Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Neuroendocrinological and Clinical Aspects of Leptin

Author(s): Tulin Yanik* and Seyda Tugce Durhan

Volume 24, Issue 9, 2024

Published on: 04 October, 2023

Page: [886 - 894] Pages: 9

DOI: 10.2174/1389557523666230825100154

Price: $65

Abstract

Obesity is characterized by an abnormal increase in adipose tissue mass and is regarded as a neurobehavioral as well as a metabolic disorder. Increases in body fat are caused by even slight, long-term discrepancies between energy intake and energy expenditure. It is a chronic condition linked to the metabolic syndrome, a spectrum of risky conditions, such as diabetes, high blood pressure, and heart disease. With a swiftly rising prevalence, obesity has emerged as a significant global health concern. Leptin influences the brain’s neuroendocrine and metabolic processes, which is important for maintaining energy homeostasis. White adipose tissue secretes the majority of leptin, and there is a positive correlation between leptin levels in the blood and body fat percentages. The central nervous system is also modulated by leptin levels to modify energy intake and usage. The idea of an obesity cure sparked excitement after it was discovered more than 25 years ago. However, the leptin medication only effectively reduces weight in patients with congenital leptin insufficiency and not in patients with typical obesity who may also have leptin resistance. Recent research has focused on the role of leptin in managing weight reduction and preventing “yo-yo dieting”. This review concentrates on the neurological effects of leptin with a focus on therapeutic and diagnostic applications, particularly for childhood obesity.

Keywords: Obesity, leptin, hypothalamus, diet, appetite, metabolic processes.

Graphical Abstract
[1]
Saxena, I.; Suman, S.; Preet Kaur, A. Abhilasha, ; Mitra, P.; Sharma, P.; Kumar, M. The multiple causes of obesity. Role Obes. Hum. Heal. Dis., 2021.
[http://dx.doi.org/10.5772/intechopen.98835]
[2]
Nguyen, D.M.; El-Serag, H.B. The epidemiology of obesity. Gastroenterol. Clin. North Am., 2010, 39(1), 1-7.
[http://dx.doi.org/10.1016/j.gtc.2009.12.014] [PMID: 20202574]
[3]
Huang, Y.Y.; Zhang, W.S.; Jiang, C.Q.; Zhu, F.; Jin, Y.L.; Cheng, K.K.; Lam, T.H.; Xu, L. Mendelian randomization on the association of obesity with vitamin D: Guangzhou Biobank Cohort Study. Eur. J. Clin. Nutr., 2022, 2022, 1-7.
[http://dx.doi.org/10.1038/s41430-022-01234-y] [PMID: 36347947]
[4]
A healthy lifestyle - WHO recommendations. Available from: https://www.who.int/europe/news-room/fact-sheets/item/a-healthylifestyle---who-recommendations (Accessed on: Nov. 16, 2022).
[5]
Singh, N.; Hooja, N.; Yadav, A.; Mital, P.; Jaiswal, A.; Bairwa, P. Waist circumference and waist-to-hip ratio as indicators of abdominal obesity. Int. J. Life Sci. Res. Archive, 2022, 2(02), 102-105.
[http://dx.doi.org/10.53771/ijlsra.2022.2.2.0055]
[6]
Baheerati, M.M.; Devi, R.G. Obesity in relation to infertility. Int. J. Life Sci. Res., 2018, 11(7), 3183-3185.
[http://dx.doi.org/10.5958/0974-360X.2018.00585.1]
[7]
Mǎrginean, C.O.; Mǎrginean, C.; Meliţ L.E. New insights regarding genetic aspects of childhood obesity: A minireview. Front Pediatr., 2018, 6, 271.
[http://dx.doi.org/10.3389/fped.2018.00271] [PMID: 30338250]
[8]
Yanık, T.; Durhan, S.T. Specific functions of melanocortin 3 receptor (MC3R). J. Clin. Res. Pediatr. Endocrinol., 2022.
[http://dx.doi.org/10.4274/jcrpe.galenos.2022.2022-5-21] [PMID: 36053086]
[9]
Boiko, A.S.; Pozhidaev, I.; Paderina, D.Z.; Bocharova, A.V.; Mednova, I.A.; Fedorenko, O.Y.; Kornetova, E.G.; Loonen, A.J.M.; Semke, A.V.; Bokhan, N.A.; Ivanova, S.A. Search for possible associations of FTO gene polymorphic variants with metabolic syndrome, obesity and body mass index in schizophrenia patients. Pharm. Genomics Pers. Med., 2021, 14, 1123-1131.
[http://dx.doi.org/10.2147/PGPM.S327353] [PMID: 34522123]
[10]
Frayling, T.M.; Timpson, N.J.; Weedon, M.N.; Zeggini, E.; Freathy, R.M.; Lindgren, C.M.; Perry, J.R.B.; Elliott, K.S.; Lango, H.; Rayner, N.W.; Shields, B.; Harries, L.W.; Barrett, J.C.; Ellard, S.; Groves, C.J.; Knight, B.; Patch, A.M.; Ness, A.R.; Ebrahim, S.; Lawlor, D.A.; Ring, S.M.; Ben-Shlomo, Y.; Jarvelin, M.R.; Sovio, U.; Bennett, A.J.; Melzer, D.; Ferrucci, L.; Loos, R.J.F.; Barroso, I.; Wareham, N.J.; Karpe, F.; Owen, K.R.; Cardon, L.R.; Walker, M.; Hitman, G.A.; Palmer, C.N.A.; Doney, A.S.F.; Morris, A.D.; Smith, G.D.; Hattersley, A.T.; McCarthy, M.I. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science, 2007, 316(5826), 889-894.
[http://dx.doi.org/10.1126/science.1141634] [PMID: 17434869]
[11]
Chiurazzi, M.; Cozzolino, M.; Orsini, R.C.; Di Maro, M.; Di Minno, M.N.D.; Colantuoni, A. Impact of genetic variations and epigenetic mechanisms on the risk of obesity. Int. J. Mol. Sci., 2020, 21(23), 9035.
[http://dx.doi.org/10.3390/ijms21239035]
[12]
Dubern, B.; Clement, K. Leptin and leptin receptor-related monogenic obesity. Biochimie, 2012, 94(10), 2111-2115.
[http://dx.doi.org/10.1016/j.biochi.2012.05.010] [PMID: 22627381]
[13]
Vioque, J.; Ramos, J.M.; Navarrete-Muñoz, E.M.; García-de-la-Hera, M. A bibliometric study of scientific literature on obesity research in PubMed (1988-2007). Obes. Rev., 2010, 11(8), 603-611.
[http://dx.doi.org/10.1111/j.1467-789X.2009.00647.x] [PMID: 19754632]
[14]
Abdulla, M.; Al-Aqbi, K.; Abdulammer, M.; Al-Sarray, R. Leptin and reproduction: A review study. Dijlah J. Agric. Sci., 2022, 1(1), 81-102.
[15]
Martínez-Sánchez, N. There and back again: Leptin actions in white adipose tissue. Int. J. Mol. Sci., 2020, 21(17), 6039.
[http://dx.doi.org/10.3390/ijms21176039] [PMID: 32839413]
[16]
Taylor, E.B. The complex role of adipokines in obesity, inflammation, and autoimmunity. Clin. Sci., 2021, 135(6), 731-752.
[http://dx.doi.org/10.1042/CS20200895] [PMID: 33729498]
[17]
Mráziková, L. Palmitoylated prolactin-releasing peptide treatment had neuroprotective but not anti-obesity effect in fa/fa rats with leptin signaling disturbances. Nutr. Diabetes, 2022, 12(1), 1-10.
[http://dx.doi.org/10.1038/s41387-022-00205-3]
[18]
Kleinendorst, L.; Abawi, O.; van der Kamp, H.J.; Alders, M.; Meijers-Heijboer, H.E.J.; van Rossum, E.F.C.; van den Akker, E.L.T.; van Haelst, M.M. Leptin receptor deficiency: A systematic literature review and prevalence estimation based on population genetics. Eur. J. Endocrinol., 2020, 182(1), 47-56.
[http://dx.doi.org/10.1530/EJE-19-0678] [PMID: 31658438]
[19]
Friedman, J.M. Leptin and the endocrine control of energy balance. Nat. Metab., 2019, 1(8), 754-764.
[http://dx.doi.org/10.1038/s42255-019-0095-y]
[20]
Watanobe, H. Leptin directly acts within the hypothalamus to stimulate gonadotropin-releasing hormone secretion in vivo in rats. J. Physiol., 2002, 545(Pt 1), 255.
[http://dx.doi.org/10.1113/jphysiol.2002.023895]
[21]
Zhou, Y.; Rui, L. Leptin signaling and leptin resistance. Front. Med., 2013, 7(2), 207-222.
[http://dx.doi.org/10.1007/s11684-013-0263-5] [PMID: 23580174]
[22]
Park, H.K.; Ahima, R.S. Physiology of leptin: Energy homeostasis, neuroendocrine function and metabolism. Metabolism, 2015, 64(1), 24-34.
[http://dx.doi.org/10.1016/j.metabol.2014.08.004] [PMID: 25199978]
[23]
Obradovic, M.; Sudar-Milovanovic, E.; Soskic, S.; Essack, M.; Arya, S.; Stewart, A.J.; Gojobori, T.; Isenovic, E.R. Leptin and obesity: Role and clinical implication. Front. Endocrinol., 2021, 12, 585887.
[http://dx.doi.org/10.3389/fendo.2021.585887] [PMID: 34084149]
[24]
Miller, G.D. Appetite regulation: Hormones, peptides, and neurotransmitters and their role in obesity. Am. J. Lifestyle Med., 2019, 13(6), 586-601.
[http://dx.doi.org/10.1177/1559827617716376] [PMID: 31662725]
[25]
Blüher, S.; Mantzoros, C.S. Leptin in humans: lessons from translational research. Am. J. Clin. Nutr., 2009, 89(3), 991S-997S.
[http://dx.doi.org/10.3945/ajcn.2008.26788E] [PMID: 19176740]
[26]
Lee, M.J.; Fried, S.K. Integration of hormonal and nutrient signals that regulate leptin synthesis and secretion. Am. J. Physiol. Endocrinol. Metab., 2009, 296(6), E1230-E1238.
[http://dx.doi.org/10.1152/ajpendo.90927.2008] [PMID: 19318513]
[27]
Guimarães, M.F.B.R.; de Andrade, M.V.M.; Machado, C.J.; Vieira, É.L.M.; Pinto, M.R.C.; Júnior, A.L.T.; Kakehasi, A.M. Leptin as an obesity marker in Rheumatoid arthritis. Rheumatol. Int., 2018, 38(9), 1671-1677.
[http://dx.doi.org/10.1007/s00296-018-4082-5] [PMID: 29947997]
[28]
Kiess, W.; Petzold, S.; Töpfer, M.; Garten, A.; Blüher, S.; Kapellen, T.; Körner, A.; Kratzsch, J. Adipocytes and adipose tissue. Best Pract. Res. Clin. Endocrinol. Metab., 2008, 22(1), 135-153.
[http://dx.doi.org/10.1016/j.beem.2007.10.002] [PMID: 18279785]
[29]
Ganji, V.; Kafai, M.R.; McCarthy, E. Serum leptin concentrations are not related to dietary patterns but are related to sex, age, body mass index, serum triacylglycerol, serum insulin, and plasma glucose in the US population. Nutr. Metab., 2009, 6(1), 3.
[http://dx.doi.org/10.1186/1743-7075-6-3] [PMID: 19144201]
[30]
Pandit, R.; Beerens, S.; Adan, R.A.H. Role of leptin in energy expenditure: the hypothalamic perspective. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2017, 312(6), R938-R947.
[http://dx.doi.org/10.1152/ajpregu.00045.2016] [PMID: 28356295]
[31]
Yeung, A.Y.; Tadi, P. Physiology, Obesity Neurohormonal Appetite And Satiety Control. StatPearls, 2020. Available on: http://europepmc.org/books/NBK555906 (Accessed on: Nov. 16, 2022).
[32]
Müller, M.J.; Enderle, J.; Bosy-Westphal, A. Changes in energy expenditure with weight gain and weight loss in humans. Curr. Obes. Rep., 2016, 5(4), 413-423.
[http://dx.doi.org/10.1007/s13679-016-0237-4] [PMID: 27739007]
[33]
Chan, J.L.; Heist, K.; DePaoli, A.M.; Veldhuis, J.D.; Mantzoros, C.S. The role of falling leptin levels in the neuroendocrine and metabolic adaptation to short-term starvation in healthy men. J. Clin. Invest., 2003, 111(9), 1409-1421.
[http://dx.doi.org/10.1172/JCI200317490] [PMID: 12727933]
[34]
Myers, M.G., Jr; Leibel, R.L.; Seeley, R.J.; Schwartz, M.W. Obesity and leptin resistance: Distinguishing cause from effect. Trends Endocrinol. Metab., 2010, 21(11), 643-651.
[http://dx.doi.org/10.1016/j.tem.2010.08.002] [PMID: 20846876]
[35]
Wauman, J.; Tavernier, J. Leptin receptor signaling: Pathways to leptin resistance. Front. Biosci., 2011, 16(1), 2771-2793.
[http://dx.doi.org/10.2741/3885] [PMID: 21622208]
[36]
Montserrat-de la Paz, S.; Pérez-Pérez, A.; Vilariño-García, T.; Jiménez-Cortegana, C.; Muriana, F.J.G.; Millán-Linares, M.C.; Sánchez-Margalet, V. Nutritional modulation of leptin expression and leptin action in obesity and obesity-associated complications. J. Nutr. Biochem., 2021, 89, 108561.
[http://dx.doi.org/10.1016/j.jnutbio.2020.108561] [PMID: 33249183]
[37]
Muskiet, F.A.J.; Carrera-Bastos, P.; Pruimboom, L.; Lucia, A.; Furman, D. Obesity and leptin resistance in the regulation of the Type I interferon early response and the increased risk for severe COVID-19. Nutr., 2022, 14(7), 1388.
[http://dx.doi.org/10.3390/nu14071388]
[38]
Izquierdo, A.G.; Crujeiras, A.B.; Casanueva, F.F.; Carreira, M.C. Leptin, obesity, and leptin resistance: Where are we 25 years later? Nutr., 2019, 11, 2704.
[http://dx.doi.org/10.3390/nu11112704]
[39]
Sandin, E.S. Is LRP2 involved in leptin transport over the blood-brain barrier and development of obesity? Int. J. Mol. Sci., 2021, 22(9), 4998.
[http://dx.doi.org/10.3390/ijms22094998]
[40]
Cuddapah, V.A.; Zhang, S.L.; Sehgal, A. Regulation of the blood–brain barrier by circadian rhythms and sleep. Trends Neurosci., 2019, 42(7), 500-510.
[http://dx.doi.org/10.1016/j.tins.2019.05.001] [PMID: 31253251]
[41]
Morris, D.L.; Rui, L. Recent advances in understanding leptin signaling and leptin resistance. Am. J. Physiol. Endocrinol. Metab., 2009, 297(6), E1247-E1259.
[http://dx.doi.org/10.1152/ajpendo.00274.2009] [PMID: 19724019]
[42]
Lustig, R.H.; Sen, S.; Soberman, J.E.; Velasquez-Mieyer, P.A. Obesity, leptin resistance, and the effects of insulin reduction. Int. J. Obes., 2004, 28(10), 1344-1348.
[http://dx.doi.org/10.1038/sj.ijo.0802753]
[43]
Yu, S.; François, M.; Huesing, C.; Münzberg, H. The hypothalamic preoptic area and body weight control. Neuroendocrinology, 2018, 106(2), 187-194.
[http://dx.doi.org/10.1159/000479875] [PMID: 28772276]
[44]
Upton, B.A.; D’Souza, S.P.; Lang, R.A. QPLOT neurons—converging on a thermoregulatory preoptic neuronal population. Front. Neurosci., 2021, 15, 665762.
[http://dx.doi.org/10.3389/fnins.2021.665762] [PMID: 34017237]
[45]
Roger, C.; Lasbleiz, A.; Guye, M.; Dutour, A.; Gaborit, B.; Ranjeva, J.P. The role of the human hypothalamus in food intake networks: An MRI perspective. Front. Nutr., 2022, 8, 760914.
[http://dx.doi.org/10.3389/fnut.2021.760914] [PMID: 35047539]
[46]
Mitchell, C.S.; Begg, D.P. The regulation of food intake by insulin in the central nervous system. J. Neuroendocrinol., 2021, 33(4), e12952.
[http://dx.doi.org/10.1111/jne.12952] [PMID: 33656205]
[47]
Morton, G.J. Hypothalamic leptin regulation of energy homeostasis and glucose metabolism. J. Physiol., 2007, 583(Pt 2), 437.
[http://dx.doi.org/10.1113/jphysiol.2007.135590]
[48]
Vong, L.; Ye, C.; Yang, Z.; Choi, B.; Chua, S., Jr; Lowell, B.B. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron, 2011, 71(1), 142-154.
[http://dx.doi.org/10.1016/j.neuron.2011.05.028] [PMID: 21745644]
[49]
Korner, J.; Savontaus, E.; Chua, S.C., Jr; Leibel, R.L.; Wardlaw, S.L. Leptin regulation of Agrp and Npy mRNA in the rat hypothalamus. J. Neuroendocrinol., 2001, 13(11), 959-966.
[http://dx.doi.org/10.1046/j.1365-2826.2001.00716.x] [PMID: 11737554]
[50]
Palou, M.; Sánchez, J.; Rodríguez, A.M.; Priego, T.; Picó, C.; Palou, A. Induction of NPY/AgRP orexigenic peptide expression in rat hypothalamus is an early event in fasting: relationship with circulating leptin, insulin and glucose. Cell. Physiol. Biochem., 2009, 23(1-3), 115-124.
[http://dx.doi.org/10.1159/000204100] [PMID: 19255506]
[51]
López, M.; Tovar, S.; Vázquez, M.J.; Williams, L.M.; Diéguez, C. Peripheral tissue–brain interactions in the regulation of food intake. Proc. Nutr. Soc., 2007, 66(1), 131-155.
[http://dx.doi.org/10.1017/S0029665107005368] [PMID: 17343779]
[52]
Azain, M.J.; Wang, T.; Hulsey, M.G.; Qian, H.; Hartzell, D.L.; Baile, C.A. Effects of intracerebroventricularly administered leptin on protein selection in the rat. Physiol. Behav., 1999, 66(3), 537-541.
[http://dx.doi.org/10.1016/S0031-9384(98)00326-6] [PMID: 10357446]
[53]
Carreiro, A.L.; Dhillon, J.; Gordon, S.; Higgins, K.A.; Jacobs, A.G.; McArthur, B.M.; Redan, B.W.; Rivera, R.L.; Schmidt, L.R.; Mattes, R.D. The macronutrients, appetite, and energy intake. Annu. Rev. Nutr., 2016, 36(1), 73-103.
[http://dx.doi.org/10.1146/annurev-nutr-121415-112624] [PMID: 27431364]
[54]
Han, P.; Keast, R.S.J.; Roura, E. Salivary leptin and TAS1R2/TAS1R3 polymorphisms are related to sweet taste sensitivity and carbohydrate intake from a buffet meal in healthy young adults. Br. J. Nutr., 2017, 118(10), 763-770.
[http://dx.doi.org/10.1017/S0007114517002872] [PMID: 29110749]
[55]
Jenkins, A.B.; Markovic, T.P.; Fleury, A.; Campbell, L.V. Carbohydrate intake and short-term regulation of leptin in humans. Diabetologia, 1997, 40(3), 348-351.
[http://dx.doi.org/10.1007/s001250050686] [PMID: 9084976]
[56]
Li, Y.; Ma, J.; Yao, K.; Su, W.; Tan, B.; Wu, X.; Huang, X.; Li, T.; Yin, Y.; Tosini, G.; Yin, J. Circadian rhythms and obesity: Timekeeping governs lipid metabolism. J. Pineal Res., 2020, 69(3), e12682.
[http://dx.doi.org/10.1111/jpi.12682] [PMID: 32656907]
[57]
Lewis, P.; Oster, H.; Korf, H.W.; Foster, R.G.; Erren, T.C. Food as a circadian time cue-evidence from human studies. Nat. Rev. Endocrinol., 2020, 16(4), 213-223.
[http://dx.doi.org/10.1038/s41574-020-0318-z]
[58]
McMinn, J.E.; Wilkinson, C.W.; Havel, P.J.; Woods, S.C.; Schwartz, M.W. Effect of intracerebroventricular α-MSH on food intake, adiposity, c-Fos induction, and neuropeptide expression. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2000, 279(2), R695-R703.
[http://dx.doi.org/10.1152/ajpregu.2000.279.2.R695] [PMID: 10938261]
[59]
Hulsey, M.; Lu, H.; Wang, T.; Martin, R.; Baile, C. Intracerebroventricular (i.c.v.) administration of mouse leptin in rats: behavioral specificity and effects on meal patterns. Physiol. Behav., 1998, 65(3), 445-455.
[http://dx.doi.org/10.1016/S0031-9384(98)00180-2] [PMID: 9877410]
[60]
Lanfray, D.; Richard, D.; Chowen, J.A.; Richard, D.; Lanfray, D. Emerging signaling pathway in arcuate feeding-related neurons: Role of the Acbd7. Front. Neurosci., 2017, 11, 328.
[http://dx.doi.org/10.3389/fnins.2017.00328] [PMID: 28690493]
[61]
Perry, R.J.; Resch, J.M.; Douglass, A.M.; Madara, J.C.; Rabin-Court, A.; Kucukdereli, H.; Wu, C.; Song, J.D.; Lowell, B.B.; Shulman, G.I. Leptin’s hunger-suppressing effects are mediated by the hypothalamic–pituitary–adrenocortical axis in rodents. Proc. Natl. Acad. Sci. USA, 2019, 116(27), 13670-13679.
[http://dx.doi.org/10.1073/pnas.1901795116] [PMID: 31213533]
[62]
Figlewicz, D.P.; Evans, S.B.; Murphy, J.; Hoen, M.; Baskin, D.G. Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Res., 2003, 964(1), 107-115.
[http://dx.doi.org/10.1016/S0006-8993(02)04087-8] [PMID: 12573518]
[63]
Marcus, J.N.; Aschkenasi, C.J.; Lee, C.E.; Chemelli, R.M.; Saper, C.B.; Yanagisawa, M.; Elmquist, J.K. Differential expression of orexin receptors 1 and 2 in the rat brain. J. Comp. Neurol., 2001, 435(1), 6-25.
[http://dx.doi.org/10.1002/cne.1190] [PMID: 11370008]
[64]
Furudono, Y.; Ando, C.; Yamamoto, C.; Kobashi, M.; Yamamoto, T. Involvement of specific orexigenic neuropeptides in sweetener-induced overconsumption in rats. Behav. Brain Res., 2006, 175(2), 241-248.
[http://dx.doi.org/10.1016/j.bbr.2006.08.031] [PMID: 17010451]
[65]
Campos, A.; Port, J.D.; Acosta, A. Integrative hedonic and homeostatic food intake regulation by the central nervous system: Insights from neuroimaging. Brain Sci., 2022, 12(4), 431.
[http://dx.doi.org/10.3390/brainsci12040431]
[66]
Uher, R.; Treasure, J.; Heining, M.; Brammer, M.J.; Campbell, I.C. Cerebral processing of food-related stimuli: Effects of fasting and gender. Behav. Brain Res., 2006, 169(1), 111-119.
[http://dx.doi.org/10.1016/j.bbr.2005.12.008] [PMID: 16445991]
[67]
Peters, J.H.; Simasko, S.M.; Ritter, R.C. Modulation of vagal afferent excitation and reduction of food intake by leptin and cholecystokinin. Physiol. Behav., 2006, 89(4), 477-485.
[http://dx.doi.org/10.1016/j.physbeh.2006.06.017] [PMID: 16872644]
[68]
Shigemura, N.; Ohta, R.; Kusakabe, Y.; Miura, H.; Hino, A.; Koyano, K.; Nakashima, K.; Ninomiya, Y. Leptin modulates behavioral responses to sweet substances by influencing peripheral taste structures. Endocrinology, 2004, 145(2), 839-847.
[http://dx.doi.org/10.1210/en.2003-0602] [PMID: 14592964]
[69]
de Krom, M.; van der Schouw, Y.T.; Hendriks, J.; Ophoff, R.A.; van Gils, C.H.; Stolk, R.P.; Grobbee, D.E.; Adan, R. Common genetic variations in CCK, leptin, and leptin receptor genes are associated with specific human eating patterns. Diabetes, 2007, 56(1), 276-280.
[http://dx.doi.org/10.2337/db06-0473] [PMID: 17192493]
[70]
Zhang, Y.; Lin, C.; Chen, R.; Luo, L.; Huang, J.; Liu, H.; Chen, W.; Xu, J.; Yu, H.; Ding, Y. Association analysis of SOCS3, JAK2 and STAT3 gene polymorphisms and genetic susceptibility to type 2 diabetes mellitus in Chinese population. Diabetol. Metab. Syndr., 2022, 14(1), 4.
[http://dx.doi.org/10.1186/s13098-021-00774-w] [PMID: 34991691]
[71]
Casado, M.E.; Collado-Pérez, R.; Frago, L.M.; Barrios, V. Recent advances in the knowledge of the mechanisms of leptin physiology and actions in neurological and metabolic pathologies. Int. J. Mol. Sci., 2023, 24(2), 1422.
[http://dx.doi.org/10.3390/ijms24021422] [PMID: 36674935]
[72]
Ramos-Lobo, A.M.; Teixeira, P.D.S.; Furigo, I.C.; Melo, H.M. de M Lyra e Silva, N.; De Felice, F.G.; Donato, J., Jr Long-term consequences of the absence of leptin signaling in early life. eLife, 2019, 8, e40970.
[http://dx.doi.org/10.7554/eLife.40970] [PMID: 30694175]
[73]
Strobel, A.; Issad, T.; Camoin, L.; Ozata, M.; Strosberg, A.D. A leptin missense mutation associated with hypogonadism and morbid obesity. Nat. Genet., 1998, 18(3), 213-215.
[http://dx.doi.org/10.1038/ng0398-213]
[74]
Pelleymounter, M.A.; Cullen, M.J.; Baker, M.B.; Hecht, R.; Winters, D.; Boone, T.; Collins, F. Effects of the obese gene product on body weight regulation in ob/ob mice. Science, 1995, 269(5223), 540-543.
[http://dx.doi.org/10.1126/science.7624776] [PMID: 7624776]
[75]
Farooqi, I.S.; Jebb, S.A.; Langmack, G.; Lawrence, E.; Cheetham, C.H.; Prentice, A.M.; Hughes, I.A.; McCamish, M.A.; O’Rahilly, S. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N. Engl. J. Med., 1999, 341(12), 879-884.
[http://dx.doi.org/10.1056/NEJM199909163411204] [PMID: 10486419]
[76]
Zelissen, P.M.J.; Stenlof, K.; Lean, M.E.J.; Fogteloo, J.; Keulen, E.T.P.; Wilding, J.; Finer, N.; Rössner, S.; Lawrence, E.; Fletcher, C.; McCamish, M. Effect of three treatment schedules of recombinant methionyl human leptin on body weight in obese adults: a randomized, placebo-controlled trial. Diabetes Obes. Metab., 2005, 7(6), 755-761.
[http://dx.doi.org/10.1111/j.1463-1326.2005.00468.x] [PMID: 16219020]
[77]
Heymsfield, S.B.; Greenberg, A.S.; Fujioka, K.; Dixon, R.M.; Kushner, R.; Hunt, T.; Lubina, J.A.; Patane, J.; Self, B.; Hunt, P.; McCamish, M. Recombinant leptin for weight loss in obese and lean adults: A randomized, controlled, dose-escalation trial. JAMA, 1999, 282(16), 1568-1575.
[http://dx.doi.org/10.1001/jama.282.16.1568] [PMID: 10546697]
[78]
Tang-Christensen, M.; Havel, P.J.; Jacobs, R.R.; Larsen, P.J.; Cameron, J.L. Central administration of leptin inhibits food intake and activates the sympathetic nervous system in rhesus macaques. J. Clin. Endocrinol. Metab., 1999, 84(2), 711-717.
[http://dx.doi.org/10.1210/jc.84.2.711] [PMID: 10022442]
[79]
Chen, G.; Koyama, K.; Yuan, X.; Lee, Y.; Zhou, Y.T.; O’Doherty, R.; Newgard, C.B.; Unger, R.H. Disappearance of body fat in normal rats induced by adenovirus-mediated leptin gene therapy. Proc. Natl. Acad. Sci. USA, 1996, 93(25), 14795-14799.
[http://dx.doi.org/10.1073/pnas.93.25.14795] [PMID: 8962134]
[80]
Roth, J.D.; Roland, B.L.; Cole, R.L.; Trevaskis, J.L.; Weyer, C.; Koda, J.E.; Anderson, C.M.; Parkes, D.G.; Baron, A.D. Leptin responsiveness restored by amylin agonism in diet-induced obesity: Evidence from nonclinical and clinical studies. Proc. Natl. Acad. Sci. USA, 2008, 105(20), 7257-7262.
[http://dx.doi.org/10.1073/pnas.0706473105] [PMID: 18458326]
[81]
Ravussin, E.; Smith, S.R.; Mitchell, J.A.; Shringarpure, R.; Shan, K.; Maier, H.; Koda, J.E.; Weyer, C. Enhanced weight loss with pramlintide/metreleptin: an integrated neurohormonal approach to obesity pharmacotherapy. Obesity, 2009, 17(9), 1736-1743.
[http://dx.doi.org/10.1038/oby.2009.184] [PMID: 19521351]
[82]
Kempf, K.; Röhling, M.; Banzer, W.; Braumann, K.M.; Halle, M.; Schaller, N.; McCarthy, D.; Predel, H.G.; Schenkenberger, I.; Tan, S.; Toplak, H.; Martin, S.; Berg, A. Early and strong leptin reduction is predictive for long-term weight loss during high-protein, low-glycaemic meal replacement- A Subanalysis of the Randomised-Controlled ACOORH Trial. Nutrients, 2022, 14(12), 2537.
[http://dx.doi.org/10.3390/nu14122537] [PMID: 35745267]
[83]
Ramel, A.; Arnarson, A.; Parra, D.; Kiely, M.; Bandarra, N.M.; Martínez, J.A.; Thorsdottir, I. Gender difference in the prediction of weight loss by leptin among overweight adults. Ann. Nutr. Metab., 2010, 56(3), 190-197.
[http://dx.doi.org/10.1159/000281833] [PMID: 20197658]
[84]
Al Maskari, M.Y.; Alnaqdy, A.A. Correlation between serum leptin levels, body mass index and obesity in Omanis. Sultan Qaboos Univ. Med. J., 2006, 6(2), 27.
[85]
Maffei, M.; Halaas, J.; Ravussin, E.; Pratley, R.E.; Lee, G.H.; Zhang, Y.; Fei, H.; Kim, S.; Lallone, R.; Ranganathan, S.; Kern, P.A.; Friedman, J.M. Leptin levels in human and rodent: Measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat. Med., 1995, 1(11), 1155-1161.
[http://dx.doi.org/10.1038/nm1195-1155] [PMID: 7584987]
[86]
Friedman, J.M. The function of leptin in nutrition, weight, and physiology. Nutr. Rev., 2002, 60(10), S1-S14.
[http://dx.doi.org/10.1301/002966402320634878]
[87]
Bouassida, A.; Chamari, K.; Zaouali, M.; Feki, Y.; Zbidi, A.; Tabka, Z. Review on leptin and adiponectin responses and adaptations to acute and chronic exercise. Br. J. Sports Med., 2010, 44(9), 620-630.
[http://dx.doi.org/10.1136/bjsm.2008.046151] [PMID: 18927166]
[88]
Kraemer, R.R.; Chu, H.; Castracane, V.D. Leptin and exercise. Exp. Biol. Med., 2002, 227(9), 701-708.
[http://dx.doi.org/10.1177/153537020222700903] [PMID: 12324651]
[89]
Murawska-Ciałowicz, E.; Kaczmarek, A.; Kałwa, M.; Oniszczuk, A. Influence of training and single exercise on leptin level and metabolism in obese overweight and normal-weight women of different age. Int. J. Environ. Res. Public Health, 2022, 19(19), 12168.
[http://dx.doi.org/10.3390/ijerph191912168] [PMID: 36231470]
[90]
Pasman, W.J.; Westerterp-Plantenga, M.S.; Saris, W.H.M. The effect of exercise training on leptin levels in obese males. Am. J. Physiol., 1998, 274(2), E280-E286.
[http://dx.doi.org/10.1152/AJPENDO.1998.274.2.E280/ASSET/IMAGES/LARGE/AEND1021002.JPEG] [PMID: 9486159]
[91]
Becic, T.; Studenik, C.; Hoffmann, G. Exercise Increases adiponectin and reduces leptin levels in prediabetic and diabetic individuals: Systematic review and meta-analysis of randomized controlled trials. Med. Sci., 2018, 6(4), 97.
[http://dx.doi.org/10.3390/medsci6040097] [PMID: 30380802]
[92]
Reseland, J.E.; Anderssen, S.A.; Solvoll, K.; Hjermann, I.; Urdal, P.; Holme, I.; Drevon, C.A. Effect of long-term changes in diet and exercise on plasma leptin concentrations. Am. J. Clin. Nutr., 2001, 73(2), 240-245.
[http://dx.doi.org/10.1093/ajcn/73.2.240] [PMID: 11157319]
[93]
Bouassida, A. Leptin, its implication in physical exercise and training: A short review. J. Sports Sci. Med., 2006, 5(2), 172.
[94]
Kowalska, I.; Straczkowski, M.; Górski, J.; Kinalska, I. The effect of fasting and physical exercise on plasma leptin concentrations in high-fat fed rats. J. Physiol. Pharmacol., 1999, 50(2), 309-320.
[PMID: 10424725]
[95]
Crane, C.; Akhter, N.; Johnson, B.W.; Iruthayanathan, M.; Syed, F.; Kudo, A.; Zhou, Y.H.; Childs, G.V. Fasting and glucose effects on pituitary leptin expression: is leptin a local signal for nutrient status? J. Histochem. Cytochem., 2007, 55(10), 1059-1073.
[http://dx.doi.org/10.1369/jhc.7A7214.2007] [PMID: 17595338]
[96]
Abbenhardt, C.; McTiernan, A.; Alfano, C.M.; Wener, M.H.; Campbell, K.L.; Duggan, C.; Foster-Schubert, K.E.; Kong, A.; Toriola, A.T.; Potter, J.D.; Mason, C.; Xiao, L.; Blackburn, G.L.; Bain, C.; Ulrich, C.M. Effects of individual and combined dietary weight loss and exercise interventions in postmenopausal women on adiponectin and leptin levels. J. Intern. Med., 2013, 274(2), 163-175.
[http://dx.doi.org/10.1111/joim.12062] [PMID: 23432360]
[97]
Venner, A.A.; Lyon, M.E.; Doyle-Baker, P.K. Leptin: A potential biomarker for childhood obesity? Clin. Biochem., 2006, 39(11), 1047-1056.
[http://dx.doi.org/10.1016/j.clinbiochem.2006.07.010] [PMID: 17005171]
[98]
Bereket, A.; Atay, Z. Current status of childhood obesity and its associated morbidities in Turkey. J. Clin. Res. Pediatr. Endocrinol., 2012, 4(1), 1-7.
[http://dx.doi.org/10.4274/jcrpe.506] [PMID: 22394698]
[99]
Golden, A.; Kessler, C. Obesity and genetics. J. Am. Assoc. Nurse Pract., 2020, 32(7), 493-496.
[http://dx.doi.org/10.1097/JXX.0000000000000447] [PMID: 32658169]
[100]
Santos, J.L.; Cortés, V.A. Eating behaviour in contrasting adiposity phenotypes: Monogenic obesity and congenital generalized lipodystrophy. Obes. Rev., 2021, 22(1), e13114.
[http://dx.doi.org/10.1111/obr.13114] [PMID: 33030294]
[101]
Yupanqui-Lozno, H. Congenital leptin deficiency and leptin gene missense mutation found in two colombian sisters with severe obesity. Genes, 2019, 10(5), 342.
[http://dx.doi.org/10.3390/genes10050342]
[102]
ElSaeed, G.; Mousa, N.; El-Mougy, F.; Hafez, M.; Khodeera, S.; Alhelbawy, M.; Fouda, E.; Elsheikh, S.; ElKaffas, R.; Eldeeb, S.; Elsharkawy, M. Monogenic leptin deficiency in early childhood obesity. Pediatr. Obes., 2020, 15(1), e12574.
[http://dx.doi.org/10.1111/ijpo.12574] [PMID: 31483094]
[103]
Wabitsch, M.; Funcke, J-B.; von Schnurbein, J.; Denzer, F.; Lahr, G.; Mazen, I.; El-Gammal, M.; Denzer, C.; Moss, A.; Debatin, K-M.; Gierschik, P.; Mistry, V.; Keogh, J.M.; Farooqi, I.S.; Moepps, B.; Fischer-Posovszky, P. Severe early-onset obesity due to bioinactive leptin caused by a p.N103K mutation in the leptin gene. J. Clin. Endocrinol. Metab., 2015, 100(9), 3227-3230.
[http://dx.doi.org/10.1210/jc.2015-2263]
[104]
Fırat, S.N.; Onay, H. Early-onset severe obesity due to homozygous p.R105W (c313C> T) mutation in leptin gene in Turkish siblings: Two cases reports. Obes. Res. Clin. Pract., 2021, 15(6), 600-603.
[http://dx.doi.org/10.1016/j.orcp.2021.11.001] [PMID: 34802983]
[105]
Pîrsean, C. Neguț C.; Stefan-van Staden, R.I.; Dinu-Pirvu, C.E.; Armean, P.; Udeanu, D.I. The salivary levels of leptin and interleukin-6 as potential inflammatory markers in children obesity. PLoS One, 2019, 14(1), e0210288.
[http://dx.doi.org/10.1371/journal.pone.0210288] [PMID: 30605486]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy