Li X. Antitumor activity of portulaca oleracea L. polysaccharide on hela cells through inducing TLR4/NF-κB Signaling. Nutr Cancer 2017; 69(1): 131-9.
[http://dx.doi.org/10.1080/01635581.2017.1248294] [PMID: 27911090]
[201]
Zhang D, Li Y, Mi M, et al. Modified apple polysaccharides suppress the migration and invasion of colorectal cancer cells induced by lipopolysaccharide. Nutr Res 2013; 33(10): 839-48.
[http://dx.doi.org/10.1016/j.nutres.2013.06.004] [PMID: 24074742]
[202]
Liao CH, Yong CY, Lai GM, et al. Astragalus polysaccharide (PG2) suppresses macrophage migration inhibitory factor and aggressiveness of lung adenocarcinoma cells. Am J Chin Med 2020; 48(6): 1491-509.
[http://dx.doi.org/10.1142/S0192415X20500731] [PMID: 32924531]
[203]
Yang J, Shao X, Jiang J, Sun Y, Wang L, Sun L. Angelica sinensis polysaccharide inhibits proliferation, migration, and invasion by down-regulating microRNA-675 in human neuroblastoma cell line SH-SY5Y. Cell Biol Int 2018; 42(7): 867-76.
[http://dx.doi.org/10.1002/cbin.10954] [PMID: 29465760]
[204]
Tao H, Chen X, Du Z, Ding K. Corn silk crude polysaccharide exerts anti-pancreatic cancer activity by blocking the EGFR/PI3K/AKT/CREB signaling pathway. Food Funct 2020; 11(8): 6961-70.
[http://dx.doi.org/10.1039/D0FO00403K] [PMID: 32696775]
[205]
Qu H, Yang W, Li J. Structural characterization of a polysaccharide from the flower buds of Tussilago farfara, and its effect on proliferation and apoptosis of A549 human non-small lung cancer cell line. Int J Biol Macromol 2018; 113: 849-58.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.005] [PMID: 29505876]
[206]
Ran L, Chen F, Zhang J, et al. Antitumor effects of pollen polysaccharides from Chinese wolfberry on DU145 cells via the PI3K/AKT pathway in vitro and in vivo. Int J Biol Macromol 2020; 152: 1164-73.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.206] [PMID: 31765754]
[207]
Xiong W, Li J, Jiang R, Li D, Liu Z, Chen D. Research on the effect of ginseng polysaccharide on apoptosis and cell cycle of human leukemia cell line K562 and its molecular mechanisms. Exp Ther Med 2017; 13(3): 924-34.
[http://dx.doi.org/10.3892/etm.2017.4087] [PMID: 28450921]
[208]
Wang Z, Lu C, Wu C, et al. Polysaccharide of Boschniakia rossica induces apoptosis on laryngeal carcinoma Hep2 cells. Gene 2014; 536(1): 203-6.
[http://dx.doi.org/10.1016/j.gene.2013.11.090] [PMID: 24334128]
[209]
Li JY, Yu J, Du XS, et al. Safflower polysaccharide induces NSCLC cell apoptosis by inhibition of the Akt pathway. Oncol Rep 2016; 36(1): 147-54.
[http://dx.doi.org/10.3892/or.2016.4784] [PMID: 27177149]
[210]
Bai L, Zhu LY, Yang BS, et al. Antitumor and immunomodulating activity of a polysaccharide from Sophora flavescens Ait. Int J Biol Macromol 2012; 51(5): 705-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.07.004] [PMID: 22782069]
[211]
Xu C, Liu Y, Yuan G, Guan M. The contribution of side chains to antitumor activity of a polysaccharide from Codonopsis pilosula. Int J Biol Macromol 2012; 50(4): 891-4.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.01.013] [PMID: 22285989]
[212]
Jiang S, Qiu L, Li Y, et al. Effects of Marsdenia tenacissima polysaccharide on the immune regulation and tumor growth in H 22 tumor-bearing mice. Carbohydr Polym 2016; 137: 52-8.
[http://dx.doi.org/10.1016/j.carbpol.2015.10.056] [PMID: 26686104]
[213]
Zeng G, Ju Y, Shen H, Zhou N, Huang L. Immunopontentiating activities of the purified polysaccharide from evening primrose in H22 tumor-bearing mice. Int J Biol Macromol 2013; 52: 280-5.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.10.005] [PMID: 23068137]
[214]
Shu G, Zhao W, Yue L, Su H, Xiang M. Antitumor immunostimulatory activity of polysaccharides from Salvia chinensis Benth. J Ethnopharmacol 2015; 168: 237-47.
[http://dx.doi.org/10.1016/j.jep.2015.03.065] [PMID: 25858511]
[215]
Chang WT, Lai TH, Chyan YJ, et al. Specific medicinal plant polysaccharides effectively enhance the potency of a DC-based vaccine against mouse mammary tumor metastasis. PLoS One 2015; 10(3): e0122374.
[http://dx.doi.org/10.1371/journal.pone.0122374] [PMID: 25825910]
[216]
Yang Y, Guo T, Xu J, et al. Micelle nanovehicles for co-delivery of Lepidium meyenii Walp. (maca) polysaccharide and chloroquine to tumor-associated macrophages for synergistic cancer immunotherapy. Int J Biol Macromol 2021; 189: 577-89.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.08.155] [PMID: 34450149]
[217]
Hwang J, Zhang W, Dhananjay Y, et al. Astragalus membranaceus polysaccharides potentiate the growth-inhibitory activity of immune checkpoint inhibitors against pulmonary metastatic melanoma in mice. Int J Biol Macromol 2021; 182: 1292-300.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.05.073] [PMID: 34000307]
[218]
Zhang T, Liu W, Fu C, et al. Structures and anti-melanoma activities of two polysaccharides from Angelica sinensis (Oliv.) Diels. Int J Biol Macromol 2021; 183: 972-81.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.05.021] [PMID: 33965492]
[219]
Park HR, Lee HS, Cho SY, Kim YS, Shin KS. Anti-metastatic effect of polysaccharide isolated from Colocasia esculenta is exerted through immunostimulation. Int J Mol Med 2013; 31(2): 361-8.
[http://dx.doi.org/10.3892/ijmm.2012.1224] [PMID: 23292184]
[220]
Chen X, Nie W, Yu G, et al. Antitumor and immunomodulatory activity of polysaccharides from Sargassum fusiforme. Food Chem Toxicol 2012; 50(3-4): 695-700.
[http://dx.doi.org/10.1016/j.fct.2011.11.015] [PMID: 22120506]
[221]
Zhou X, Shi H, Jiang G, Zhou Y, Xu J. Antitumor activities of ginseng polysaccharide in C57BL/6 mice with Lewis lung carcinoma. Tumour Biol 2014; 35(12): 12561-6.
[http://dx.doi.org/10.1007/s13277-014-2576-7] [PMID: 25204674]
[222]
Zhao R, Zhang T, Zhao H, Cai Y. Effects of portulaca oleracea L. polysaccharides on phenotypic and functional maturation of murine bone marrow derived dendritic cells. Nutr Cancer 2015; 67(6): 987-93.
[http://dx.doi.org/10.1080/01635581.2015.1060352] [PMID: 26219397]
[223]
Meng FY, Ning YL, Qi J, et al. Structure and antitumor and immunomodulatory activities of a water-soluble polysaccharide from Dimo-carpus longan pulp. Int J Mol Sci 2014; 15(3): 5140-62.
[http://dx.doi.org/10.3390/ijms15035140] [PMID: 24663085]
[224]
Feng Z, Yang R, Wu L, et al. Atractylodes macrocephala polysaccharides regulate the innate immunity of colorectal cancer cells by modulating the TLR4 signaling pathway. OncoTargets Ther 2019; 12: 7111-21.
[http://dx.doi.org/10.2147/OTT.S219623] [PMID: 31564895]
[225]
Razali FN, Ismail A, Abidin NZ, Shuib AS. Stimulatory effects of polysaccharide fraction from Solanum nigrum on RAW 264.7 murine macrophage cells. PLoS One 2014; 9(10): e108988.
[http://dx.doi.org/10.1371/journal.pone.0108988] [PMID: 25299340]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy