Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Synthesis, Cytotoxic Potential, and Molecular Docking Studies of Ortho-carboxamidostilbene Analogs

Author(s): Norhadi Mohamad, Musthahimah Muhamad, Aik Sian Tan, Nik Nur Syazni Nik Mohd. Kamal, Mohammad Tasyriq Che Omar, Mohamad Hafizi Abu Bakar, Unang Supratman, Mohd. Azlan Nafiah and Mohamad Nurul Azmi*

Volume 27, Issue 17, 2023

Published on: 04 October, 2023

Page: [1553 - 1562] Pages: 10

DOI: 10.2174/1385272827666230911115740

Price: $65

Abstract

A total of eleven ortho-carboxamidostilbene derivatives were synthesized through Heck coupling with a different type of amide derivatives. These compounds were characterized by FTIR, 1D- and 2D-NMR as well as mass spectroscopy analysis (HRESIMS). The synthesized compounds were tested for their cytotoxic potential against four human cancer cell lines (MCF-7, MDA-MB-231, MCF-7/TAMR-1, and A549), as well as two human normal cell lines (MCF-10A and BEAS-2B) using tamoxifen and cisplatin as a positive control. The active compound has proceeded with molecular docking on the colchicine binding site of tubulin protein using AutoDock Vina and Biovia Discovery Studio. Compounds 6a, 6d-6k exhibited selective cytotoxic activity against A549 cells rather than breast cancer cell lines. Compounds 6d, 6f, and 6g showed moderate cytotoxicity to A549 cells after 72 hours, with IC50 values of 10.4 μM, 6.47 μM, and 8.99 μM, respectively. Interestingly, these compounds had a high selective index (SI) value against A549 lung cancer cells, ranging from 8.87 to 15.4 μM. Molecular docking studies for compounds 6d, 6f, and 6g on the colchicine binding site of tubulin protein, α- and β-subunits were done to comprehend and research ligand-receptor interactions.

Keywords: Ortho-carboxamidostilbenes, heck coupling, MTT assay, cytotoxic activity, molecular docking, β-subunits.

« Previous
Graphical Abstract
[1]
Janke, C.; Magiera, M.M. The tubulin code and its role in controlling microtubule properties and functions. Nat. Rev. Mol. Cell Biol., 2020, 21(6), 307-326.
[http://dx.doi.org/10.1038/s41580-020-0214-3] [PMID: 32107477]
[2]
Prassanawar, S.S.; Panda, D. Tubulin heterogeneity regulates functions and dynamics of microtubules and plays a role in the development of drug resistance in cancer. Biochem. J., 2019, 476(9), 1359-1376.
[http://dx.doi.org/10.1042/BCJ20190123] [PMID: 31085712]
[3]
Horio, T.; Murata, T. The role of dynamic instability in microtubule organization. Front. Plant Sci., 2014, 5, 511.
[http://dx.doi.org/10.3389/fpls.2014.00511] [PMID: 25339962]
[4]
McLoughlin, E.C.; O’Boyle, N.M. Colchicine-binding site inhibitors from chemistry to clinic: A review. Pharmaceuticals, 2020, 13(1), 8.
[http://dx.doi.org/10.3390/ph13010008] [PMID: 31947889]
[5]
Steinmetz, M.O.; Prota, A.E. Microtubule-targeting agents: Strategies to hijack the cytoskeleton. Trends Cell Biol., 2018, 28(10), 776-792.
[http://dx.doi.org/10.1016/j.tcb.2018.05.001] [PMID: 29871823]
[6]
Borys, F.; Joachimiak, E.; Krawczyk, H.; Fabczak, H. Intrinsic and extrinsic factors affecting microtubule dynamics in normal and cancer cells. Molecules, 2020, 25(16), 3705.
[http://dx.doi.org/10.3390/molecules25163705] [PMID: 32823874]
[7]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[8]
Gupta, G.P. Massagué, J. Cancer metastasis: Building a framework. Cell, 2006, 127(4), 679-695.
[http://dx.doi.org/10.1016/j.cell.2006.11.001] [PMID: 17110329]
[9]
Bendas, G.; Borsig, L. Cancer cell adhesion and metastasis: Selectins, integrins, and the inhibitory potential of heparins. Int. J. Cell Biol., 2012, 2012, 1-10.
[http://dx.doi.org/10.1155/2012/676731] [PMID: 22505933]
[10]
Abbas, Z.; Rehman, S. An overview of cancer treatment modalities. Neoplasm, 2018, 1, 139-157.
[11]
Sirerol, J.A.; Rodríguez, M.L.; Mena, S.; Asensi, M.A.; Estrela, J.M.; Ortega, A.L. Role of natural stilbenes in the prevention of cancer. Oxid. Med. Cell. Longev., 2016, 2016, 1-15.
[http://dx.doi.org/10.1155/2016/3128951] [PMID: 26798416]
[12]
Baur, J.A.; Sinclair, D.A. Therapeutic potential of resveratrol: The in vivo evidence. Nat. Rev. Drug Discov., 2006, 5(6), 493-506.
[http://dx.doi.org/10.1038/nrd2060] [PMID: 16732220]
[13]
Jang, M.; Cai, L.; Udeani, G.O.; Slowing, K.V.; Thomas, C.F.; Beecher, C.W.W.; Fong, H.H.S.; Farnsworth, N.R.; Kinghorn, A.D.; Mehta, R.G.; Moon, R.C.; Pezzuto, J.M. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 1997, 275(5297), 218-220.
[http://dx.doi.org/10.1126/science.275.5297.218] [PMID: 8985016]
[14]
De Filippis, B.; Ammazzalorso, A.; Fantacuzzi, M.; Giampietro, L.; Maccallini, C.; Amoroso, R. Anticancer activity of stilbene-based derivatives. ChemMedChem, 2017, 12(8), 558-570.
[http://dx.doi.org/10.1002/cmdc.201700045] [PMID: 28266812]
[15]
Roman, B.I.; De Coen, L.M.; Thérèse, F.C.; Mortier, S.; De Ryck, T.; Vanhoecke, B.W.; Katritzky, A.R.; Bracke, M.E.; Stevens, C.V.; Stevens, C.V. Design, synthesis and structure-activity relationships of some novel, highly potent anti-invasive (E)- and (Z)-stilbenes. Bioorg. Med. Chem., 2013, 21(17), 5054-5063.
[http://dx.doi.org/10.1016/j.bmc.2013.06.048] [PMID: 23867387]
[16]
Giacomini, E.; Rupiani, S.; Guidotti, L.; Recanatini, M.; Roberti, M. The use of stilbene scaffold in medicinal chemistry and multi-target drug design. Curr. Med. Chem., 2016, 23(23), 2439-2489.
[http://dx.doi.org/10.2174/0929867323666160517121629] [PMID: 27183980]
[17]
Tripathi, P.; Sabir Siddiqui, S.; Sharma, A.; Johri, P.; Singh, A. Molecular docking studies of Curcuma longa and Aloe vera for their potential anticancer effects. Asian J. Pharm. Clin. Res., 2018, 11(4), 314-318.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i4.23995]
[18]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[19]
Azmi, M.; Din, M.; Kee, C.; Suhaimi, M.; Ping, A.; Ahmad, K.; Nafiah, M.; Thomas, N.; Mohamad, K.; Hoong, L.; Awang, K. Design, synthesis and cytotoxic evaluation of o-carboxamido stilbene analogues. Int. J. Mol. Sci., 2013, 14(12), 23369-23389.
[http://dx.doi.org/10.3390/ijms141223369] [PMID: 24287912]
[20]
Mohamad, N.; Phua, Y.H.; Abu Bakar, M.H.; Che Omar, M.T.; Wahab, H.A.; Supratman, U.; Awang, K.; Azmi, M.N. Synthesis, biological evaluation of ortho-carboxamidostilbenes as potential inhibitors of hyperglycemic enzymes, and molecular docking study. J. Mol. Struct., 2021, 1245, 131007.
[http://dx.doi.org/10.1016/j.molstruc.2021.131007]
[21]
Dai, L.M.; Huang, R.Z.; Zhang, B.; Hua, J.; Wang, H.S.; Liang, D. Cytotoxic triterpenoid saponins from Lysimachia foenum-graecum. Phytochemistry, 2017, 136, 165-174.
[http://dx.doi.org/10.1016/j.phytochem.2017.01.021] [PMID: 28173950]
[22]
Jordan, V.C.; Brodie, A.M.H. Development and evolution of therapies targeted to the estrogen receptor for the treatment and prevention of breast cancer. Steroids, 2007, 72(1), 7-25.
[http://dx.doi.org/10.1016/j.steroids.2006.10.009] [PMID: 17169390]
[23]
Dörwald, F.Z. Lead optimization for medicinal chemists: Pharmacokinetic properties of functional groups and organic compounds; Wiley-VCH: Weinheim, 2012.
[http://dx.doi.org/10.1002/9783527645640]
[24]
Cushman, M.; Nagarathnam, D.; Gopal, D.; Chakraborti, A.K.; Lin, C.M.; Hamel, E. Synthesis and evaluation of stilbene and dihydrostilbene derivatives as potential anticancer agents that inhibit tubulin polymerization. J. Med. Chem., 1991, 34(8), 2579-2588.
[http://dx.doi.org/10.1021/jm00112a036] [PMID: 1875350]
[25]
Mikstacka, R. Stefański, T.; Różański, J. Tubulin-interactive stilbene derivatives as anticancer agents. Cell. Mol. Biol. Lett., 2013, 18(3), 368-397.
[http://dx.doi.org/10.2478/s11658-013-0094-z] [PMID: 23818224]
[26]
Cao, T.M.; Durrant, D.; Tripathi, A.; Liu, J.; Tsai, S.; Kellogg, G.E.; Simoni, D.; Lee, R.M. Stilbene derivatives that are colchicine site microtubule inhibitors have antileukemic activity and minimal systemic toxicity. Am. J. Hematol., 2008, 83(5), 390-397.
[http://dx.doi.org/10.1002/ajh.21104] [PMID: 18175355]
[27]
Tripathi, A.; Durrant, D.; Lee, R.M.; Baruchello, R.; Romagnoli, R.; Simoni, D.; Kellogg, G.E. Hydropathic analysis and biological evaluation of stilbene derivatives as colchicine site microtubule inhibitors with anti-leukemic activity. J. Enzyme Inhib. Med. Chem., 2009, 24(6), 1237-1244.
[http://dx.doi.org/10.3109/14756360902787055] [PMID: 19912057]
[28]
Parida, P.K.; Mahata, B.; Santra, A.; Chakraborty, S.; Ghosh, Z.; Raha, S.; Misra, A.K.; Biswas, K.; Jana, K. Inhibition of cancer progression by a novel trans-stilbene derivative through disruption of microtubule dynamics, driving G2/M arrest, and p53-dependent apoptosis. Cell Death Dis., 2018, 9(5), 448.
[http://dx.doi.org/10.1038/s41419-018-0476-2] [PMID: 29670107]
[29]
Mikstacka, R. Zielińska-Przyjemska, M.; Dutkiewicz, Z.; Cichocki, M.; Stefański, T.; Kaczmarek, M.; Baer-Dubowska, W. Cytotoxic, tubulin-interfering and proapoptotic activities of 4′-methylthio-trans-stilbene derivatives, analogues of trans-resveratrol. Cytotechnology, 2018, 70(5), 1349-1362.
[http://dx.doi.org/10.1007/s10616-018-0227-3] [PMID: 29808373]
[30]
Borys, F.; Tobiasz, P. Poterała, M.; Krawczyk, H. Development of novel derivatives of stilbene and macrocyclic compounds as potent of anti-microtubule factors. Biomed. Pharmacother., 2021, 133, 110973.
[http://dx.doi.org/10.1016/j.biopha.2020.110973] [PMID: 33378993]
[31]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera? A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[32]
Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model., 2006, 25(2), 247-260.
[http://dx.doi.org/10.1016/j.jmgm.2005.12.005] [PMID: 16458552]
[33]
Huang, C.C.; Meng, E.C.; Morris, J.H.; Pettersen, E.F.; Ferrin, T.E. Enhancing UCSF Chimera through web services. Nucleic Acids Res., 2014, 42(Web Server issue), W478-84.
[PMID: 24861624]
[34]
X-ray crystallography in biovia discovery studio. 2016. . Available from: https://www.3ds.com/fileadmin/PRODUCTS-SERVICES/BIOVIA/PDF/x-ray-Crystallography-in-BIOVIA-Discovery-Studio.pdf

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy