Research Article

HSIM负载聚合物纳米粒子的分子复合物:骨质疏松症的潜在载体

卷 24, 期 13, 2023

发表于: 22 September, 2023

页: [1066 - 1078] 页: 13

弟呕挨: 10.2174/1389450124666230915092910

价格: $65

conference banner
摘要

背景:他汀类药物,尤其是辛伐他汀,通过BMP-Smad信号通路刺激成骨细胞活性和抑制破骨细胞活性,从而促进骨形成。他汀类药物呈现肝脏先过代谢。本研究试图制备和评估包埋在具有缓释特性的聚乳酸-羟基乙酸(PLGA)纳米颗粒(HSIM-PLGA NPs)中的辛伐他汀功能化羟基磷灰石,用于有效治疗骨质疏松症。 方法:通过搅拌制备辛伐他汀功能化羟基磷灰石(HSIM),并通过对接研究、傅立叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)和X射线衍射(XRD)进行验证。此外,通过溶剂乳化法开发了负载HSIM的PLGA纳米颗粒(HSIM-PLGA NPs)。对纳米颗粒的ζ电位、粒径、包封效率、稳定性研究和体外药物释放研究进行了评估。还测定了纳米粒子与羟基磷灰石的体外结合亲和力。采用糖皮质激素诱导的骨质疏松大鼠模型,观察骨形态及其对骨密度的影响。 结果:优化后的纳米颗粒是无定形的,没有药物-聚合物相互作用。配制的纳米颗粒的粒径从196.8±2.27nm变化到524.8±5.49nm,纳米颗粒的包封率分别从41.9±3.44%变化到70.8±4.46%。纳米颗粒显示出药物的持续释放行为(24小时内75%),然后是非斐济药物释放。纳米颗粒表现出对骨细胞受体的高结合亲和力,增加了骨矿物质密度。在疾病和治疗大鼠中观察到钙和磷水平的显著差异。在骨质疏松大鼠和治疗大鼠中分别观察到多孔骨和孔隙率的显著改善(p<0.05)。 结论:掺入功能化辛伐他汀的骨靶向纳米颗粒可以靶向骨。因此,为了将辛伐他汀皮下分配用于治疗骨质疏松症,所开发的纳米颗粒可能是一种有前途的方法。

关键词: 羟基磷灰石,辛伐他汀,靶向,纳米颗粒,聚乳酸-羟基乙酸,缓释。

« Previous
图形摘要
[1]
Cai Y, Gao T, Fu S, Sun P. Development of zoledronic acid functionalized hydroxyapatite loaded polymeric nanoparticles for the treatment of osteoporosis. Exp Ther Med 2018; 16(2): 704-10.
[http://dx.doi.org/10.3892/etm.2018.6263] [PMID: 30116324]
[2]
Kaur M, Nagpal M, Singh M. Osteoblast-n-osteoclast: making headway to osteoporosis treatment. Curr Drug Targets 2020; 21(16): 1640-51.
[http://dx.doi.org/10.2174/1389450121666200731173522] [PMID: 32735518]
[3]
Jean-Louis M, Claudia CY, Jean-Marie R, Patrick C. Simulating pharmaceutical treatment effects on osteoporosis via a bone remodeling algorithm targeting hypermineralized sites. Med Eng Phys 2020; 76: 56-68.
[http://dx.doi.org/10.1016/j.medengphy.2019.10.011] [PMID: 31870544]
[4]
Low SA, Kopeček J. Targeting polymer therapeutics to bone. Adv Drug Deliv Rev 2012; 64(12): 1189-204.
[http://dx.doi.org/10.1016/j.addr.2012.01.012] [PMID: 22316530]
[5]
Alencastre IS, Sousa DM, Alves CJ, et al. Delivery of pharmaceutics to bone: nanotechnologies, high-throughput processing and in silico mathematical models. Eur Cell Mater 2016; 31: 355-81.
[http://dx.doi.org/10.22203/eCM.v031a23] [PMID: 27232664]
[6]
Wang CZ, Wang YH, Lin CW, et al. Combination of a bioceramic scaffold and simvastatin nanoparticles as a synthetic alternative to autologous bone grafting. Int J Mol Sci 2018; 19(12): 4099.
[http://dx.doi.org/10.3390/ijms19124099] [PMID: 30567319]
[7]
Yu WL, Sun TW, Qi C, et al. Enhanced osteogenesis and angiogenesis by mesoporous hydroxyapatite microspheres-derived simvastatin sustained release system for superior bone regeneration. Sci Rep 2017; 7(1): 44129.
[http://dx.doi.org/10.1038/srep44129] [PMID: 28287178]
[8]
Yue X, Niu M, Zhang T, et al. in vivo evaluation of a simvastatin-loaded nanostructured lipid carrier for bone tissue regeneration. Nanotechnology 2016; 27(11): 115708.
[http://dx.doi.org/10.1088/0957-4484/27/11/115708] [PMID: 26881419]
[9]
Sordi MB, da Cruz ACC, Aragones Á, Cordeiro MMR, de Souza Magini R. PLGA+ HA/βTCP scaffold incorporating simvastatin: a promising biomaterial for bone tissue engineering. J Oral Implantol 2021; 47(2): 93-101.
[http://dx.doi.org/10.1563/aaid-joi-D-19-00148] [PMID: 32699891]
[10]
Chalisserry EP, Nam SY, Anil S. Simvastatin Loaded Nano Hydroxyapatite in Bone Regeneration: A Study in the Rabbit Femoral Condyle. Curr Drug Deliv 2019; 16(6): 530-7.
[http://dx.doi.org/10.2174/1567201816666190610164303] [PMID: 31187712]
[11]
Li Y, Zhang Z, Zhang Z. Porous chitosan/nano-hydroxyapatite composite scaffolds incorporating simvastatin-loaded PLGA microspheres for bone repair. Cells Tissues Organs 2018; 205(1): 20-31.
[http://dx.doi.org/10.1159/000485502] [PMID: 29393155]
[12]
Jiang L, Sun H, Yuan A, et al. Enhancement of osteoinduction by continual simvastatin release from poly(lactic-co-glycolic acid)-hydroxyapatite-simvastatin nano-fibrous scaffold. J Biomed Nanotechnol 2013; 9(11): 1921-8.
[http://dx.doi.org/10.1166/jbn.2013.1692] [PMID: 24059091]
[13]
Tao S, Chen S, Zhou W, et al. A novel biocompatible, simvastatin-loaded, bone-targeting lipid nanocarrier for treating osteoporosis more effectively. RSC Adv 2020; 10(35): 20445-59.
[http://dx.doi.org/10.1039/D0RA00685H] [PMID: 35517758]
[14]
Delan WK, Zakaria M, Elsaadany B, ElMeshad AN, Mamdouh W, Fares AR. Formulation of simvastatin chitosan nanoparticles for controlled delivery in bone regeneration: Optimization using Box-Behnken design, stability and in vivo study. Int J Pharm 2020; 577: 119038.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119038] [PMID: 31953085]
[15]
Soni A, Dandagi P, Gadad A, Mastiholimath V. Simvastatin-loaded PLGA nanoparticles for improved oral bioavailability and sustained release: Effect of formulation variables. Asian J Pharm 2011; 5(2): 57.
[http://dx.doi.org/10.4103/0973-8398.84545]
[16]
Shekhawat MN, Surti Z, Surti N. Biodegradable in situ gel for subcutaneous administration of simvastatin for osteoporosis. Indian J Pharm Sci 2018; 80(2): 395-9.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000371]
[17]
Zhang ZZ, Zhang HZ, Zhang ZY. 3D printed poly(ε-caprolactone) scaffolds function with simvastatin-loaded poly(lactic-co-glycolic acid) microspheres to repair load-bearing segmental bone defects. Exp Ther Med 2019; 17(1): 79-90.
[PMID: 30651767]
[18]
Nagpal M, Kaur M, Aggarwal G. Nanotechnology for targeted drug delivery to treat osteoporosis. Curr Drug Targets 2023; 24(1): 2-12.
[http://dx.doi.org/10.2174/1389450123666221004124040] [PMID: 36200208]
[19]
Jing C, Chen S, Bhatia SS, et al. Bone-targeted polymeric nanoparticles as alendronate carriers for potential osteoporosis treatment. Polym Test 2022; 110: 107584.
[http://dx.doi.org/10.1016/j.polymertesting.2022.107584]
[20]
Zeng Y, Shen Y, Wu S, et al. Bone-targeting PLGA derived lipid drug delivery system ameliorates bone loss in osteoporotic ovariectomized rats. Mater Des 2022; 221: 110967.
[http://dx.doi.org/10.1016/j.matdes.2022.110967]
[21]
Baskaran R, Lee CJ, Kang SM, et al. Poly (lactic-co-glycolic acid) microspheres containing a Recombinant Parathyroid Hormone (1-34) for sustained release in a rat model. Indian J Pharm Sci 2018; 80(5): 837-43.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000429]
[22]
Khajuria DK, Razdan R, Mahapatra DR. Development, in vitro and in vivo characterization of zoledronic acid functionalized hydroxyapatite nanoparticle based formulation for treatment of osteoporosis in animal model. Eur J Pharm Sci 2015; 66: 173-83.
[http://dx.doi.org/10.1016/j.ejps.2014.10.015] [PMID: 25444840]
[23]
Ignjatović N, Uskoković V, Ajduković Z, Uskoković D. Multifunctional hydroxyapatite and poly(d,l-lactide-co-glycolide) nanoparticles for the local delivery of cholecalciferol. Mater Sci Eng C 2013; 33(2): 943-50.
[http://dx.doi.org/10.1016/j.msec.2012.11.026] [PMID: 25382938]
[24]
Lett JA, Sagadevan S, Prabhakar JJ, et al. Drug leaching properties of Vancomycin loaded mesoporous hydroxyapatite as bone substitutes. Processes 2019; 7(11): 826.
[http://dx.doi.org/10.3390/pr7110826]
[25]
Kotak DJ, Devarajan PV. Bone targeted delivery of salmon calcitonin hydroxyapatite nanoparticles for sublingual osteoporosis therapy (SLOT). Nanomedicine 2020; 24: 102153.
[http://dx.doi.org/10.1016/j.nano.2020.102153] [PMID: 31988038]
[26]
Santhosh S, Mukherjee D, Anbu J, Murahari M, Teja BV. Improved treatment efficacy of risedronate functionalized chitosan nanoparticles in osteoporosis: formulation development, in vivo, and molecular modelling studies. J Microencapsul 2019; 36(4): 338-55.
[http://dx.doi.org/10.1080/02652048.2019.1631401] [PMID: 31190594]
[27]
Murphy MB, Hartgerink JD, Goepferich A, Mikos AG. Synthesis and in vitro hydroxyapatite binding of peptides conjugated to calcium-binding moieties. Biomacromolecules 2007; 8(7): 2237-43.
[http://dx.doi.org/10.1021/bm070121s] [PMID: 17530891]
[28]
Ryu TK, Kang RH, Jeong KY, et al. Bone-targeted delivery of nanodiamond-based drug carriers conjugated with alendronate for potential osteoporosis treatment. J Control Release 2016; 232: 152-60.
[http://dx.doi.org/10.1016/j.jconrel.2016.04.025] [PMID: 27094604]
[29]
Brent MB, Thomsen JS, Brüel A. Short-term glucocorticoid excess blunts abaloparatide-induced increase in femoral bone mass and strength in mice. Sci Rep 2021; 11(1): 12258.
[http://dx.doi.org/10.1038/s41598-021-91729-8] [PMID: 34112892]
[30]
Yanbeiy ZA, Hansen KE. Denosumab in the treatment of glucocorticoid-induced osteoporosis: a systematic review and meta-analysis. Drug Des Devel Ther 2019; 13: 2843-52.
[http://dx.doi.org/10.2147/DDDT.S148654] [PMID: 31616133]
[31]
Prakash D, Behari J. Synergistic role of hydroxyapatite nanoparticles and pulsed electromagnetic field therapy to prevent bone loss in rats following exposure to simulated microgravity. Int J Nanomedicine 2008; 4: 133-44.
[http://dx.doi.org/10.1109/AMTA.2008.4763233]
[32]
Muhammad SI, Ismail M, Mahmud R, Esmaile MF, Zakaria ZAB. Bone mass density estimation: Archimede’s principle versus automatic X-ray histogram and edge detection technique in ovariectomized rats treated with germinated brown rice bioactives. Clin Interv Aging 2013; 8: 1421-31.
[http://dx.doi.org/10.2147/CIA.S49704] [PMID: 24187491]
[33]
Keenan MJ, Hegsted M, Jones KL, et al. Comparison of bone density measurement techniques: DXA and Archimedes’ principle. J Bone Miner Res 1997; 12(11): 1903-7.
[http://dx.doi.org/10.1359/jbmr.1997.12.11.1903] [PMID: 9383695]
[34]
Chandrasekar A, Sagadevan S, Dakshnamoorthy A. Synthesis and characterization of nano-hydroxyapatite (n-HAP) using the wet chemical technique. Int J Phys Sci 2013; 8(32): 1639-45.
[35]
Jing C, Li B, Tan H, et al. Alendronate-Decorated Nanoparticles as Bone-Targeted Alendronate Carriers for Potential Osteoporosis Treatment. ACS Appl Bio Mater 2021; 4(6): 4907-16.
[http://dx.doi.org/10.1021/acsabm.1c00199] [PMID: 35007039]
[36]
Weng J, Tong HHY, Chow SF. in vitro release study of the polymeric drug nanoparticles: development and validation of a novel method. Pharmaceutics 2020; 12(8): 732.
[http://dx.doi.org/10.3390/pharmaceutics12080732] [PMID: 32759786]
[37]
Haque ST, Islam RA, Gan SH, Chowdhury EH. Characterization and evaluation of bone-derived nanoparticles as a novel pH-responsive carrier for delivery of doxorubicin into breast cancer cells. Int J Mol Sci 2020; 21(18): 6721.
[http://dx.doi.org/10.3390/ijms21186721] [PMID: 32937817]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy