Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Scale-up of Sodium Persulfate Mediated, Nitroxide Catalyzed Oxidative Functionalization Reactions

Author(s): Katrina E. Doherty, Arturo L. Sandoval, Fabrizio Politano, Mason L. Witko, Chelsea M. Schroeder, William P. Brydon, Geoffrey P. Wadey, Kristiane K. Ohlhorst and Nicholas E. Leadbeater*

Volume 21, Issue 7, 2024

Published on: 05 October, 2023

Page: [941 - 946] Pages: 6

DOI: 10.2174/1570179421666230831105337

Price: $65

Abstract

Background: Oxidation is a valuable tool in preparative organic chemistry. Oxoammonium salts and nitroxides have proven valuable as reagents and catalysts in this endeavor.

Objective: The objective of this study is to scale up the oxidative amidation, ester formation, and nitrile formation using nitroxide as an organocatalyst.

Methods: Oxidative functionalization reactions were scaled from the 1 mmol to the 1 mole level. Sodium persulfate was used as the primary oxidant, and a nitroxide was employed as a catalyst. The products of the reactions were isolated in analytically pure form by extraction with no need for column chromatography.

Results: The oxidative amidation and esterification of aldehydes can be scaled up from 1 mmol to 1 mole effectively, with comparable product yields being obtained at each increment. This work shows that conditions developed on a small scale can be transferred to a larger scale without reoptimization. The oxidative functionalization of aldehydes to prepare nitriles is not amenable to direct scale-up due to the concomitant formation of significant quantities of the corresponding carboxylic acid, thereby compromising the product yield.

Conclusion: Two of the three oxidative transformations studied here can be scaled up successfully from the 1 mmol to the 1 mole level.

Keywords: Oxidative functionalization, scale-up, oxoammonium cations, amides, esters, and catalyst.

Graphical Abstract
[1]
Bäckvall, J-E. Modern oxidation methods; Wiley-VCH: Weinheim, Germany, 2004.
[http://dx.doi.org/10.1002/3527603689]
[2]
Caron, S. Practical synthetic organic chemistry: reactions, principles, and techniques; Wiley-VCH: Weinheim, Germany, 2011.
[http://dx.doi.org/10.1002/9781118093559]
[3]
Tojo, G.; Fernández, M. Oxidation of alcohols to aldehydes and ketones; Springer: New York, 2006.
[4]
Tojo, G.; Fernández, M. Oxidation of primary alcohols to carboxylic acids; Springer: New York, 2010.
[5]
Leadbeater, N.E.; Bobbitt, J.M. TEMPO-derived oxoammonium salts as versatile oxidizing agents. Aldrichim Acta, 2014, 47, 65-74.
[6]
Shibuya, M. Nitroxyl radical-catalyzed chemoselective alcohol oxidation for the synthesis of polyfunctional molecules. Tetrahedron Lett., 2020, 61(8), 151515.
[http://dx.doi.org/10.1016/j.tetlet.2019.151515]
[7]
Beejapur, H.A.; Zhang, Q.; Hu, K.; Zhu, L.; Wang, J.; Ye, Z. TEMPO in Chemical transformations: From homogeneous to heterogeneous. ACS Catal., 2019, 9(4), 2777-2830.
[http://dx.doi.org/10.1021/acscatal.8b05001]
[8]
Tebben, L.; Studer, A. Nitroxides: Applications in synthesis and in polymer chemistry. Angew. Chem. Int. Ed., 2011, 50(22), 5034-5068.
[http://dx.doi.org/10.1002/anie.201002547] [PMID: 21538729]
[9]
Bobbitt, J.M.; Brückner, C.; Merbouh, N. Oxoammonium- and nitroxide-catalyzed oxidations of alcohols. In: Organic Reactions; John Wiley & Sons, 2010; pp. 103-424.
[10]
Priyadarshini, M.; Das, I.; Ghangrekar, M.M.; Blaney, L. Advanced oxidation processes: Performance, advantages, and scale-up of emerging technologies. J. Environ. Manage., 2022, 316, 115295.
[http://dx.doi.org/10.1016/j.jenvman.2022.115295] [PMID: 35597211]
[11]
Lovato, K.; Fier, P.S.; Maloney, K.M. The application of modern reactions in large-scale synthesis. Nat. Rev. Chem., 2021, 5(8), 546-563.
[http://dx.doi.org/10.1038/s41570-021-00288-z] [PMID: 37117583]
[12]
Ciriminna, R.; Pagliaro, M. Industrial oxidations with organocatalyst TEMPO and its derivatives. Org. Process Res. Dev., 2010, 14(1), 245-251.
[http://dx.doi.org/10.1021/op900059x]
[13]
Caron, S.; Dugger, R.W.; Ruggeri, S.G.; Ragan, J.A.; Ripin, D.H.B. Large-scale oxidations in the pharmaceutical industry. Chem. Rev., 2006, 106(7), 2943-2989.
[http://dx.doi.org/10.1021/cr040679f] [PMID: 16836305]
[14]
Wang, P.; Lu, T.; Lu, M. A green and effective approach of two-step 2,2′,4,4′,6,6′-hexanitrostilbene preparation and its industrial scale study. Org. Process Res. Dev., 2016, 20(3), 668-674.
[http://dx.doi.org/10.1021/acs.oprd.5b00422]
[15]
Guan, M.; Wang, C.; Zhang, J.; Zhao, Y. Practical organic solvent-free Cu(OAc) 2 /DMAP/TEMPO-catalyzed aldehyde and imine formation from alcohols under air atmosphere. RSC Advances, 2014, 4(90), 48777-48782.
[http://dx.doi.org/10.1039/C4RA09851J]
[16]
Ochen, A.; Whitten, R.; Aylott, H.E.; Ruffell, K.; Williams, G.D.; Slater, F.; Roberts, A.; Evans, P.; Steves, J.E.; Sanganee, M.J. Development of a large-scale copper(I)/TEMPO-catalyzed aerobic alcohol oxidation for the synthesis of LSD1 inhibitor GSK2879552. Organometallics, 2019, 38(1), 176-184.
[http://dx.doi.org/10.1021/acs.organomet.8b00546]
[17]
Zhong, X.; Hoque, M.A.; Graaf, M.D.; Harper, K.C.; Wang, F.; Genders, J.D.; Stahl, S.S. Scalable flow electrochemical alcohol oxidation: Maintaining high stereochemical fidelity in the synthesis of levetiracetam. Org. Process Res. Dev., 2021, 25(12), 2601-2607.
[http://dx.doi.org/10.1021/acs.oprd.1c00036] [PMID: 35177894]
[18]
Chung, J.Y.L.; Kassim, A.M.; Simmons, B.; Davis, T.A.; Song, Z.J.; Limanto, J.; Dalby, S.M.; He, C.Q.; Calabria, R.; Wright, T.J.; Campeau, L.C. Kilogram-scale synthesis of 2′- C -Methyl- arabino -uridine from uridine via dynamic selective dipivaloylation. Org. Process Res. Dev., 2022, 26(3), 698-709.
[http://dx.doi.org/10.1021/acs.oprd.1c00175]
[19]
Cheng, A.D.; Zong, M.H.; Lu, G.H.; Li, N. Solvent‐promoted oxidation of aromatic alcohols/aldehydes to carboxylic acids by a laccase‐TEMPO system: Efficient access to 2,5‐furandicarboxylic acid and 5‐methyl‐2‐pyrazinecarboxylic acid. Adv. Sustain. Syst., 2021, 5(6), 2000297.
[http://dx.doi.org/10.1002/adsu.202000297]
[20]
Kashparova, V.P.; Klushin, V.A.; Leontyeva, D.V.; Smirnova, N.V.; Chernyshev, V.M.; Ananikov, V.P. Selective synthesis of 2,5-diformylfuran by sustainable 4-acetamido-TEMPO/halogen-mediated electrooxidation of 5-hydroxymethylfurfural. Chem. Asian J., 2016, 11(18), 2578-2585.
[http://dx.doi.org/10.1002/asia.201600801] [PMID: 27432749]
[21]
Kelly, C.B.; Mercadante, M.A.; Wiles, R.J.; Leadbeater, N.E. Oxidative esterification of aldehydes using a recyclable oxoammonium salt. Org. Lett., 2013, 15(9), 2222-2225.
[http://dx.doi.org/10.1021/ol400785d] [PMID: 23614873]
[22]
Ovian, J.M.; Kelly, C.B.; Pistritto, V.A.; Leadbeater, N.E. Accessing N -Acyl Azoles via oxoammonium salt-mediated oxidative amidation. Org. Lett., 2017, 19(6), 1286-1289.
[http://dx.doi.org/10.1021/acs.orglett.7b00060] [PMID: 28248527]
[23]
Kelly, C.B.; Lambert, K.M.; Mercadante, M.A.; Ovian, J.M.; Bailey, W.F.; Leadbeater, N.E. Access to nitriles from aldehydes mediated by an oxoammonium salt. Angew. Chem. Int. Ed., 2015, 54(14), 4241-4245.
[http://dx.doi.org/10.1002/anie.201412256] [PMID: 25665019]
[24]
Hamlin, T.A.; Kelly, C.B.; Ovian, J.M.; Wiles, R.J.; Tilley, L.J.; Leadbeater, N.E. Toward a unified mechanism for oxoammonium salt-mediated oxidation reactions: A Theoretical and experimental study using a hydride transfer model. J. Org. Chem., 2015, 80(16), 8150-8167.
[http://dx.doi.org/10.1021/acs.joc.5b01240] [PMID: 26167866]
[25]
Nandi, J.; Vaughan, M.Z.; Sandoval, A.L.; Paolillo, J.M.; Leadbeater, N.E. Oxidative amidation of amines in tandem with transamidation: A route to amides using visible-light energy. J. Org. Chem., 2020, 85(14), 9219-9229.
[http://dx.doi.org/10.1021/acs.joc.0c01222] [PMID: 32539393]
[26]
Nandi, J.; Leadbeater, N.E. Visible-light-driven catalytic oxidation of aldehydes and alcohols to nitriles by 4-acetamido-TEMPO using ammonium carbamate as a nitrogen source. Org. Biomol. Chem., 2019, 17(41), 9182-9186.
[http://dx.doi.org/10.1039/C9OB01918A] [PMID: 31595927]
[27]
Leadbeater, N.; Nandi, J.; Witko, M. Combining oxoammonium cation mediated oxidation and photoredox catalysis for the conversion of aldehydes into nitriles. Synlett, 2018, 29(16), 2185-2190.
[http://dx.doi.org/10.1055/s-0037-1610272]
[28]
Pistritto, V.A.; Paolillo, J.M.; Bisset, K.A.; Leadbeater, N.E. Oxidation of α-trifluoromethyl and non-fluorinated alcohols via the merger of oxoammonium cations and photoredox catalysis. Org. Biomol. Chem., 2018, 16(25), 4715-4719.
[http://dx.doi.org/10.1039/C8OB01063C] [PMID: 29900460]
[29]
León Sandoval, A.; Politano, F.; Witko, M.L.; Leadbeater, N.E. Preparation of hexafluoroisopropyl esters by oxidative esterification of aldehydes using sodium persulfate. Org. Biomol. Chem., 2021, 19(13), 2986-2990.
[http://dx.doi.org/10.1039/D1OB00251A] [PMID: 33734281]
[30]
León Sandoval, A.; Doherty, K.E.; Wadey, G.P.; Leadbeater, N.E. Solvent- and additive-free oxidative amidation of aldehydes using a recyclable oxoammonium salt. Org. Biomol. Chem., 2022, 20(11), 2249-2254.
[http://dx.doi.org/10.1039/D2OB00307D] [PMID: 35230379]
[31]
Politano, F.; León Sandoval, A.; Witko, M.L.; Doherty, K.E.; Schroeder, C.M.; Leadbeater, N.E. Nitroxide‐catalyzed oxidative amidation of aldehydes to yield N ‐acyl azoles using sodium persulfate. Eur. J. Org. Chem., 2022, 2022(4), e202101239.
[http://dx.doi.org/10.1002/ejoc.202101239]
[32]
León Sandoval, A.; Politano, F.; Witko, M.L.; Leadbeater, N.E. Preparation of nitriles from aldehydes using ammonium persulfate by means of a nitroxide-catalysed oxidative functionalisation reaction. Org. Biomol. Chem., 2022, 20(3), 667-671.
[http://dx.doi.org/10.1039/D1OB02187G] [PMID: 34989384]
[33]
Rosenau, C.P.; Jelier, B.J.; Gossert, A.D.; Togni, A. Exposing the origins of irreproducibility in fluorine NMR spectroscopy. Angew. Chem. Int. Ed., 2018, 57(30), 9528-9533.
[http://dx.doi.org/10.1002/anie.201802620] [PMID: 29663671]
[34]
Ferguson, T. E.G.; Reihill, J.A.; Martin, S.L.; Walker, B. Novel inhibitors and activity-based probes targeting trypsin-like serine proteases. Front Chem., 2022, 10, 782608.
[http://dx.doi.org/10.3389/fchem.2022.782608] [PMID: 35529696]
[35]
Otrubova, K.; Chatterjee, S.; Ghimire, S.; Cravatt, B.F.; Boger, D.L. N-Acyl pyrazoles: Effective and tunable inhibitors of serine hydrolases. Bioorg. Med. Chem., 2019, 27(8), 1693-1703.
[http://dx.doi.org/10.1016/j.bmc.2019.03.020] [PMID: 30879861]
[36]
Ma, J.; Ding, X.; Hu, Y.; Huang, Y.; Gong, L.; Meggers, E. Metal-templated chiral Brønsted base organocatalysis. Nat. Commun., 2014, 5(1), 4531.
[http://dx.doi.org/10.1038/ncomms5531] [PMID: 25072163]
[37]
Meninno, S.; Franco, F.; Benaglia, M.; Lattanzi, A. Pyrazoleamides in catalytic asymmetric reactions: Recent advances. Adv. Synth. Catal., 2021, 363(14), 3380-3410.
[http://dx.doi.org/10.1002/adsc.202100006]
[38]
Tokumasu, K.; Yazaki, R.; Ohshima, T. Direct catalytic chemoselective α-amination of acylpyrazoles: A concise route to unnatural α-amino acid derivatives. J. Am. Chem. Soc., 2016, 138(8), 2664-2669.
[http://dx.doi.org/10.1021/jacs.5b11773] [PMID: 26859788]
[39]
Vatèle, J.M. TEMPO-catalyzed oxidative amidation of alcohols via Hexa fluoroisopropyl esters. Synlett, 2015, 26(16), 2280-2284.
[http://dx.doi.org/10.1055/s-0034-1381056]
[40]
Kelly, C.L.; Leadbeater, N.E. The reaction of hexafluoroisopropyl esters with amines: A fast, easy, solvent-free approach to the synthesis of amides. Int. J. Adv. Res. Chem. Sci., 2016, 3, 27-34.
[41]
Fang, X.; Li, J.; Wang, C.J. Organocatalytic asymmetric sulfa-michael addition of thiols to α,β-unsaturated hexafluoroisopropyl esters: Expeditious access to (R)-thiazesim. Org. Lett., 2013, 15(13), 3448-3451.
[http://dx.doi.org/10.1021/ol4015305] [PMID: 23772965]
[42]
Kano, T.; Shirozu, F.; Akakura, M.; Maruoka, K. Powerful amino diol catalyst for effecting the direct asymmetric conjugate addition of aldehydes to acrylates. J. Am. Chem. Soc., 2012, 134(38), 16068-16073.
[http://dx.doi.org/10.1021/ja307668b] [PMID: 22950545]
[43]
Inanaga, K.; Takasu, K.; Ihara, M. Rapid assembly of polycyclic substances by a multicomponent cascade (4 + 2)-(2 + 2) cycloadditions: Total synthesis of the proposed structure of paesslerin A. J. Am. Chem. Soc., 2004, 126(5), 1352-1353.
[http://dx.doi.org/10.1021/ja039808k] [PMID: 14759188]
[44]
Iwabuchi, Y.; Nakatani, M.; Yokoyama, N.; Hatakeyama, S. Chiral amine-catalyzed asymmetric baylis − hillman reaction: A reliable route to highly enantiomerically enriched (α-Methylene-β-hydroxy)esters. J. Am. Chem. Soc., 1999, 121(43), 10219-10220.
[http://dx.doi.org/10.1021/ja992655+]
[45]
Smart, B.E. Fluorine substituent effects (on bioactivity). J. Fluor. Chem., 2001, 109(1), 3-11.
[http://dx.doi.org/10.1016/S0022-1139(01)00375-X]
[46]
Takahashi, S.; Cohen, L.A. Facilitation of sodium borohyride reduction of esters of phenols and of acidic alcohols. J. Org. Chem., 1970, 35(5), 1505-1508.
[http://dx.doi.org/10.1021/jo00830a054]
[47]
Kim, M.J.; Mun, J.; Kim, J. Oxoammonium salt-mediated oxidative nitriles synthesis from aldehydes with ammonium acetate. Tetrahedron Lett., 2017, 58(50), 4695-4698.
[http://dx.doi.org/10.1016/j.tetlet.2017.11.002]
[48]
Fang, C.; Li, M.; Hu, X.; Mo, W.; Hu, B.; Sun, N.; Jin, L.; Shen, Z. A mild TEMPO-catalyzed aerobic oxidative conversion of aldehydes into nitriles. Adv. Synth. Catal., 2016, 358(7), 1157-1163.
[http://dx.doi.org/10.1002/adsc.201501130]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy