Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

通过与VDAC1相互作用调节线粒体钙摄取并促进子宫内膜癌进展的线粒体钙单转运蛋白(MCU

卷 24, 期 3, 2024

发表于: 27 September, 2023

页: [354 - 367] 页: 14

弟呕挨: 10.2174/1568009624666230912095526

价格: $65

conference banner
摘要

背景:虽然子宫内膜癌是一种常见的女性生殖道恶性肿瘤,但我们对控制子宫内膜癌的因素知之甚少。 目的:探讨MCU在子宫内膜肿瘤发生中的作用及其分子机制。 材料与方法:共纳入94例子宫内膜癌患者。采用免疫组化和免疫荧光法检测肿瘤组织和正常组织中MCU和VDAC1的表达。评估MCU和VDAC1表达与临床病理特征的关系。转染靶向MCU或全长MCU质粒的shRNA后,Ishikawa和RL95-2细胞分别出现克隆形成、伤口愈合、transwell和MitoTracker Red染色。此外,利用Western blotting或免疫荧光检测VDAC1敲低和/或MCU过表达或敲低时MCU、VDAC1、Na+/Ca2+/Li+交换剂(NCLX)和β-catenin的表达。 结果:MCU和VDAC1表达在子宫内膜癌组织中显著上调,且与组织学分级、子宫肌层浸润深度和淋巴结状态显著相关。MCU上调可增强子宫内膜癌细胞的克隆形成、迁移和线粒体活性。当MCU被静音时,结果与之相反。MCU或VDAC1沉默降低了MCU、VDAC1、NCLX和β-catenin的表达。此外,VDAC1敲低可减轻MCU过表达对上述蛋白的促进作用。 结论:本研究表明mcu诱导的线粒体钙摄取通过与VDAC1的相互作用在子宫内膜肿瘤发生中起关键作用。

关键词: 子宫内膜癌,MCU, VDAC1,增殖,迁移,线粒体膜电位,线粒体钙摄取。

图形摘要
[1]
Ryan, N.A.J.; Glaire, M.A.; Blake, D.; Cabrera-Dandy, M.; Evans, D.G.; Crosbie, E.J. The proportion of endometrial cancers associated with Lynch syndrome: A systematic review of the literature and meta-analysis. Genet. Med., 2019, 21(10), 2167-2180.
[http://dx.doi.org/10.1038/s41436-019-0536-8] [PMID: 31086306]
[2]
Wang, Y.; Yin, L.; Sun, X. CircRNA hsa_circ_0002577 accelerates endometrial cancer progression through activating IGF1R/PI3K/Akt pathway. J. Exp. Clin. Cancer Res., 2020, 39(1), 169.
[http://dx.doi.org/10.1186/s13046-020-01679-8] [PMID: 32847606]
[3]
Song, Y.; Wang, M.; Tong, H.; Tan, Y.; Hu, X.; Wang, K.; Wan, X. Plasma exosomes from endometrial cancer patients contain LGALS3BP to promote endometrial cancer progression. Oncogene, 2021, 40(3), 633-646.
[http://dx.doi.org/10.1038/s41388-020-01555-x] [PMID: 33208911]
[4]
Westin, S.N.; Fellman, B.; Sun, C.C.; Broaddus, R.R.; Woodall, M.L.; Pal, N.; Urbauer, D.L.; Ramondetta, L.M.; Schmeler, K.M.; Soliman, P.T.; Fleming, N.D.; Burzawa, J.K.; Nick, A.M.; Milbourne, A.M.; Yuan, Y.; Lu, K.H.; Bodurka, D.C.; Coleman, R.L.; Yates, M.S. Prospective phase II trial of levonorgestrel intrauterine device: Nonsurgical approach for complex atypical hyperplasia and early-stage endometrial cancer. Am. J. Obstet. Gynecol., 2021, 224(2), 191.e1-191.e15.
[http://dx.doi.org/10.1016/j.ajog.2020.08.032] [PMID: 32805208]
[5]
van den Heerik, A.S.V.M.; Horeweg, N.; de Boer, S.M.; Bosse, T.; Creutzberg, C.L. Adjuvant therapy for endometrial cancer in the era of molecular classification: Radiotherapy, chemoradiation and novel targets for therapy. Int. J. Gynecol. Cancer, 2021, 31(4), 594-604.
[http://dx.doi.org/10.1136/ijgc-2020-001822] [PMID: 33082238]
[6]
Daw, C.C.; Ramachandran, K.; Enslow, B.T.; Maity, S.; Bursic, B.; Novello, M.J.; Rubannelsonkumar, C.S.; Mashal, A.H.; Ravichandran, J.; Bakewell, T.M.; Wang, W.; Li, K.; Madaris, T.R.; Shannon, C.E.; Norton, L.; Kandala, S.; Caplan, J.; Srikantan, S.; Stathopulos, P.B.; Reeves, W.B.; Madesh, M. Lactate elicits ER-mitochondrial Mg2+ dynamics to integrate cellular metabolism. Cell, 2020, 183(2), 474-489.e17.
[http://dx.doi.org/10.1016/j.cell.2020.08.049] [PMID: 33035451]
[7]
Cui, C.; Merritt, R.; Fu, L.; Pan, Z. Targeting calcium signaling in cancer therapy. Acta Pharm. Sin. B, 2017, 7(1), 3-17.
[http://dx.doi.org/10.1016/j.apsb.2016.11.001] [PMID: 28119804]
[8]
Katoshevski, T.; Ben-Kasus Nissim, T.; Sekler, I. Recent studies on NCLX in health and diseases. Cell Calcium, 2021, 94, 102345.
[http://dx.doi.org/10.1016/j.ceca.2020.102345] [PMID: 33508514]
[9]
Kostic, M.; Katoshevski, T.; Sekler, I. Allosteric regulation of NCLX by mitochondrial membrane potential links the metabolic state and Ca2+ signaling in mitochondria. Cell Rep., 2018, 25(12), 3465-3475.e4.
[http://dx.doi.org/10.1016/j.celrep.2018.11.084] [PMID: 30566870]
[10]
Liu, Y.; Jin, M.; Wang, Y.; Zhu, J.; Tan, R.; Zhao, J.; Ji, X.; Jin, C.; Jia, Y.; Ren, T.; Xing, J. MCU-induced mitochondrial calcium uptake promotes mitochondrial biogenesis and colorectal cancer growth. Signal Transduct. Target. Ther., 2020, 5(1), 59.
[http://dx.doi.org/10.1038/s41392-020-0155-5] [PMID: 32371956]
[11]
Palty, R.; Silverman, W.F.; Hershfinkel, M.; Caporale, T.; Sensi, S.L.; Parnis, J.; Nolte, C.; Fishman, D.; Shoshan-Barmatz, V.; Herrmann, S.; Khananshvili, D.; Sekler, I. NCLX is an essential component of mitochondrial Na + /Ca 2+ exchange. Proc. Natl. Acad. Sci. USA, 2010, 107(1), 436-441.
[http://dx.doi.org/10.1073/pnas.0908099107] [PMID: 20018762]
[12]
Marchi, S.; Giorgi, C.; Galluzzi, L.; Pinton, P. Ca2+ Fluxes and Cancer. Mol. Cell, 2020, 78(6), 1055-1069.
[http://dx.doi.org/10.1016/j.molcel.2020.04.017] [PMID: 32559424]
[13]
Delierneux, C.; Kouba, S.; Shanmughapriya, S.; Potier-Cartereau, M.; Trebak, M.; Hempel, N. Mitochondrial calcium regulation of redox signaling in cancer. Cells, 2020, 9(2), 432.
[http://dx.doi.org/10.3390/cells9020432] [PMID: 32059571]
[14]
Zeng, F.; Chen, X.; Cui, W.; Wen, W.; Lu, F.; Sun, X.; Ma, D.; Yuan, Y.; Li, Z.; Hou, N.; Zhao, H.; Bi, X.; Zhao, J.; Zhou, J.; Zhang, Y.; Xiao, R.P.; Cai, J.; Zhang, X. RIPK1 binds MCU to mediate induction of mitochondrial Ca2+ uptake and promotes colorectal oncogenesis. Cancer Res., 2018, 78(11), 2876-2885.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-3082] [PMID: 29531160]
[15]
Chen, L.; Sun, Q.; Zhou, D.; Song, W.; Yang, Q.; Ju, B.; Zhang, L.; Xie, H.; Zhou, L.; Hu, Z.; Yao, H.; Zheng, S.; Wang, W. HINT2 triggers mitochondrial Ca2+ influx by regulating the mitochondrial Ca2+ uniporter (MCU) complex and enhances gemcitabine apoptotic effect in pancreatic cancer. Cancer Lett., 2017, 411, 106-116.
[http://dx.doi.org/10.1016/j.canlet.2017.09.020] [PMID: 28947137]
[16]
Zheng, X.; Lu, S.; He, Z.; Huang, H.; Yao, Z.; Miao, Y.; Cai, C.; Zou, F. MCU-dependent negative sorting of miR-4488 to extracellular vesicles enhances angiogenesis and promotes breast cancer metastatic colonization. Oncogene, 2020, 39(46), 6975-6989.
[http://dx.doi.org/10.1038/s41388-020-01514-6] [PMID: 33067576]
[17]
Li, C.J.; Lin, H.Y.; Ko, C.J.; Lai, J.C.; Chu, P.Y. A novel biomarker driving poor-prognosis liver cancer: Overexpression of the mitochondrial calcium gatekeepers. Biomedicines, 2020, 8(11), 451.
[http://dx.doi.org/10.3390/biomedicines8110451] [PMID: 33114428]
[18]
Sun, Y.; Li, M.; Liu, G.; Zhang, X.; Zhi, L.; Zhao, J.; Wang, G. The function of Piezo1 in colon cancer metastasis and its potential regulatory mechanism. J. Cancer Res. Clin. Oncol., 2020, 146(5), 1139-1152.
[http://dx.doi.org/10.1007/s00432-020-03179-w] [PMID: 32152662]
[19]
Miao, Y.; Wang, X.; Lai, Y.; Lin, W.; Huang, Y.; Yin, H.; Hou, R.; Zhang, F. Mitochondrial calcium uniporter promotes cell proliferation and migration in esophageal cancer. Oncol. Lett., 2021, 22(3), 686.
[http://dx.doi.org/10.3892/ol.2021.12947] [PMID: 34434285]
[20]
Wu, R.; Zuo, W.; Xu, X.; Bi, L.; Zhang, C.; Chen, H.; Liu, H. MCU that is transcriptionally regulated by Nrf2 augments malignant biological behaviors in oral squamous cell carcinoma cells. BioMed Res. Int., 2021, 2021, 1-17.
[http://dx.doi.org/10.1155/2021/6650791] [PMID: 34189138]
[21]
Bazhin, A.A.; Sinisi, R.; De Marchi, U.; Hermant, A.; Sambiagio, N.; Maric, T.; Budin, G.; Goun, E.A. A bioluminescent probe for longitudinal monitoring of mitochondrial membrane potential. Nat. Chem. Biol., 2020, 16(12), 1385-1393.
[http://dx.doi.org/10.1038/s41589-020-0602-1] [PMID: 32778841]
[22]
Alevriadou, B.R.; Patel, A.; Noble, M.; Ghosh, S.; Gohil, V.M.; Stathopulos, P.B.; Madesh, M. Molecular nature and physiological role of the mitochondrial calcium uniporter channel. Am. J. Physiol. Cell Physiol., 2021, 320(4), C465-C482.
[http://dx.doi.org/10.1152/ajpcell.00502.2020] [PMID: 33296287]
[23]
Vais, H.; Payne, R.; Paudel, U.; Li, C.; Foskett, J.K. Coupled transmembrane mechanisms control MCU-mediated mitochondrial Ca 2+ uptake. Proc. Natl. Acad. Sci. USA, 2020, 117(35), 21731-21739.
[http://dx.doi.org/10.1073/pnas.2005976117] [PMID: 32801213]
[24]
Kostic, M.; Sekler, I. Functional properties and mode of regulation of the mitochondrial Na+/Ca2+ exchanger, NCLX. Semin. Cell Dev. Biol., 2019, 94, 59-65.
[http://dx.doi.org/10.1016/j.semcdb.2019.01.009] [PMID: 30658153]
[25]
Pathak, T.; Gueguinou, M.; Walter, V.; Delierneux, C.; Johnson, M.T.; Zhang, X.; Xin, P.; Yoast, R.E.; Emrich, S.M.; Yochum, G.S.; Sekler, I.; Koltun, W.A.; Gill, D.L.; Hempel, N.; Trebak, M. Dichotomous role of the human mitochondrial Na+/Ca2+/Li+ exchanger NCLX in colorectal cancer growth and metastasis. eLife, 2020, 9, e59686.
[http://dx.doi.org/10.7554/eLife.59686] [PMID: 32914752]
[26]
Shteinfer-Kuzmine, A.; Verma, A.; Arif, T.; Aizenberg, O.; Paul, A.; Shoshan-Barmaz, V. Mitochondria and nucleus cross‐talk: Signaling in metabolism, apoptosis, and differentiation, and function in cancer. IUBMB Life, 2021, 73(3), 492-510.
[http://dx.doi.org/10.1002/iub.2407] [PMID: 33179373]
[27]
Grun, B.; Benjamin, E.; Sinclair, J.; Timms, J.F.; Jacobs, I.J.; Gayther, S.A.; Dafou, D. Three-dimensional in vitro cell biology models of ovarian and endometrial cancer. Cell Prolif., 2009, 42(2), 219-228.
[http://dx.doi.org/10.1111/j.1365-2184.2008.00579.x] [PMID: 19222485]
[28]
Fang, Y.; Liu, J.; Zhang, Q.; She, C.; Zheng, R.; Zhang, R.; Chen, Z.; Chen, C.; Wu, J. Overexpressed VDAC1 in breast cancer as a novel prognostic biomarker and correlates with immune infiltrates. World J. Surg. Oncol., 2022, 20(1), 211.
[http://dx.doi.org/10.1186/s12957-022-02667-2] [PMID: 35729567]
[29]
Zerbib, E.; Arif, T.; Shteinfer-Kuzmine, A.; Chalifa-Caspi, V.; Shoshan-Barmatz, V. VDAC1 silencing in cancer cells leads to metabolic reprogramming that modulates tumor microenvironment. Cancers, 2021, 13(11), 2850.
[http://dx.doi.org/10.3390/cancers13112850] [PMID: 34200480]
[30]
Zhang, C.; Hua, Y.; Qiu, H.; Liu, T.; Long, Q.; Liao, W.; Qiu, J.; Wang, N.; Chen, M.; Shi, D.; Yan, Y.; Xie, C.; Deng, W.; Li, T.; Li, Y. KMT2A regulates cervical cancer cell growth through targeting VDAC1. Aging, 2020, 12(10), 9604-9620.
[http://dx.doi.org/10.18632/aging.103229] [PMID: 32436862]
[31]
Huang, Q.; Ma, B.; Su, Y.; Chan, K.; Qu, H.; Huang, J.; Wang, D.; Qiu, J.; Liu, H.; Yang, X.; Wang, Z. miR-197-3p represses the proliferation of prostate cancer by regulating the VDAC1/AKT/β-catenin signaling axis. Int. J. Biol. Sci., 2020, 16(8), 1417-1426.
[http://dx.doi.org/10.7150/ijbs.42019] [PMID: 32210729]
[32]
Luo, L.; Xiong, Y.; Jiang, N.; Zhu, X.; Wang, Y.; Lv, Y.; Xie, Y. VDAC1 as a target in cisplatin anti-tumor activity through promoting mitochondria fusion. Biochem. Biophys. Res. Commun., 2021, 560, 52-58.
[http://dx.doi.org/10.1016/j.bbrc.2021.04.104] [PMID: 33971568]
[33]
Li, Y.; Kang, J.; Fu, J.; Luo, H.; Liu, Y.; Li, Y.; Sun, L. PGC1α promotes cisplatin resistance in ovarian cancer by regulating the HSP70/HK2/VDAC1 signaling pathway. Int. J. Mol. Sci., 2021, 22(5), 2537.
[http://dx.doi.org/10.3390/ijms22052537] [PMID: 33802591]
[34]
Zhang, Y.; Wang, X. Targeting the Wnt/β-catenin signaling pathway in cancer. J. Hematol. Oncol., 2020, 13(1), 165.
[http://dx.doi.org/10.1186/s13045-020-00990-3] [PMID: 33276800]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy