Research Article

IRF5调控的CXCL13/CXCR5信号轴在cci诱导的大鼠神经性疼痛中的作用机制

卷 24, 期 7, 2024

发表于: 16 October, 2023

页: [940 - 949] 页: 10

弟呕挨: 10.2174/1566524023666230825120836

价格: $65

摘要

背景:神经性疼痛是慢性的,影响患者的生活。研究表明,IRF5和CXCL13/CXCR5参与神经性疼痛;然而,它们的相互作用是未知的。目的:建立慢性压迫性损伤大鼠神经性疼痛模型。研究IRF5重组慢病毒载体和CXCL13中和抗体在神经性疼痛中的作用机制。因此,疾病治疗的新策略可以得到发展。 方法:CCI大鼠鞘内注射重组慢病毒质粒LV-IRF5(过表达)、LV-SH-IRF5(沉默)和CXCL13中和抗体。测量机械戒断阈值(MWT)和热戒断潜伏期(TWL)。通过酶联免疫吸附试验(ELISA)记录肿瘤坏死因子(TNF)- α、白细胞介素(IL)-1β和IL-6水平。用苏木精-伊红(HE)染色脊髓。采用染色质免疫沉淀(ChIP)和双荧光素酶报告基因法分析IRF5与CXCL13的结合。通过实时定量聚合酶链反应和Western blot检测IRF5、神经元核(NeuN)、CXCL13和CXCR5的表达。 结果:CCI组MWT、TWL值均低于Sham组。CXCL13、CXCR5、IRF5在CCI大鼠中的表达随造模时间的延长而逐渐升高。IRF5沉默抑制CCI大鼠NeuN的表达和腰椎增大,促进MWT和TWL。此外,IRF5沉默抑制了CXCR5和CXCL13基因的表达,下调了炎症因子的表达水平。IRF5直接特异性结合内源性CXCL13启动子,对其进行调控。IRF5过表达加重了cci诱导的大鼠神经性疼痛的疾病表型。CXCL13中和抗体可逆转IRF5过表达效应。 结论:IRF5沉默通过下调疼痛阈值、炎症细胞因子水平和CXCL13/CXCR5信号通路,减轻了CCI大鼠的神经性疼痛。IRF5过表达加重了cci所致大鼠神经性疼痛的疾病参数;然而,通过中和针对CXCL13的抗体,它们被逆转。

关键词: IRF5, CCI, CXCL13, CXCR5,神经性疼痛,慢性压迫性损伤。

« Previous
[1]
Costigan M, Scholz J, Woolf CJ. Neuropathic pain: A maladaptive response of the nervous system to damage. Annu Rev Neurosci 2009; 32(1): 1-32.
[http://dx.doi.org/10.1146/annurev.neuro.051508.135531] [PMID: 19400724]
[2]
Zhang Q, Cao DL, Zhang ZJ, Jiang BC, Gao YJ. Chemokine CXCL13 mediates orofacial neuropathic pain via CXCR5/ERK pathway in the trigeminal ganglion of mice. J Neuroinflammation 2016; 13(1): 183.
[http://dx.doi.org/10.1186/s12974-016-0652-1] [PMID: 27401148]
[3]
Hussain M, Liu J, Wang GZ, Zhou GB. CXCL13 signaling in the tumor microenvironment. Adv Exp Med Biol 2021; 1302: 71-90.
[http://dx.doi.org/10.1007/978-3-030-62658-7_6] [PMID: 34286442]
[4]
Zhang ZJ, Jiang BC, Gao YJ. Chemokines in neuron–glial cell interaction and pathogenesis of neuropathic pain. Cell Mol Life Sci 2017; 74(18): 3275-91.
[http://dx.doi.org/10.1007/s00018-017-2513-1] [PMID: 28389721]
[5]
Jiang BC, Cao DL, Zhang X, et al. CXCL13 drives spinal astrocyte activation and neuropathic pain via CXCR5. J Clin Invest 2016; 126(2): 745-61.
[http://dx.doi.org/10.1172/JCI81950] [PMID: 26752644]
[6]
Zhang P, Sun H, Ji Z. Downregulating lncRNA PVT1 relieves astrocyte overactivation induced neuropathic pain through targeting miR-186-5p/CXCL13/CXCR5 axis. Neurochem Res 2021; 46(6): 1457-69.
[http://dx.doi.org/10.1007/s11064-021-03287-0] [PMID: 33742328]
[7]
Song S, De S, Nelson V, et al. Inhibition of IRF5 hyperactivation protects from lupus onset and severity. J Clin Invest 2020; 130(12): 6700-17.
[http://dx.doi.org/10.1172/JCI120288] [PMID: 32897883]
[8]
Tsuda M. [Mechanisms underlying the pathogenesis of neuropathic pain revealing by the role of glial cells]. Nihon Shinkei Seishin Yakurigaku Zasshi 2015; 35(1): 1-4.
[PMID: 25816633]
[9]
Masuda T, Iwamoto S, Yoshinaga R, et al. Transcription factor IRF5 drives P2X4R+-reactive microglia gating neuropathic pain. Nat Commun 2014; 5(1): 3771.
[http://dx.doi.org/10.1038/ncomms4771] [PMID: 24818655]
[10]
Al Mamun A, Chauhan A, Qi S, et al. Microglial IRF5-IRF4 regulatory axis regulates neuroinflammation after cerebral ischemia and impacts stroke outcomes. Proc Natl Acad Sci 2020; 117(3): 1742-52.
[http://dx.doi.org/10.1073/pnas.1914742117] [PMID: 31892541]
[11]
Corbin AL, Gomez-Vazquez M, Berthold DL, et al. IRF5 guides monocytes toward an inflammatory CD11c + macrophage phenotype and promotes intestinal inflammation. Sci Immunol 2020; 5(47): eaax6085.
[http://dx.doi.org/10.1126/sciimmunol.aax6085] [PMID: 32444476]
[12]
Sun J, Guo W, Du X. Buprenorphine differentially affects M1- and M2-polarized macrophages from human umbilical cord blood. Eur Cytokine Netw 2017; 28(2): 85-92.
[http://dx.doi.org/10.1684/ecn.2017.0392] [PMID: 28840839]
[13]
Kong E, Li Y, Ma P, et al. Lyn‐mediated glycolysis enhancement of microglia contributes to neuropathic pain through facilitating IRF5 nuclear translocation in spinal dorsal horn. J Cell Mol Med 2023; 27(12): 1664-81.
[http://dx.doi.org/10.1111/jcmm.17759] [PMID: 37132040]
[14]
Pimenta EM, De S, Weiss R, et al. IRF5 is a novel regulator of CXCL13 expression in breast cancer that regulates CXCR5 + B‐ and T‐cell trafficking to tumor-conditioned media. Immunol Cell Biol 2015; 93(5): 486-99.
[http://dx.doi.org/10.1038/icb.2014.110] [PMID: 25533286]
[15]
Miao J, Zhou X, Ji T, Chen G. NF-κB p65-dependent transcriptional regulation of histone deacetylase 2 contributes to the chronic constriction injury-induced neuropathic pain via the microRNA-183/TXNIP/NLRP3 axis. J Neuroinflammation 2020; 17(1): 225.
[http://dx.doi.org/10.1186/s12974-020-01901-6] [PMID: 32723328]
[16]
Li J, Zhao PP, Hao T, et al. Urotensin II inhibitor eases neuropathic pain by suppressing the JNK/NF-κB pathway. J Endocrinol 2017; 232(2): 165-74.
[http://dx.doi.org/10.1530/JOE-16-0255] [PMID: 27895138]
[17]
Jia Q, Dong W, Zhang L, Yang X. Activating Sirt1 by resveratrol suppresses Nav1.7 expression in DRG through miR-182 and alleviates neuropathic pain in rats. Channels 2020; 14(1): 69-78.
[http://dx.doi.org/10.1080/19336950.2020.1732003] [PMID: 32089065]
[18]
Rosenberger DC, Blechschmidt V, Timmerman H, Wolff A, Treede RD. Challenges of neuropathic pain: Focus on diabetic neuropathy. J Neural Transm 2020; 127(4): 589-624.
[http://dx.doi.org/10.1007/s00702-020-02145-7] [PMID: 32036431]
[19]
Challa SR. Surgical animal models of neuropathic pain: Pros and Cons. Int J Neurosci 2015; 125(3): 170-4.
[http://dx.doi.org/10.3109/00207454.2014.922559] [PMID: 24831263]
[20]
Wu J, Wang C, Ding H. LncRNA MALAT1 promotes neuropathic pain progression through the miR 154 5p/AQP9 axis in CCI rat models. Mol Med Rep 2020; 21(1): 291-303.
[PMID: 31746418]
[21]
Li J, Zhu Y, Ma Z, Liu Y, Sun Z, Wu Y. miR-140 ameliorates neuropathic pain in CCI rats by targeting S1PR1. J Recept Signal Transduct Res 2021; 41(4): 401-7.
[http://dx.doi.org/10.1080/10799893.2020.1818091] [PMID: 32924718]
[22]
Wu XB, He LN, Jiang BC, Wang X, Lu Y, Gao YJ. Increased CXCL13 and CXCR5 in anterior cingulate cortex contributes to neuropathic pain-related conditioned place aversion. Neurosci Bull 2019; 35(4): 613-23.
[http://dx.doi.org/10.1007/s12264-019-00377-6] [PMID: 31041693]
[23]
Piotrowska A, Rojewska E, Pawlik K, et al. Pharmacological blockade of spinal CXCL3/CXCR2 Signaling by NVP CXCR2 20, a selective CXCR2 antagonist, reduces neuropathic pain following peripheral nerve injury. Front Immunol 2019; 10: 2198.
[http://dx.doi.org/10.3389/fimmu.2019.02198] [PMID: 31616413]
[24]
Zhao J, Chen S, Yang C, et al. Activation of CXCL13/CXCR5 axis aggravates experimental autoimmune cystitis and interstitial cystitis/bladder pain syndrome. Biochem Pharmacol 2022; 200: 115047.
[http://dx.doi.org/10.1016/j.bcp.2022.115047] [PMID: 35452631]
[25]
Balne PK, Gupta S, Landon KM, et al. Characterization of C-X-C chemokine receptor type 5 in the cornea and role in the inflammatory response after corneal injury. Exp Eye Res 2023; 226: 109312.
[http://dx.doi.org/10.1016/j.exer.2022.109312] [PMID: 36400287]
[26]
Shen Y, Jing L, Zhang Y, et al. CXCR5 knockdown attenuates hippocampal neurogenesis deficits and cognitive impairment in a mouse model of sepsis-associated encephalopathy. Neuroscience 2020; 433: 212-20.
[http://dx.doi.org/10.1016/j.neuroscience.2020.03.013] [PMID: 32194226]
[27]
Terashima T, Ogawa N, Nakae Y, et al. Gene therapy for neuropathic pain through siRNA-IRF5 gene delivery with homing peptides to microglia. Mol Ther Nucleic Acids 2018; 11: 203-15.
[http://dx.doi.org/10.1016/j.omtn.2018.02.007] [PMID: 29858055]
[28]
Zhu C, Tian M, Liu N, et al. Analgesic effect of nobiletin against neuropathic pain induced by the chronic constriction injury of the sciatic nerve in mice. Phytother Res 2022; 36(9): 3644-61.
[http://dx.doi.org/10.1002/ptr.7532] [PMID: 35976195]
[29]
Yang C, Bachu M, Du Y, et al. CXCL4 synergizes with TLR8 for TBK1-IRF5 activation, epigenomic remodeling and inflammatory response in human monocytes. Nat Commun 2022; 13(1): 3426.
[http://dx.doi.org/10.1038/s41467-022-31132-7] [PMID: 35701499]
[30]
Lindén M, Khademi M, Lima Bomfim I, et al. Multiple sclerosis risk genotypes correlate with an elevated cerebrospinal fluid level of the suggested prognostic marker CXCL13. Mult Scler 2013; 19(7): 863-70.
[http://dx.doi.org/10.1177/1352458512463482] [PMID: 23175382]
[31]
Feng L, Yang L, Shi X, Wang L, Wang Y. Expression and role of cxcl13 and mir-186-5p in the trigeminal ganglion of a rat model of trigeminal neuralgia. Turk Neurosurg 2022.
[http://dx.doi.org/10.5137/1019-5149.JTN.36642-21.2] [PMID: 36066055]
[32]
Wu CC, Chang CY, Tzeng CY, et al. Preventive intrathecal injection of bupivacaine alleviated microglia activation and neuropathic pain in a rat model of chronic constriction injury. Int J Mol Sci 2022; 23(13): 7197.
[http://dx.doi.org/10.3390/ijms23137197] [PMID: 35806200]
[33]
Inoue K. Purinergic signaling in microglia in the pathogenesis of neuropathic pain. Proc Jpn Acad, Ser B, Phys Biol Sci 2017; 93(4): 174-82.
[http://dx.doi.org/10.2183/pjab.93.011] [PMID: 28413195]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy