Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Nano-platform Strategies of Herbal Components for the Management of Rheumatoid Arthritis: A Review on the Battle for Next-Generation Formulations

Author(s): Jyoti Prabha, Mohit Kumar, Devesh Kumar, Shruti Chopra and Amit Bhatia*

Volume 21, Issue 8, 2024

Published on: 31 August, 2023

Page: [1082 - 1105] Pages: 24

DOI: 10.2174/1567201821666230825102748

Price: $65

Abstract

Introduction: Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that initially affects small joints and then spreads to the bigger joints. It also affects other organs of the body such as lungs, eyes, kidneys, heart, and skin. In RA, there is destruction of cartilage and joints, and ligaments and tendons become brittle. Damage to the joints leads to abnormalities and bone degradation, which may be quite painful for the patient.

Method: The nano-carriers such as liposomes, phytosomes, nanoparticles, microcapsules, and niosomes are developed to deliver the encapsulated phytoconstituents to targeted sites for the better management of RA.

Results: The phytoconstituents loaded nano-carriers have been used in order to increase bioavailability, stability and reduce the dose of an active compound. In one study, the curcumin-loaded phytosomes increase the bioavailability of curcumin and also provides relief from RA symptoms. The drug-loaded nano-carriers are the better option for the management of RA.

Conclusion: In conclusion, there are many anti-arthritic herbal and synthetic medicine available in the market that are currently used in the treatment of RA. However, chronic use of these medications may result in a variety of side effects. Because therapy for RA is frequently necessary for the rest of ones life. The use of natural products may be a better option for RA management. These phytoconstituents, however, have several disadvantages, including limited bioavailability, low stability, and the need for a greater dosage. These problems can be rectified by using nano-technology.

Keywords: Rheumatoid arthritis, nanoparticles, phytoconstituents, liposomes, phytosomes, epidemiology.

Graphical Abstract
[1]
Kumar, M.; Dogra, R.; Mandal, U.K. Novel Formulation Approaches Used for the Management of Osteoarthritis: A Recent Review. Curr. Drug Deliv., 2022.
[PMID: 36056857]
[2]
Srirangan, S.; Choy, E.H. The role of Interleukin 6 in the pathophysiology of rheumatoid arthritis. Ther. Adv. Musculoskelet. Dis., 2010, 2(5), 247-256.
[http://dx.doi.org/10.1177/1759720X10378372] [PMID: 22870451]
[3]
Jain, A.; Somani, V. Study of Some Herbal Formulations Available for Rheumatoid Arthritis Treatment in Indian Market. J. Pharm. Res. Int., 2022, 34, 27-33.
[4]
Matschke, V.; Murphy, P.; Lemmey, A.B.; Maddison, P.; Thom, J.M. Skeletal muscle properties in rheumatoid arthritis patients. Med. Sci. Sports Exerc., 2010, 42(12), 2149-2155.
[http://dx.doi.org/10.1249/MSS.0b013e3181e304c3] [PMID: 20404765]
[5]
Pacifici, M.; Koyama, E.; Iwamoto, M. Mechanisms of synovial joint and articular cartilage formation: Recent advances, but many lingering mysteries. Birth Defects Res. C Embryo Today, 2005, 75(3), 237-248.
[http://dx.doi.org/10.1002/bdrc.20050] [PMID: 16187328]
[6]
Hui, A.Y.; McCarty, W.J.; Masuda, K.; Firestein, G.S.; Sah, R.L. A systems biology approach to synovial joint lubrication in health, injury, and disease. Wiley Interdiscip. Rev. Syst. Biol. Med., 2012, 4(1), 15-37.
[http://dx.doi.org/10.1002/wsbm.157] [PMID: 21826801]
[7]
Derksen, V.; Huizinga, T.W.J.; Van Der Woude, D. The role of autoantibodies in the pathophysiology of rheumatoid arthritis. Seminars in immunopathology, 2017, 39(4), 437-446.
[http://dx.doi.org/10.1007/s00281-017-0627-z]
[8]
Birch, J.T., Jr; Bhattacharya, S. Emerging trends in diagnosis and treatment of rheumatoid arthritis. Prim. Care, 2010, 37(4), 779-792. [vii.]
[http://dx.doi.org/10.1016/j.pop.2010.07.001] [PMID: 21050958]
[9]
Chopra, A.; Abdel-Nasser, A. Epidemiology of rheumatic musculoskeletal disorders in the developing world. Best Pract. Res. Clin. Rheumatol., 2008, 22(4), 583-604.
[http://dx.doi.org/10.1016/j.berh.2008.07.001] [PMID: 18783739]
[10]
Köhler, B.M.; Günther, J.; Kaudewitz, D.; Lorenz, H-M. Current therapeutic options in the treatment of rheumatoid arthritis. J. Clin. Med., 2019, 8(7), 938.
[http://dx.doi.org/10.3390/jcm8070938] [PMID: 31261785]
[11]
Batko, B.; Korkosz, M.; Juś, A.; Wiland, P. Management of rheumatoid arthritis in Poland - where daily practice might not always meet evidence-based guidelines. Arch. Med. Sci., 2021, 17(5), 1286-1293.
[http://dx.doi.org/10.5114/aoms.2019.84092] [PMID: 34522257]
[12]
Paschke, S.; Weidner, A.F.; Paust, T.; Marti, O.; Beil, M.; Ben-Chetrit, E. Technical Advance: Inhibition of neutrophil chemotaxis by colchicine is modulated through viscoelastic properties of subcellular compartments. J. Leukoc. Biol., 2013, 94(5), 1091-1096.
[http://dx.doi.org/10.1189/jlb.1012510] [PMID: 23901122]
[13]
Gabriel, S.E.; Crowson, C.S.; Kremers, H.M.; Doran, M.F.; Turesson, C.; O’Fallon, W.M.; Matteson, E.L. Survival in rheumatoid arthritis: A population-based analysis of trends over 40 years. Arthritis Rheum., 2003, 48(1), 54-58.
[http://dx.doi.org/10.1002/art.10705] [PMID: 12528103]
[14]
Crowson, C.S.; Matteson, E.L.; Myasoedova, E.; Michet, C.J.; Ernste, F.C.; Warrington, K.J.; Davis, J.M., III; Hunder, G.G.; Therneau, T.M.; Gabriel, S.E. The lifetime risk of adult-onset rheumatoid arthritis and other inflammatory autoimmune rheumatic diseases. Arthritis Rheum., 2011, 63(3), 633-639.
[http://dx.doi.org/10.1002/art.30155] [PMID: 21360492]
[15]
Souto, A.L.; Tavares, J.F.; da Silva, M.S.; Diniz, M.F.F.M.; de Athayde-Filho, P.F.; Barbosa Filho, J.M. Anti-inflammatory activity of alkaloids: An update from 2000 to 2010. Molecules, 2011, 16(10), 8515-8534.
[http://dx.doi.org/10.3390/molecules16108515] [PMID: 21989312]
[16]
Marks, W.H. Tripterygium wilfordii Hook F. versus Sulfasalazine in the treatment of rheumatoid arthritis: A well-designed clinical trial of a botanical demonstrating effectiveness. Fitoterapia, 2011, 82(1), 85-87.
[http://dx.doi.org/10.1016/j.fitote.2010.11.024] [PMID: 21126560]
[17]
Sayah, A.; English, J.C. III Rheumatoid arthritis: A review of the cutaneous manifestations. J. Am. Acad. Dermatol., 2005, 53(2), 191-209.
[http://dx.doi.org/10.1016/j.jaad.2004.07.023] [PMID: 16021111]
[18]
Deane, K.D.; Holers, V.M. The natural history of rheumatoid arthritis. Clin. Ther., 2019, 41(7), 1256-1269.
[http://dx.doi.org/10.1016/j.clinthera.2019.04.028] [PMID: 31196652]
[19]
Moelants, E.A.V.; Mortier, A.; Van Damme, J.; Proost, P. Regulation of TNF‐α with a focus on rheumatoid arthritis. Immunol. Cell Biol., 2013, 91(6), 393-401.
[http://dx.doi.org/10.1038/icb.2013.15] [PMID: 23628802]
[20]
Ghisletti, S.; Meda, C.; Maggi, A.; Vegeto, E. 17β-estradiol inhibits inflammatory gene expression by controlling NF-kappaB intracellular localization. Mol. Cell. Biol., 2005, 25(8), 2957-2968.
[http://dx.doi.org/10.1128/MCB.25.8.2957-2968.2005] [PMID: 15798185]
[21]
Iqbal, J.; Zaidi, M. Understanding estrogen action during menopause. Endocrinology, 2009, 150(8), 3443-3445.
[http://dx.doi.org/10.1210/en.2009-0449] [PMID: 19622779]
[22]
Rubtsov, A.V.; Rubtsova, K.; Kappler, J.W.; Marrack, P. Genetic and hormonal factors in female-biased autoimmunity. Autoimmun. Rev., 2010, 9(7), 494-498.
[http://dx.doi.org/10.1016/j.autrev.2010.02.008] [PMID: 20144912]
[23]
Liu, Y.; Zhang, Z.; Jin, Q.; Liu, Y.; Kang, Z.; Huo, Y.; He, Z.; Feng, X.; Yin, J.; Wu, X.; Wang, H.; Xu, H. Hyperprolactinemia is associated with a high prevalence of serum autoantibodies, high levels of inflammatory cytokines and an abnormal distribution of peripheral B-cell subsets. Endocrine, 2019, 64(3), 648-656.
[http://dx.doi.org/10.1007/s12020-019-01896-y] [PMID: 30887277]
[24]
Firestein, G.S.; McInnes, I.B. Immunopathogenesis of rheumatoid arthritis. Immunity, 2017, 46(2), 183-196.
[http://dx.doi.org/10.1016/j.immuni.2017.02.006] [PMID: 28228278]
[25]
Pradhan, V.D.; Dalvi, H.; Parsannavar, D.; Rajadhyaksha, A.; Patwardhan, M.; Ghosh, K. Study of PTPN22 1858C/T polymorphism in rheumatoid arthritis patients from Western India. Indian J. Rheumatol., 2012, 7(3), 130-134.
[http://dx.doi.org/10.1016/j.injr.2012.06.003]
[26]
Li, S.; Yu, Y.; Yue, Y.; Zhang, Z.; Su, K. Microbial infection and rheumatoid arthritis. J. Clin. Cell. Immunol., 2013, 4(6), 174.
[PMID: 25133066]
[27]
Mahabadi, M.; Faghihiloo, E.; Alishiri, G.H.; Ataee, M.H.; Ataee, R.A. Detection of Epstein-Barr virus in synovial fluid of rheumatoid arthritis patients. Electron. Physician, 2016, 8(3), 2181-2186.
[http://dx.doi.org/10.19082/2181] [PMID: 27123228]
[28]
Scher, J.U.; Littman, D.R.; Abramson, S.B. Microbiome in inflammatory arthritis and human rheumatic diseases. Arthritis Rheumatol., 2016, 68(1), 35-45.
[http://dx.doi.org/10.1002/art.39259] [PMID: 26331579]
[29]
Lahiri, M.; Morgan, C.; Symmons, D.P.M.; Bruce, I.N. Modifiable risk factors for RA: Prevention, better than cure? Rheumatology, 2012, 51(3), 499-512.
[http://dx.doi.org/10.1093/rheumatology/ker299] [PMID: 22120459]
[30]
Sparks, J.A.; Karlson, E.W. The roles of cigarette smoking and the lung in the transitions between phases of preclinical rheumatoid arthritis. Curr. Rheumatol. Rep., 2016, 18(3), 15.
[http://dx.doi.org/10.1007/s11926-016-0563-2] [PMID: 26951253]
[31]
Al-Rubaye, A.F.; Kadhim, M.J.; Hameed, I.H. Rheumatoid arthritis: History, stages, epidemiology, pathogenesis, diagnosis and treatment. Int J Toxicol Pharmacol Res, 2017, 9(2)
[http://dx.doi.org/10.25258/ijtpr.v9i02.9052]
[32]
Scutellari, P.N.; Orzincolo, C. Rheumatoid arthritis. Sequences. Eur. J. Radiol., 1998, 27(Suppl. 1), S31-S38.
[http://dx.doi.org/10.1016/S0720-048X(98)00040-0] [PMID: 9652499]
[33]
Balbir-Gurman, A.; Fuhrman, B.; Braun-Moscovici, Y.; Markovits, D.; Aviram, M. Consumption of pomegranate decreases serum oxidative stress and reduces disease activity in patients with active rheumatoid arthritis: A pilot study. Isr. Med. Assoc. J., 2011, 13(8), 474-479.
[PMID: 21910371]
[34]
Adea, C. Severity of illness measures of rheumatoid arthritis using thermal infrared imaging; Carleton University, 2009.
[http://dx.doi.org/10.22215/etd/2009-09121]
[35]
Tanaka, S.; Nakamura, K.; Takahasi, N.; Suda, T. Role of RANKL in physiological and pathological bone resorption and therapeutics targeting the RANKL-RANK signaling system. Immunol. Rev., 2005, 208(1), 30-49.
[http://dx.doi.org/10.1111/j.0105-2896.2005.00327.x] [PMID: 16313339]
[36]
Murunikkara, V.; Rasool, M. Trikatu, an herbal compound as immunomodulatory and anti-inflammatory agent in the treatment of rheumatoid arthritis - An experimental study. Cell. Immunol., 2014, 287(1), 62-68.
[http://dx.doi.org/10.1016/j.cellimm.2013.12.002] [PMID: 24394943]
[37]
Handa, R.; Rao, U.R.K.; Lewis, J.F.M.; Rambhad, G.; Shiff, S.; Ghia, C.J. Literature review of rheumatoid arthritis in India. Int. J. Rheum. Dis., 2016, 19(5), 440-451.
[http://dx.doi.org/10.1111/1756-185X.12621] [PMID: 26171649]
[38]
Kim, Y.; Oh, H.C.; Park, J.W.; Kim, I.S.; Kim, J.Y.; Kim, K.C.; Chae, D.S.; Jo, W.L.; Song, J.H. Diagnosis and treatment of inflammatory joint disease. Hip Pelvis, 2017, 29(4), 211-222.
[http://dx.doi.org/10.5371/hp.2017.29.4.211] [PMID: 29250494]
[39]
Rindfleisch, J.A.; Muller, D. Diagnosis and management of rheumatoid arthritis. Am. Fam. Physician, 2005, 72(6), 1037-1047.
[PMID: 16190501]
[40]
Fan, P.T.; Leong, K.H. The use of biological agents in the treatment of rheumatoid arthritis. Ann. Acad. Med. Singap., 2007, 36(2), 128-134.
[http://dx.doi.org/10.47102/annals-acadmedsg.V36N2p128] [PMID: 17364080]
[41]
Ruschpler, P.; Stiehl, P. Shift in Th1 (IL-2 and IFN-gamma) and Th2 (IL-10 and IL-4) cytokine mRNA balance within two new histological main-types of rheumatoid-arthritis (RA). Cell. Mol. Biol., 2002, 48(3), 285-293.
[PMID: 12030433]
[42]
Eastgate, J.; Wood, N.C.; Di Giovine, F.S.; Symons, J.A.; Grinlinton, F.M.; Duff, G. Correlation of plasma interleukin 1 levels with disease activity in rheumatoid arthritis. Lancet, 1988, 332(8613), 706-709.
[http://dx.doi.org/10.1016/S0140-6736(88)90185-7] [PMID: 2901567]
[43]
Khogta, S.; Patel, J.; Barve, K.; Londhe, V. Herbal nano-formulations for topical delivery. J. Herb. Med., 2020, 20, 100300.
[http://dx.doi.org/10.1016/j.hermed.2019.100300]
[44]
Yarnell, E. Herbs for rheumatoid arthritis. Altern. Complement. Ther., 2017, 23(4), 149-156.
[http://dx.doi.org/10.1089/act.2017.29123.eya]
[45]
Subramoniam, A.; Madhavachandran, V.; Gangaprasad, A. Medicinal plants in the treatment of arthritis. Ann. Phytomed., 2013, 2(1), 3-36.
[46]
Kaloni, D.; Tiwari, A.; Biswas, S. Aloe Vera as an Antagonist for TNF-Alpha: In-Silico Study. Pharmacology, 2019, 4(10)
[47]
Kumbhar, PS; Patil, AB; Khopade, PS; Patil, AR; Disouza, JI Aloe vera phytochemical constituents and medicinal properties., 2015.
[48]
Yagi, A.; Pal Yu, B. Prophylactic aloe components on autoimmune diseases: Barbaloin, aloe-emodin, emodin, and fermented butyrate. J. Gastroenterol. Hepatol. Res., 2018, 7(2), 2535-2541.
[http://dx.doi.org/10.17554/j.issn.2224-3992.2018.07.762]
[49]
Bałan, B.J.; Niemcewicz, M.; Kocik, J.; Jung, L.; Skopińska-Różewska, E.; Skopiński, P. Experimental immunology Oral administration of Aloe vera gel, anti-microbial and anti-inflammatory herbal remedy, stimulates cell-mediated immunity and antibody production in a mouse model. Cent. Eur. J. Immunol., 2014, 2(2), 125-130.
[http://dx.doi.org/10.5114/ceji.2014.43711] [PMID: 26155113]
[50]
Tillman, H.; Gassmann, J.; Stensgard, S.; Nguyen, A.; Tieu, N.; Melbardis, M.; Gharibyar, H. Pharmacist’s evaluation of natural ingredients in topical products for Rheumatoid Arthritis. Pharmacol. Pharm., 2022, 13(8), 273-284.
[http://dx.doi.org/10.4236/pp.2022.138021]
[51]
Paul, S.; Modak, D.; Chattaraj, S.; Nandi, D.; Sarkar, A.; Roy, J.; Chaudhuri, T.K.; Bhattacharjee, S. Aloe vera gel homogenate shows anti-inflammatory activity through lysosomal membrane stabilization and downregulation of TNF-α and Cox-2 gene expressions in inflammatory arthritic animals. Fut J Pharmaceut Sci, 2021, 7(1), 12.
[http://dx.doi.org/10.1186/s43094-020-00163-6]
[52]
Gaspar, A.; Craciunescu, O.; Trif, M.; Moisei, M.; Moldovan, L. Antioxidant and anti-inflammatory properties of active compounds from Arnica montana L. Rom. Biotechnol. Lett., 2014, 19(3), 9353-9365.
[53]
Lussignoli, S.; Bertani, S.; Metelmann, H.; Bellavite, P.; Conforti, A. Effect of Traumeel S®, a homeopathic formulation, on blood-induced inflammation in rats. Complement. Ther. Med., 1999, 7(4), 225-230.
[http://dx.doi.org/10.1016/S0965-2299(99)80006-5] [PMID: 10709306]
[54]
Iannitti, T.; Morales-Medina, J.C.; Bellavite, P.; Rottigni, V.; Palmieri, B. Effectiveness and safety of Arnica montana in post-surgical setting, pain and inflammation. Am. J. Ther., 2016, 23(1), e184-e197.
[http://dx.doi.org/10.1097/MJT.0000000000000036] [PMID: 25171757]
[55]
Bharti, V.K.; Malik, J.K.; Gupta, R.C. Ashwagandha: Multiple health benefits.Nutraceuticals; Elsevier: Amsterdam, 2016, pp. 717-733.
[http://dx.doi.org/10.1016/B978-0-12-802147-7.00052-8]
[56]
Khan, M.A.; Subramaneyaan, M.; Arora, V.K.; Banerjee, B.D.; Ahmed, R.S. Effect of Withania somnifera (Ashwagandha) root extract on amelioration of oxidative stress and autoantibodies production in collagen-induced arthritic rats. J. Complement. Integr. Med., 2015, 12(2), 117-125.
[http://dx.doi.org/10.1515/jcim-2014-0075] [PMID: 25803089]
[57]
Singh, G.; Sharma, P.K.; Dudhe, R.; Singh, S. Biological activities of Withania somnifera. Ann. Biol. Res., 2010, 1(3), 56-63.
[58]
Raina, H.; Soni, G.; Jauhari, N.; Sharma, N.; Bharadvaja, N. Phytochemical importance of medicinal plants as potential sources of anticancer agents. Turk. J. Bot., 2014, 38(6), 1027-1035.
[http://dx.doi.org/10.3906/bot-1405-93]
[59]
Rentea, R. Therapeutic Advantages of highly standardized Boswellia Extracts. 2008. Available From: https://www.semanticscholar.org/paper/Therapeutic-Advantages-of-highly-standardized-Rentea/36246452c043d5fb02e07741b0708fb3358ba487
[60]
Akhtar, M.S.; Mir, S.R.; Said, S.A.; Hossain, M.A.; Ali, M. Extraction, isolation and structural characterization of two triterpenoid glycosides from the fruits of Ficus bengalensis. Carbohydr. Res., 2021, 510, 108444.
[http://dx.doi.org/10.1016/j.carres.2021.108444] [PMID: 34607126]
[61]
Manocha, N.; Chandra, S.K.; Sharma, V.; Sangameswaran, B.; Saluja, M. Anti-rheumatic and antioxidant activity of extract of stem bark of Ficus bengalensis. Res J Chem Sci, 2011, 1(2), 2-8.
[62]
Yu, F.; Yu, F.; Li, R.; Wang, R. Inhibitory effects of the Gentiana macrophylla (Gentianaceae) extract on rheumatoid arthritis of rats. J. Ethnopharmacol., 2004, 95(1), 77-81.
[http://dx.doi.org/10.1016/j.jep.2004.06.025] [PMID: 15374610]
[63]
Gaby, A.R. Alternative treatments for rheumatoid arthritis. Altern. Med. Rev., 1999, 4(6), 392-402.
[PMID: 10608912]
[64]
Sharma, J.N.; Srivastava, K.C.; Gan, E.K. Suppressive effects of eugenol and ginger oil on arthritic rats. Pharmacology, 1994, 49(5), 314-318.
[http://dx.doi.org/10.1159/000139248] [PMID: 7862743]
[65]
Maurya, S.K.; Raj, K.; Srivastava, A.K. Antidyslipidaemic activity of Glycyrrhiza glabra in high fructose diet induced dsyslipidaemic Syrian golden hamsters. Indian J. Clin. Biochem., 2009, 24(4), 404-409.
[http://dx.doi.org/10.1007/s12291-009-0072-4] [PMID: 23105868]
[66]
Mishra, N.K.; Bstia, S.; Mishra, G.; Chowdary, K.A.; Patra, S. Anti-arthritic activity of Glycyrrhiza glabra, Boswellia serrata and their synergistic activity in combined formulation studied in freund’s adjuvant induced arthritic rats. J Pharm Educ Res, 2011, 2(2), 92.
[67]
Akram, M.; Hamid, A.; Ahmed, K.; Ghaffa, A.; Naveed, T.; Ahmed, S. Hypocholestrolemic activity of plants: A review. Int. J. Agron. Plant Prod., 2013, 4(11), 2906-2911.
[68]
Fakurazi, S.; Fard, M.T.; Arulselvan, P.; Karthivashan, G.; Adam, S.K. Bioactive extract from moringa oleifera inhibits the pro-inflammatory mediators in lipopolysaccharide stimulated macrophages. Pharmacogn. Mag., 2015, 11(44)(Suppl. 4), 556.
[http://dx.doi.org/10.4103/0973-1296.172961] [PMID: 27013794]
[69]
Singh, S.; Singh, T.G.; Mahajan, K.; Dhiman, S. Medicinal plants used against various inflammatory biomarkers for the management of rheumatoid arthritis. J. Pharm. Pharmacol., 2020, 72(10), 1306-1327.
[http://dx.doi.org/10.1111/jphp.13326] [PMID: 32812250]
[70]
Cohen, A.; Goldman, J. Bromelains therapy in rheumatoid arthritis. Pa. Med. J., 1964, 67, 27-30.
[PMID: 14174138]
[71]
Bang, J.S.; Oh, D.H.; Choi, H.M.; Sur, B.J.; Lim, S.J.; Kim, J.Y.; Yang, H.I.; Yoo, M.C.; Hahm, D.H.; Kim, K.S. Anti-inflammatory and antiarthritic effects of piperine in human interleukin 1β-stimulated fibroblast-like synoviocytes and in rat arthritis models. Arthritis Res. Ther., 2009, 11(2), R49.
[http://dx.doi.org/10.1186/ar2662] [PMID: 19327174]
[72]
Arote, S.R.; Yeole, P.G. Pongamia pinnata L: A comprehensive review. Int. J. Pharm. Tech. Res., 2010, 2(4), 2283-2290.
[73]
Arote, SR Screening of Methanolic Extract of Pongamia Pinnata Leaves for its Antiarthritic and Analgesic Activity. Asian J Biomed Pharm Sci., 2011, 1(4)
[74]
Rajendran, R.; Krishnakumar, E. Anti-arthritic activity of Premna serratifolia Linn., wood against adjuvant induced arthritis. Avicenna J. Med. Biotechnol., 2010, 2(2), 101-106.
[PMID: 23407688]
[75]
Patel, LD Phytopharmacological Properties of Randia dumetorum as a Potential Medicinal Tree: An Overview. J. Appl. Pharmaceut. Sci., 2011, 2(10), 24-26.
[76]
Meenab, A.K.; Singha, A.; Raob, M.M.; Kumaria, S. Evaluation of preliminary phytochemical and physicochemical studies on the fruit of Randia dumetorum Lam. J. Tradit. Med., 2010, 5(2)
[77]
Sharma, M.; Gargi, A.; Borah, A. Rhododendron arboreum and its potential health benefit: A review. Pharma Innov J, 2022, 11, 926-933.
[78]
He, Y.C.; Yao, Y.M.; Xue, Q.W.; Fang, X.; Liang, S. Anti-rheumatoid arthritis potential of diterpenoid fraction derived from Rhododendron molle fruits. Chin. J. Nat. Med., 2021, 19(3), 181-187.
[http://dx.doi.org/10.1016/S1875-5364(21)60019-5] [PMID: 33781451]
[79]
Wang, Y.; Chen, S.; Du, K.; Liang, C.; Wang, S.; Owusu Boadi, E.; Li, J.; Pang, X.; He, J.; Chang, Y. Traditional herbal medicine: Therapeutic potential in rheumatoid arthritis. J. Ethnopharmacol., 2021, 279, 114368.
[http://dx.doi.org/10.1016/j.jep.2021.114368] [PMID: 34197960]
[80]
Guo, R.; Wang, T.; Zhou, G.; Xu, M.; Yu, X.; Zhang, X.; Sui, F.; Li, C.; Tang, L.; Wang, Z. Botany, phytochemistry, pharmacology and toxicity of Strychnos nux-vomica L.: A review. Am. J. Chin. Med., 2018, 46(1), 1-23.
[http://dx.doi.org/10.1142/S0192415X18500015] [PMID: 29298518]
[81]
Yin, W.; Wang, T.S.; Yin, F.Z.; Cai, B.C. Analgesic and anti-inflammatory properties of brucine and brucine N-oxide extracted from seeds of Strychnos nux-vomica. J. Ethnopharmacol., 2003, 88(2-3), 205-214.
[http://dx.doi.org/10.1016/S0378-8741(03)00224-1] [PMID: 12963144]
[82]
Wu, P.; Liang, Q.; Feng, P.; Li, C.; Yang, C.; Liang, H.; Tang, H.; Shuai, C. A novel brucine gel transdermal delivery system designed for anti-inflammatory and analgesic activities. Int. J. Mol. Sci., 2017, 18(4), 757.
[http://dx.doi.org/10.3390/ijms18040757] [PMID: 28368343]
[83]
Jayaseelan, C.; Rahuman, A.A.; Rajakumar, G.; Vishnu Kirthi, A.; Santhoshkumar, T.; Marimuthu, S.; Bagavan, A.; Kamaraj, C.; Zahir, A.A.; Elango, G. Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitol. Res., 2011, 109(1), 185-194.
[http://dx.doi.org/10.1007/s00436-010-2242-y] [PMID: 21212979]
[84]
Godbole, A.; Sweta, K.M.; Abhinav, O.; Singh, O.P. The effect of T. Cordifolia and Z. Officinale in the treatment of rheumatoid arthritis. Int J Pharm Phytopharm Res, 2019, 9, 1-9.
[85]
Kumar, V.; Bhatt, P.C.; Sharma, K.; Rahman, M.; Patel, D.K.; Sethi, N.; Kumar, A.; Sachan, N.K.; Kaithwas, G.; Al-abbasi, F.A.; Anwar, F.; Verma, A. RETRACTED ARTICLE: Melastoma malabathricum Linn attenuates complete freund’s adjuvant-induced chronic inflammation in Wistar rats via inflammation response. BMC Complementary Medicine and Therapies, 2016, 16(1), 510.
[http://dx.doi.org/10.1186/s12906-016-1470-9] [PMID: 27927194]
[86]
Kamarudin, T.A.; Othman, F.; Mohd Ramli, E.S.; Md Isa, N.; Das, S. Protective effect of curcumin on experimentally induced arthritic rats: Detailed histopathological study of the joints and white blood cell count. EXCLI J., 2012, 11, 226-236.
[PMID: 27366139]
[87]
Ravikumar, C. Herbal Remedy for Rheumatoid Arthritis. J Pharm Sci Res, 2014, 6(9), 310.
[88]
Dcodhar, S.D.; Sethi, R.; Srimal, R.C. Preliminary study on antirheumatic activity of curcumin (diferuloyl methane). Indian J. Med. Res., 2013, 138(1)
[89]
Guha, P.; Paul, S.; Das, A.; Halder, B.; Bhattacharjee, S.; Chaudhuri, T.K. Analyses of human and rat clinical parameters in rheumatoid arthritis raise the possibility of use of crude Aloe vera gel in disease amelioration. Immunome Res., 2014, 10(2), 1-7.
[90]
Añibarro-Ortega, M.; Pinela, J.; Ćirić, A.; Lopes, E.; Molina, A.K.; Calhelha, R.C.; Soković, M.; Ferreira, O.; Ferreira, I.C.F.R.; Barros, L. Extraction of aloesin from Aloe vera rind using alternative green solvents: Process optimization and biological activity assessment. Biology, 2021, 10(10), 951.
[http://dx.doi.org/10.3390/biology10100951] [PMID: 34681050]
[91]
Kumar, R.; Kumar, R.; Singh, S.; Saksena, A.K.; Pal, R.; Jaiswal, R. Effect of Boswellia serrata extract on acute inflammatory parameters and tumor necrosis factor-α in complete Freund’s adjuvant-induced animal model of rheumatoid arthritis. Int. J. Appl. Basic Med. Res., 2019, 9(2), 100-106.
[http://dx.doi.org/10.4103/ijabmr.IJABMR_248_18] [PMID: 31041173]
[92]
Shah, S.A.; Rathod, I.S.; Suhagia, B.N.; Patel, D.A.; Parmar, V.K.; Shah, B.K.; Vaishnavi, V.M. Estimation of boswellic acids from market formulations of Boswellia serrata extract and 11-keto β-boswellic acid in human plasma by high-performance thin-layer chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 848(2), 232-238.
[http://dx.doi.org/10.1016/j.jchromb.2006.10.026] [PMID: 17101304]
[93]
Piscoya, J.; Rodriguez, Z.; Bustamante, S.A.; Okuhama, N.N.; Miller, M.J.S.; Sandoval, M. Efficacy and safety of freeze-dried cat’s claw in osteoarthritis of the knee: Mechanisms of action of the species Uncaria guianensis. Inflamm. Res., 2001, 50(9), 442-448.
[http://dx.doi.org/10.1007/PL00000268] [PMID: 11603848]
[94]
Kaiser, S.; Verza, S.G.; Moraes, R.C.; Pittol, V.; Peñaloza, E.M.C.; Pavei, C.; Ortega, G.G. Extraction optimization of polyphenols, oxindole alkaloids and quinovic acid glycosides from cat’s claw bark by Box-Behnken design. Ind. Crops Prod., 2013, 48, 153-161.
[http://dx.doi.org/10.1016/j.indcrop.2013.04.026]
[95]
Taty Anna, K.; Elvy Suhana, M.R.; Das, S.; Faizah, O.; Hamzaini, A.H. Anti-inflammatory effect of Curcuma longa (turmeric) on collagen-induced arthritis: An anatomico-radiological study. Clin. Ter., 2011, 162(3), 201-207.
[PMID: 21717043]
[96]
Priyadarsini, K. The chemistry of curcumin: From extraction to therapeutic agent. Molecules, 2014, 19(12), 20091-20112.
[http://dx.doi.org/10.3390/molecules191220091] [PMID: 25470276]
[97]
Sony, D.; Latheef, L.; Kamath, K.; Khaled, M.; Wilkins, J.; Kochikuzhyil, B.M. Turmeric and its principle compound curcumin are effective in the prevention and treatment of arthritis. Semantic Scholar, 2014, 785-789.
[http://dx.doi.org/10.1016/B978-0-12-398456-2.00061-X]
[98]
Jurenka, J.S. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: A review of preclinical and clinical research. Altern. Med. Rev., 2009, 14(2), 141-153.
[PMID: 19594223]
[99]
Hong, J.W.; Yang, G.E.; Kim, Y.B.; Eom, S.H.; Lew, J.H.; Kang, H. Anti-inflammatory activity of cinnamon water extract in vivo and in vitro LPS-induced models. BMC Complement. Altern. Med., 2012, 12(1), 237.
[http://dx.doi.org/10.1186/1472-6882-12-237] [PMID: 23190501]
[100]
Wong, Y.; Ahmad-Mudzaqqir, M.; Wan-Nurdiyana, W. Extraction of essential oil from cinnamon (Cinnamomum zeylanicum). Orient. J. Chem., 2014, 30(1), 37-47.
[http://dx.doi.org/10.13005/ojc/300105]
[101]
Geesin, J.C.; Darr, D.; Kaufman, R.; Murad, S.; Pinnell, S.R. Ascorbic acid specifically increases type I and type III procollagen messenger RNA levels in human skin fibroblast. J. Invest. Dermatol., 1988, 90(4), 420-424.
[http://dx.doi.org/10.1111/1523-1747.ep12460849] [PMID: 3351329]
[102]
Dowlath, M.J.H.; Karuppannan, S.K.; Gi, D.R.; Sb, M.K.; Subramanian, S.; Arunachalam, K.D. GI DR, SB MK, Subramanian S, Arunachalam KD. Effect of solvents on phytochemical composition and antioxidant activity of Cardiospermum halicacabum (L.) extracts. Pharmacogn. J., 2020, 12(6), 1241-1251.
[http://dx.doi.org/10.5530/pj.2020.12.173]
[103]
Mondal, M.; Quispe, C.; Sarkar, C.; Bepari, T.C.; Alam, M.J.; Saha, S. Analgesic and Anti-Inflammatory Potential of Essential Oil of Eucalyptus camaldulensis Leaf: In vivo and in Silico Studies. Nat Prod Commun., 2021, 16(4), 1934578X2110076.
[104]
Chandrasekar, R.; Chandrasekar, S. Natural herbal treatment for rheumatoid arthritis-a review. Int. J. Pharm. Sci. Res., 2017, 8(2), 368.
[105]
Naquvi, K.J.; Ali, M.; Ahamad, J. Two new phytosterols from the stem bark of Ficus bengalensis L. J. Saudi Chem. Soc., 2015, 19(6), 650-654.
[http://dx.doi.org/10.1016/j.jscs.2012.06.006]
[106]
Funk, J.L.; Frye, J.B.; Oyarzo, J.N.; Timmermann, B.N. Comparative effects of two gingerol-containing Zingiber officinale extracts on experimental rheumatoid arthritis. J. Nat. Prod., 2009, 72(3), 403-407.
[http://dx.doi.org/10.1021/np8006183] [PMID: 19216559]
[107]
Ok, S.; Jeong, W.S. Optimization of extraction conditions for the 6-shogaol-rich extract from ginger (Zingiber officinale Roscoe). Prev. Nutr. Food Sci., 2012, 17(2), 166-171.
[http://dx.doi.org/10.3746/pnf.2012.17.2.166] [PMID: 24471079]
[108]
Marotte, H.; Ruth, J.H.; Campbell, P.L.; Koch, A.E.; Ahmed, S. Green tea extract inhibits chemokine production, but up-regulates chemokine receptor expression, in rheumatoid arthritis synovial fibroblasts and rat adjuvant-induced arthritis. Rheumatology, 2010, 49(3), 467-479.
[http://dx.doi.org/10.1093/rheumatology/kep397] [PMID: 20032224]
[109]
Ramadan, G.; El-Menshawy, O. Protective effects of ginger-turmeric rhizomes mixture on joint inflammation, atherogenesis, kidney dysfunction and other complications in a rat model of human rheumatoid arthritis. Int. J. Rheum. Dis., 2013, 16(2), 219-229.
[http://dx.doi.org/10.1111/1756-185X.12054] [PMID: 23773648]
[110]
Cheeke, P.R.; Piacente, S.; Oleszek, W. Anti-inflammatory and anti-arthritic effects of yucca schidigera: A review. J. Inflamm., 2006, 3(1), 6.
[http://dx.doi.org/10.1186/1476-9255-3-6] [PMID: 16571135]
[111]
Kumar, M.; Hilles, A.R.; Ge, Y.; Bhatia, A.; Mahmood, S. A review on polysaccharides mediated electrospun nanofibers for diabetic wound healing: Their current status with regulatory perspective. Int. J. Biol. Macromol., 2023, 234, 123696.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123696] [PMID: 36801273]
[112]
Mandal, U.K.; Kumar, M.; Kumar, D.; Kumar, S.; Kumar, A. A Recent Review on Bio-availability Enhancement of Poorly Water-soluble Drugs by using Bioenhancer and Nanoparticulate Drug Delivery System. Curr. Pharm. Des., 2022, 28(39), 3212-3224.
[http://dx.doi.org/10.2174/1381612829666221021152354] [PMID: 36281868]
[113]
Kumar, M.; Mahmood, S.; Mandal, U.K. An updated account on formulations and strategies for the treatment of burn infection - A review. Curr. Pharm. Des., 2022, 28(18), 1480-1492.
[http://dx.doi.org/10.2174/1381612828666220519145859] [PMID: 35598231]
[114]
Kumar, M.; Dogra, R.; Mandal, U.K. Nanomaterial-based delivery of vaccine through nasal route: Opportunities, challenges, advantages, and limitations. J. Drug Deliv. Sci. Technol., 2022, 74, 103533.
[http://dx.doi.org/10.1016/j.jddst.2022.103533]
[115]
Suri, S.S.; Fenniri, H.; Singh, B. Nanotechnology-based drug delivery systems. J. Occup. Med. Toxicol., 2007, 2(1), 16.
[http://dx.doi.org/10.1186/1745-6673-2-16] [PMID: 18053152]
[116]
Chatterjee, S.; Ghosal, K.; Kumar, M.; Mahmood, S.; Thomas, S. A detailed discussion on interpenetrating polymer network (IPN) based drug delivery system for the advancement of health care system. J. Drug Deliv. Sci. Technol., 2022, 79, 104095.
[117]
Nevozhay, D.; Kańska, U.; Budzyńska, R.; Boratyński, J. [Current status of research on conjugates and related drug delivery systems in the treatment of cancer and other diseases]. Postepy Hig. Med. Dosw., 2007, 61, 350-360.
[PMID: 17554238]
[118]
Dai, L.; Liu, J.; Luo, Z.; Li, M.; Cai, K. Tumor therapy: Targeted drug delivery systems. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(42), 6758-6772.
[http://dx.doi.org/10.1039/C6TB01743F] [PMID: 32263571]
[119]
Wilczewska, A.Z.; Niemirowicz, K.; Markiewicz, K.H.; Car, H. Nanoparticles as drug delivery systems. Pharmacol. Rep., 2012, 64(5), 1020-1037.
[http://dx.doi.org/10.1016/S1734-1140(12)70901-5] [PMID: 23238461]
[120]
Maurer, N.; Fenske, D.B.; Cullis, P.R. Developments in liposomal drug delivery systems. Expert Opin. Biol. Ther., 2001, 1(6), 923-947.
[http://dx.doi.org/10.1517/14712598.1.6.923] [PMID: 11728226]
[121]
Kushwaha, S.K.S.; Rastogl, A.; Rai, A.K.; Singh, S. Novel drug delivery system for anticancer drug: A review. Int. J. Pharm. Tech. Res., 2012, 4(2), 542-553.
[122]
Abraham, S.A.; Edwards, K.; Karlsson, G.; MacIntosh, S.; Mayer, L.D.; McKenzie, C.; Bally, M.B. Formation of transition metal-doxorubicin complexes inside liposomes. Biochim. Biophys. Acta Biomembr., 2002, 1565(1), 41-54.
[http://dx.doi.org/10.1016/S0005-2736(02)00507-2] [PMID: 12225851]
[123]
Gabizon, A.; Shmeeda, H.; Barenholz, Y. Pharmacokinetics of pegylated liposomal Doxorubicin: Review of animal and human studies. Clin. Pharmacokinet., 2003, 42(5), 419-436.
[http://dx.doi.org/10.2165/00003088-200342050-00002] [PMID: 12739982]
[124]
Felgner, P.L.; Ringold, G.M. Cationic liposome-mediated transfection. Nature, 1989, 337(6205), 387-388.
[http://dx.doi.org/10.1038/337387a0] [PMID: 2463491]
[125]
Straubinger, R.M.; Düzgünes, N.; Papahadjopoulos, D. pH-sensitive liposomes mediate cytoplasmic delivery of encapsulated macromolecules. FEBS Lett., 1985, 179(1), 148-154.
[http://dx.doi.org/10.1016/0014-5793(85)80210-6] [PMID: 2578112]
[126]
Needham, D.; Dewhirst, M.W. The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors. Adv. Drug Deliv. Rev., 2001, 53(3), 285-305.
[http://dx.doi.org/10.1016/S0169-409X(01)00233-2] [PMID: 11744173]
[127]
Sapra, P.; Tyagi, P.; Allen, T. Ligand-targeted liposomes for cancer treatment. Curr. Drug Deliv., 2005, 2(4), 369-381.
[http://dx.doi.org/10.2174/156720105774370159] [PMID: 16305440]
[128]
Zhang, Y.; He, W.; Du, Y.; Du, Y.; Zhao, C.; Zhang, Y.; Zhang, H.; Yin, L.; Li, X. Dimeric artesunate phospholipid-conjugated liposomes as promising anti-inflammatory therapy for rheumatoid arthritis. Int. J. Pharm., 2020, 579, 119178.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119178] [PMID: 32105722]
[129]
Sujitha, S.; Dinesh, P.; Rasool, M. Berberine encapsulated PEG-coated liposomes attenuate Wnt1/β-catenin signaling in rheumatoid arthritis via mir-23a activation. Eur. J. Pharm. Biopharm., 2020, 149, 170-191.
[http://dx.doi.org/10.1016/j.ejpb.2020.02.007] [PMID: 32068029]
[130]
Mohammadi, G.; Korani, M.; Nemati, H.; Nikpoor, A.R.; Rashidi, K.; Varmira, K.; Abbasifard, M.; Kesharwani, P.; Korani, S.; Sahebkar, A. Crocin-loaded nanoliposomes: Preparation, characterization, and evaluation of anti-inflammatory effects in an experimental model of adjuvant-induced arthritis. J. Drug Deliv. Sci. Technol., 2022, 74, 103618.
[http://dx.doi.org/10.1016/j.jddst.2022.103618]
[131]
Pal, R.R.; Rajpal, V.; Singh, P.; Saraf, S.A. Recent findings on thymoquinone and its applications as a nanocarrier for the treatment of cancer and rheumatoid arthritis. Pharmaceutics, 2021, 13(6), 775.
[http://dx.doi.org/10.3390/pharmaceutics13060775] [PMID: 34067322]
[132]
Wissing, S.A.; Kayser, O.; Müller, R.H. Solid lipid nanoparticles for parenteral drug delivery. Adv. Drug Deliv. Rev., 2004, 56(9), 1257-1272.
[http://dx.doi.org/10.1016/j.addr.2003.12.002] [PMID: 15109768]
[133]
Abdel-Mottaleb, M.M.A.; Neumann, D.; Lamprecht, A. Lipid nanocapsules for dermal application: A comparative study of lipid-based versus polymer-based nanocarriers. Eur. J. Pharm. Biopharm., 2011, 79(1), 36-42.
[http://dx.doi.org/10.1016/j.ejpb.2011.04.009] [PMID: 21558002]
[134]
Muchow, M.; Maincent, P.; Müller, R.H. Lipid nanoparticles with a solid matrix (SLN, NLC, LDC) for oral drug delivery. Drug Dev. Ind. Pharm., 2008, 34(12), 1394-1405.
[http://dx.doi.org/10.1080/03639040802130061] [PMID: 18665980]
[135]
Nayak, A.P.; Tiyaboonchai, W.; Patankar, S.; Madhusudhan, B.; Souto, E.B. Curcuminoids-loaded lipid nanoparticles: Novel approach towards malaria treatment. Colloids Surf. B Biointerfaces, 2010, 81(1), 263-273.
[http://dx.doi.org/10.1016/j.colsurfb.2010.07.020] [PMID: 20688493]
[136]
Attama, A.A.; Schicke, B.C.; Paepenmüller, T.; Müller-Goymann, C.C. Solid lipid nanodispersions containing mixed lipid core and a polar heterolipid: Characterization. Eur. J. Pharm. Biopharm., 2007, 67(1), 48-57.
[http://dx.doi.org/10.1016/j.ejpb.2006.12.004] [PMID: 17276663]
[137]
Liu, J.; Gong, T.; Fu, H.; Wang, C.; Wang, X.; Chen, Q.; Zhang, Q.; He, Q.; Zhang, Z. Solid lipid nanoparticles for pulmonary delivery of insulin. Int. J. Pharm., 2008, 356(1-2), 333-344.
[http://dx.doi.org/10.1016/j.ijpharm.2008.01.008] [PMID: 18281169]
[138]
Sznitowska, M.; Gajewska, M.; Janicki, S.; Radwanska, A.; Lukowski, G. Bioavailability of diazepam from aqueous-organic solution, submicron emulsion and solid lipid nanoparticles after rectal administration in rabbits. Eur. J. Pharm. Biopharm., 2001, 52(2), 159-163.
[http://dx.doi.org/10.1016/S0939-6411(01)00157-6] [PMID: 11522481]
[139]
Bilensoy, E.; Sarisozen, C.; Esendağlı, G.; Doğan, A.L.; Aktaş, Y.; Şen, M.; Mungan, N.A. Intravesical cationic nanoparticles of chitosan and polycaprolactone for the delivery of Mitomycin C to bladder tumors. Int. J. Pharm., 2009, 371(1-2), 170-176.
[http://dx.doi.org/10.1016/j.ijpharm.2008.12.015] [PMID: 19135514]
[140]
Bai, J.; Li, Y.; Du, J.; Wang, S.; Zheng, J.; Yang, Q.; Chen, X. One-pot synthesis of polyacrylamide-gold nanocomposite. Mater. Chem. Phys., 2007, 106(2-3), 412-415.
[http://dx.doi.org/10.1016/j.matchemphys.2007.06.021]
[141]
Turos, E.; Shim, J.Y.; Wang, Y.; Greenhalgh, K.; Reddy, G.S.K.; Dickey, S.; Lim, D.V. Antibiotic-conjugated polyacrylate nanoparticles: New opportunities for development of anti-MRSA agents. Bioorg. Med. Chem. Lett., 2007, 17(1), 53-56.
[http://dx.doi.org/10.1016/j.bmcl.2006.09.098] [PMID: 17049850]
[142]
Panyam, J.; Labhasetwar, V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev., 2003, 55(3), 329-347.
[http://dx.doi.org/10.1016/S0169-409X(02)00228-4] [PMID: 12628320]
[143]
Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces, 2010, 75(1), 1-18.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.001] [PMID: 19782542]
[144]
Mei, Z.; Chen, H.; Weng, T.; Yang, Y.; Yang, X. Solid lipid nanoparticle and microemulsion for topical delivery of triptolide. Eur. J. Pharm. Biopharm., 2003, 56(2), 189-196.
[http://dx.doi.org/10.1016/S0939-6411(03)00067-5] [PMID: 12957632]
[145]
Zhou, M.; Hou, J.; Zhong, Z.; Hao, N.; Lin, Y.; Li, C. Targeted delivery of hyaluronic acid-coated solid lipid nanoparticles for rheumatoid arthritis therapy. Drug Deliv., 2018, 25(1), 716-722.
[http://dx.doi.org/10.1080/10717544.2018.1447050] [PMID: 29516758]
[146]
Zhang, F.; Liu, Z.; He, X.; Li, Z.; Shi, B.; Cai, F. β-Sitosterol-loaded solid lipid nanoparticles ameliorate complete Freund’s adjuvant-induced arthritis in rats: Involvement of NF-кB and HO-1/Nrf-2 pathway. Drug Deliv., 2020, 27(1), 1329-1341.
[http://dx.doi.org/10.1080/10717544.2020.1818883] [PMID: 32945205]
[147]
Bhalekar, M.R.; Madgulkar, A.R.; Desale, P.S.; Marium, G. Formulation of piperine solid lipid nanoparticles (SLN) for treatment of rheumatoid arthritis. Drug Dev. Ind. Pharm., 2017, 43(6), 1003-1010.
[http://dx.doi.org/10.1080/03639045.2017.1291666] [PMID: 28161984]
[148]
Kamel, K.M.; Khalil, I.A.; Rateb, M.E.; Elgendy, H.; Elhawary, S. Chitosan-coated cinnamon/oregano-loaded solid lipid nanoparticles to augment 5-fluorouracil cytotoxicity for colorectal cancer: Extract standardization, nanoparticle optimization, and cytotoxicity evaluation. J. Agric. Food Chem., 2017, 65(36), 7966-7981.
[http://dx.doi.org/10.1021/acs.jafc.7b03093] [PMID: 28813148]
[149]
Bairwa, K.; Jachak, S.M. Nanoparticle formulation of 11-keto-β-boswellic acid (KBA): Anti-inflammatory activity and in vivo pharmacokinetics. Pharm. Biol., 2016, 54(12), 2909-2916.
[http://dx.doi.org/10.1080/13880209.2016.1194437] [PMID: 27305832]
[150]
Sharma, P.; Verma, S.; Misri, P. Global need for novel herbal drug formulations. Int J Phcog Phytochem Res, 2016, 8(9), 1535-1544.
[151]
Gupta, A. Phytosomal Curcumin: A Novel Technology Ensuring Higher Bioavailability Of Curcumin To Deliver The Benefits Of Anti-Inflammatory, Immunity Enhancing And Antiviral Properties To Immunocompromised Patients. 2020. Available From: https://www.drsrce.com/article-details-phytosomal-curcumin-a-novel-technology-ensuring-higher-bioavailability-of-curcumin-to-deliver-the-benefits-of-anti-inflammatory-immunity-enhancing-and-antiviral-properties-to-immunocompromised-patients
[152]
Nosratabadi, R.; Rahmani, M.R.; Ramezani, M.; Zainodini, N.; Yousefpoor, Y.; Taghipour, Z.; Abbasifard, M. Phytosomal curcumin alleviates collagen-induced arthritis by downregulating Th17 and upregulating Treg cell responses in rats. Asian Pac. J. Trop. Biomed., 2022, 12(11), 466.
[http://dx.doi.org/10.4103/2221-1691.360562]
[153]
Hüsch, J.; Bohnet, J.; Fricker, G.; Skarke, C.; Artaria, C.; Appendino, G.; Schubert-Zsilavecz, M.; Abdel-Tawab, M. Enhanced absorption of boswellic acids by a lecithin delivery form (Phytosome®) of Boswellia extract. Fitoterapia, 2013, 84, 89-98.
[http://dx.doi.org/10.1016/j.fitote.2012.10.002] [PMID: 23092618]
[154]
H Shariare, M.; Afnan, K.; Iqbal, F.; A Altamimi, M.; Ahamad, S.R.; S Aldughaim, M.; K Alanazi, F.; Kazi, M. Development and optimization of epigallocatechin-3-gallate (egcg) nano phytosome using design of experiment (DoE) and their in vivo anti-inflammatory studies. Molecules, 2020, 25(22), 5453.
[http://dx.doi.org/10.3390/molecules25225453] [PMID: 33233756]
[155]
Xu, W.; Ledin, P.A.; Iatridi, Z.; Tsitsilianis, C.; Tsukruk, V.V. Multicompartmental Microcapsules with Orthogonal Programmable Two‐Way Sequencing of Hydrophobic and Hydrophilic Cargo Release. Angew. Chem. Int. Ed., 2016, 55(16), 4908-4913.
[http://dx.doi.org/10.1002/anie.201600383] [PMID: 26990494]
[156]
Makino, K.; Fujita, Y.; Takao, K.; Kobayashi, S.; Ohshima, H. Preparation and properties of thermosensitive hydrogel microcapsules. Colloids Surf. B Biointerfaces, 2001, 21(4), 259-263.
[http://dx.doi.org/10.1016/S0927-7765(00)00191-0] [PMID: 11397628]
[157]
de Villiers, M.M.; Otto, D.P.; Strydom, S.J.; Lvov, Y.M. Introduction to nanocoatings produced by layer-by-layer (LbL) self-assembly. Adv. Drug Deliv. Rev., 2011, 63(9), 701-715.
[http://dx.doi.org/10.1016/j.addr.2011.05.011] [PMID: 21699936]
[158]
Cheng, S.Y.; Yuen, M.C.W.; Lam, P.L.; Gambari, R.; Wong, R.S.M.; Cheng, G.Y.M.; Lai, P.B.S.; Tong, S.W.; Chan, K.W.; Lau, F.Y.; Kok, S.H.L.; Lam, K.H.; Chui, C.H. Synthesis, characterization and preliminary analysis of in vivo biological activity of chitosan/celecoxib microcapsules. Bioorg. Med. Chem. Lett., 2010, 20(14), 4147-4151.
[http://dx.doi.org/10.1016/j.bmcl.2010.05.054] [PMID: 20538460]
[159]
Peiris, PCR; Wijayawickrema, B; Samanmali, BLC; Manatunga, DC Preparation, Characterization, and In vitro Releasing of Microcapsules Loaded with Bridelia Retusa Aqueous Bark Extract for Treatment of Rheumatoid Arthritis; General Sir John Kotelawala Defence University: Sri Lanka, 2021.
[160]
Usón, N.; Garcia, M.J.; Solans, C. Formation of water-in-oil (W/O) nano-emulsions in a water/mixed non-ionic surfactant/oil systems prepared by a low-energy emulsification method. Colloids Surf. A Physicochem. Eng. Asp., 2004, 250(1-3), 415-421.
[http://dx.doi.org/10.1016/j.colsurfa.2004.03.039]
[161]
Gupta, A.; Eral, H.B.; Hatton, T.A.; Doyle, P.S. Nanoemulsions: Formation, properties and applications. Soft Matter, 2016, 12(11), 2826-2841.
[http://dx.doi.org/10.1039/C5SM02958A] [PMID: 26924445]
[162]
Mason, T.G.; Wilking, J.N.; Meleson, K.; Chang, C.B.; Graves, S.M. Nanoemulsions: Formation, structure, and physical properties. J. Phys. Condens. Matter, 2006, 18(41), R635-R666.
[http://dx.doi.org/10.1088/0953-8984/18/41/R01]
[163]
Barradas, T.N.; de Holanda e Silva, K.G. Nanoemulsions of essential oils to improve solubility, stability and permeability: A review. Environ. Chem. Lett., 2021, 19(2), 1153-1171.
[http://dx.doi.org/10.1007/s10311-020-01142-2]
[164]
Gokhale, J.P.; Mahajan, H.S.; Surana, S.J. Quercetin loaded nanoemulsion-based gel for rheumatoid arthritis:In vivo and in vitro studies. Biomed. Pharmacother., 2019, 112, 108622.
[http://dx.doi.org/10.1016/j.biopha.2019.108622] [PMID: 30797146]
[165]
Kola-Mustapha, AT; Khalid-Salako, FA Herbal emulgels incorporated with Cola millenii K. Schum stem bark ethanol extract potentially for the management of rheumatoid arthritis in-vitro. Phytomed Plus, 2021, 1(2), 100033.
[166]
Sankar, V.; Ruckmani, K.; Durga, S.; Jailani, S. Proniosomes as drug carriers. Pak. J. Pharm. Sci., 2010, 23(1), 103-107.
[PMID: 20067875]
[167]
Abraham Lingan, M. Formulation and evaluation of topical drug delivery system containing clobetasol propionate niosomes. Sci. Revs. Chem. Commun., 2011, 1(1), 7-17.
[168]
Carafa, M.; Santucci, E.; Lucania, G. Lidocaine-loaded non-ionic surfactant vesicles: Characterization and in vitro permeation studies. Int. J. Pharm., 2002, 231(1), 21-32.
[http://dx.doi.org/10.1016/S0378-5173(01)00828-6] [PMID: 11719010]
[169]
Bhardwaj, S.; Bhatia, S. Development and Characterization of Niosomal Gel System using Lallementia royaleana Benth. mucilage for the treatment of Rheumatoid Arthritis. Iran. J. Pharm. Res., 2020, 19(3), 465-482.
[PMID: 33680045]
[170]
Jeengar, M.K.; Rompicharla, S.V.K.; Shrivastava, S.; Chella, N.; Shastri, N.R.; Naidu, V.G.M.; Sistla, R. Emu oil based nano-emulgel for topical delivery of curcumin. Int. J. Pharm., 2016, 506(1-2), 222-236.
[http://dx.doi.org/10.1016/j.ijpharm.2016.04.052] [PMID: 27109049]
[171]
Kapil, MJ; Deka, D; Lahkar, M; Sharma, N; Sarma, D; Kalita, P Formulation, optimization and evaluation of niosomes containing leaf extract of moringa oleifera and pharmacological screening of the extract against rheumatoid arthritis. J. Pharmaceut. Res. Int., 2021, 33(42A)
[172]
Afrin, S.; Jahan, I.; Hasan, A.; Deepa, K. Novel approaches of herbal drug delivery. J. Pharm. Res. Int., 2018, 21(5), 1-11.
[http://dx.doi.org/10.9734/JPRI/2018/39143]
[173]
Chen, G.; Hao, B.; Ju, D.; Liu, M.; Zhao, H.; Du, Z.; Xia, J. Pharmacokinetic and pharmacodynamic study of triptolide-loaded liposome hydrogel patch under microneedles on rats with collagen-induced arthritis. Acta Pharm. Sin. B, 2015, 5(6), 569-576.
[http://dx.doi.org/10.1016/j.apsb.2015.09.006] [PMID: 26713272]
[174]
Sultana, F.; Neog, M.K.; Rasool, M. Targeted delivery of morin, a dietary bioflavanol encapsulated mannosylated liposomes to the macrophages of adjuvant-induced arthritis rats inhibits inflammatory immune response and osteoclastogenesis. Eur. J. Pharm. Biopharm., 2017, 115, 229-242.
[http://dx.doi.org/10.1016/j.ejpb.2017.03.009] [PMID: 28315446]
[175]
Neog, M.K.; Rasool, M. Targeted delivery of p-coumaric acid encapsulated mannosylated liposomes to the synovial macrophages inhibits osteoclast formation and bone resorption in the rheumatoid arthritis animal model. Eur. J. Pharm. Biopharm., 2018, 133, 162-175.
[http://dx.doi.org/10.1016/j.ejpb.2018.10.010] [PMID: 30339889]
[176]
Sultana, F.; Neog, M.K.; Rasool, M. Withaferin-A, a steroidal lactone encapsulated mannose decorated liposomes ameliorates rheumatoid arthritis by intriguing the macrophage repolarization in adjuvant-induced arthritic rats. Colloids Surf. B Biointerfaces, 2017, 155, 349-365.
[http://dx.doi.org/10.1016/j.colsurfb.2017.04.046] [PMID: 28454064]
[177]
Zheng, Z.; Sun, Y.; Liu, Z.; Zhang, M.; Li, C.; Cai, H. The effect of curcumin and its nanoformulation on adjuvant-induced arthritis in rats. Drug Des. Devel. Ther., 2015, 9, 4931-4942.
[PMID: 26345159]
[178]
Zhang, P.; Li, J.; Han, Y.; Wei Yu, X.; Qin, L. Traditional Chinese medicine in the treatment of rheumatoid arthritis: A general review. Rheumatol. Int., 2010, 30(6), 713-718.
[http://dx.doi.org/10.1007/s00296-010-1370-0] [PMID: 20204371]
[179]
Kumar, K.; Rai, A.K. Proniosomal formulation of curcumin having anti-inflammatory and anti-arthritic activity in different experimental animal models. Pharmazie, 2012, 67(10), 852-857.
[PMID: 23136720]
[180]
Das, M.K.; Kalita, B. Design and evaluation of phyto-phospholipid complexes (phytosomes) of rutin for transdermal application. J. Appl. Pharm. Sci., 2014, 4(10), 51-57.
[http://dx.doi.org/10.7324/JAPS.2014.401010]
[181]
Shen, Q.; Zhang, X.; Qi, J.; Shu, G.; Du, Y.; Ying, X. Sinomenine hydrochloride loaded thermosensitive liposomes combined with microwave hyperthermia for the treatment of rheumatoid arthritis. Int. J. Pharm., 2020, 576, 119001.
[http://dx.doi.org/10.1016/j.ijpharm.2019.119001] [PMID: 31893540]
[182]
Coradini, K.; Friedrich, R.B.; Fonseca, F.N.; Vencato, M.S.; Andrade, D.F.; Oliveira, C.M.; Battistel, A.P.; Guterres, S.S.; da Rocha, M.I.U.M.; Pohlmann, A.R.; Beck, R.C.R. A novel approach to arthritis treatment based on resveratrol and curcumin co-encapsulated in lipid-core nanocapsules: In vivo studies. Eur. J. Pharm. Sci., 2015, 78, 163-170.
[http://dx.doi.org/10.1016/j.ejps.2015.07.012] [PMID: 26206297]
[183]
Arora, R.; Kuhad, A.; Kaur, I.P.; Chopra, K. Curcumin loaded solid lipid nanoparticles ameliorate adjuvant-induced arthritis in rats. Eur. J. Pain, 2015, 19(7), 940-952.
[http://dx.doi.org/10.1002/ejp.620] [PMID: 25400173]
[184]
Bonifácio, B.V.; Silva, P.B.; Ramos, M.A.; Negri, K.M.S.; Bauab, T.M.; Chorilli, M. Nanotechnology-based drug delivery systems and herbal medicines: A review. Int. J. Nanomedicine, 2014, 9, 1-15.
[PMID: 24363556]
[185]
Kumar, M.; Sharma, A.; Mahmood, S.; Thakur, A.; Mirza, M.A.; Bhatia, A. Franz diffusion cell and its implication in skin permeation studies. J. Dispers. Sci. Technol., 2023, 2023, 1-14.
[http://dx.doi.org/10.1080/01932691.2023.2188923]
[186]
Smolen, J.S.; Breedveld, F.C.; Burmester, G.R.; Bykerk, V.; Dougados, M.; Emery, P.; Kvien, T.K.; Navarro-Compán, M.V.; Oliver, S.; Schoels, M.; Scholte-Voshaar, M.; Stamm, T.; Stoffer, M.; Takeuchi, T.; Aletaha, D.; Andreu, J.L.; Aringer, M.; Bergman, M.; Betteridge, N.; Bijlsma, H.; Burkhardt, H.; Cardiel, M.; Combe, B.; Durez, P.; Fonseca, J.E.; Gibofsky, A.; Gomez-Reino, J.J.; Graninger, W.; Hannonen, P.; Haraoui, B.; Kouloumas, M.; Landewe, R.; Martin-Mola, E.; Nash, P.; Ostergaard, M.; Östör, A.; Richards, P.; Sokka-Isler, T.; Thorne, C.; Tzioufas, A.G.; van Vollenhoven, R.; de Wit, M.; van der Heijde, D. Treating rheumatoid arthritis to target: 2014 update of the recommendations of an international task force. Ann. Rheum. Dis., 2016, 75(1), 3-15.
[http://dx.doi.org/10.1136/annrheumdis-2015-207524] [PMID: 25969430]
[187]
Kour, G.; Haq, S.A.; Bajaj, B.K.; Gupta, P.N.; Ahmed, Z. Phytochemical add-on therapy to DMARDs therapy in rheumatoid arthritis: In vitro and in vivo bases, clinical evidence and future trends. Pharmacol. Res., 2021, 169, 105618.
[http://dx.doi.org/10.1016/j.phrs.2021.105618] [PMID: 33878447]
[188]
Janakiraman, K.; Krishnaswami, V.; Rajendran, V.; Natesan, S.; Kandasamy, R. Novel nano therapeutic materials for the effective treatment of rheumatoid arthritis-recent insights. Mater. Today Commun., 2018, 17, 200-213.
[http://dx.doi.org/10.1016/j.mtcomm.2018.09.011] [PMID: 32289062]
[189]
Zhang, L.; Chang, J.; Zhao, Y.; Xu, H.; Wang, T.; Li, Q.; Xing, L.; Huang, J.; Wang, Y.; Liang, Q. Fabrication of a triptolide-loaded and poly-γ-glutamic acid-based amphiphilic nanoparticle for the treatment of rheumatoid arthritis. Int. J. Nanomedicine, 2018, 13, 2051-2064.
[http://dx.doi.org/10.2147/IJN.S151233] [PMID: 29670349]
[190]
Zhang, L.; Wang, T.; Li, Q.; Huang, J.; Xu, H.; Li, J.; Wang, Y.; Liang, Q. Fabrication of novel vesicles of triptolide for antirheumatoid activity with reduced toxicity in vitro and in vivo. Int. J. Nanomedicine, 2016, 11, 2663-2673.
[PMID: 27354796]
[191]
Qindeel, M.; Ullah, M.H.; Fakhar-ud-Din; Ahmed, N.; Rehman, A. Recent trends, challenges and future outlook of transdermal drug delivery systems for rheumatoid arthritis therapy. J. Control. Release, 2020, 327, 595-615.
[http://dx.doi.org/10.1016/j.jconrel.2020.09.016] [PMID: 32920080]
[192]
Brown, K.D.; Claudio, E.; Siebenlist, U. The roles of the classical and alternative nuclear factor-kappaB pathways: Potential implications for autoimmunity and rheumatoid arthritis. Arthritis Res. Ther., 2008, 10(4), 212.
[http://dx.doi.org/10.1186/ar2457] [PMID: 18771589]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy