Generic placeholder image

Current Drug Research Reviews

Editor-in-Chief

ISSN (Print): 2589-9775
ISSN (Online): 2589-9783

Systematic Review Article

A Review on Exploring the Potential of Vincamine and Melatonin as an Effective Anti-depressant Agent

Author(s): Rizwana Bee, Mohammad Ahmad* and Shashi Verma

Volume 16, Issue 3, 2024

Published on: 04 October, 2023

Page: [395 - 402] Pages: 8

DOI: 10.2174/2589977515666230825095036

Price: $65

conference banner
Abstract

Background: Depression is a prevalent psychiatric disorder and one of the leading causes of disability around the world. Herbal and synthetic medications used to treat depression, may interrupt the therapy process and cause adverse effects. Currently, the use of medicinal and phytochemical plants, which have various therapeutic effects and has potential strategy for treating depression. According to the studies, medicinal plants have a variety of effects on the brain system and have antidepressant properties such as synaptic modulation of serotonin, noradrenalin and dopamine as well as inflammatory mediators. According to the literature review, Vinca Rosea extract has a variety of pharmacological activities, but there is no evidence of its antidepressant properties.

Objectives: The main aim of the present study is to gather data from the literature review regarding the antidepressant activity of vincamine alone and along with melatonin.

Methods: According to the review antidepressant activity of various medications can be tested using two different types of studies, including in-vivo and in-vitro.

Results: Clinical and preclinical research suggests that one of the main mediators in the pathophysiology of depression seems to be stress. Depression can be evaluated using experimental methods based on a variety of physical indicators, including locomotor activity, rearing, faeces, and the quantity of entries in the centre square (in-vivo and in-vitro). Biological conditions can be used to find it as well. It has been successfully concluded that vincamine, either alone or in combination with melatonin, may provide a potential role as an antidepressant.

Conclusion: According to the Globe Health Organization, depression will become the most common cause of loss of interest in working in the world. As a result, depression research is one of the most significant ways in which we might create new treatments in the form of vincamine and combination with melatonin for depression and improve existing therapies to make them work better for depressed people. It will also aid in the development and creation of novel ways for the better treatment of depression.

Keywords: Depression, melatonin, vincamine, serotonin, noradrenaline, biomarkers, WHO.

Graphical Abstract
[1]
Noorbala AA, Akhondzadeh S. Hydroalcoholic extract of Crocus sativus L. versus fluoxetine in the treatment of mild to moderate depression. A double-blind, randomized pilot trial. J Ethnopharmacol 2005; 97(2): 281-4.
[2]
Belmaker RH, Agam G. Major depressive disorder. N Engl J Med 2008; 358(1): 55-68.
[http://dx.doi.org/10.1056/NEJMra073096] [PMID: 18172175]
[3]
Hindmarch I. Expanding the horizons of depression: Beyond the monoamine hypothesis. Hum Psychopharmacol 2001; 16(3): 203-18.
[http://dx.doi.org/10.1002/hup.288] [PMID: 12404573]
[4]
Sulser F, Watts J, Brodie BB. On the mechanism of antidepressant action of imipraminelike drugs. Ann N Y Acad Sci 1962; 96(1): 279-88.
[http://dx.doi.org/10.1111/j.1749-6632.1962.tb50122.x] [PMID: 13918341]
[5]
Dwyer AV, Whitten DL. Herbal medicines, other than St. John’s Wort, in the treatment of depression. Sci Rev Altern Med 2011; 16(1)
[6]
Tegegne MT, Mossie TB, Awoke AA, Assaye AM, Gebrie BT, Eshetu DA. Depression and anxiety disorder among epileptic people at Amanuel Specialized Mental Hospital, Addis Ababa, Ethiopia. BMC Psychiatry 2015; 15(1): 210.
[http://dx.doi.org/10.1186/s12888-015-0589-4] [PMID: 26328614]
[7]
Berton O, Nestler EJ. New approaches to antidepressant drug discovery: Beyond monoamines. Nat Rev Neurosci 2006; 7(2): 137-51.
[http://dx.doi.org/10.1038/nrn1846] [PMID: 16429123]
[8]
Drevets WC, Price ÆJL. Brain structural and functional abnormalities in mood disorders: Implications for neurocircuitry models of depression. Brain Struct Funct 2008; 213(1-2): 93-118.
[9]
Rabiei Z, Rabiei S. A review on antidepressant effect of medicinal plants. Bangladesh J Pharmacol 2017; 12(1): 1-11.
[http://dx.doi.org/10.3329/bjp.v12i1.29184]
[10]
Schulberg HC, Katon W, Simon GE, Rush AJ. Treating major depression in primary care practice: An update of the Agency for Health Care Policy and Research Practice Guidelines. Arch Gen Psychiatry 1998; 55(12): 1121-7.
[http://dx.doi.org/10.1001/archpsyc.55.12.1121] [PMID: 9862556]
[11]
Sharma Sk. New-Delhi: Rashtriya Ayurveda Vidyapeeth, Ministry of Health and Family Welfare, Govt of India. 1998.Medicinal Plants used in Ayurveda
[12]
The Wealth of India-Raw Materials. New Delhi: Publication and Information Directorate, Council of Scientific and Industrial Research 1985; 3: pp. 391-5.
[13]
Brogan C. Alkaloids cancer treatments. 2010. Available from: http://www.Vinca alkaloids\AlkaloidsCancerTreatmentLivestrong_com.mh
[14]
Lee G, Bae H. Therapeutic effects of phytochemicals and medicinal herbs on depression. BioMed Res Int 2017; 2017: 1-11.
[http://dx.doi.org/10.1155/2017/6596241] [PMID: 28503571]
[15]
Barden N, Reul JMHM, Holsboer F. Do antidepressants stabilize mood through actions on the hypothalamic-pituitary-adrenocortical system? Trends Neurosci 1995; 18(1): 6-11.
[http://dx.doi.org/10.1016/0166-2236(95)93942-Q] [PMID: 7535490]
[16]
Pan Y, Kong LD, Li YC, Xia X, Kung HF, Jiang FX. Icariin from Epimedium brevicornum attenuates chronic mild stress-induced behavioral and neuroendocrinological alterations in male Wistar rats. Pharmacol Biochem Behav 2007; 87(1): 130-40.
[http://dx.doi.org/10.1016/j.pbb.2007.04.009] [PMID: 17509675]
[17]
Plotsky PM, Owens MJ, Nemeroff CB. Psychoneuroendocrinology of depression. Hypothalamic-pituitary-adrenal axis. Psychiatr Clin North Am 1998; 21(2): 293-307.
[http://dx.doi.org/10.1016/S0193-953X(05)70006-X] [PMID: 9670227]
[18]
Pandya CD, Howell KR, Pillai A. Antioxidants as potential therapeutics for neuropsychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2013; 46: 214-23.
[http://dx.doi.org/10.1016/j.pnpbp.2012.10.017] [PMID: 23123357]
[19]
Maes M, Galecki P, Chang YS, Berk M. A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35(3): 676-92.
[http://dx.doi.org/10.1016/j.pnpbp.2010.05.004] [PMID: 20471444]
[20]
Liu B, Xu C, Wu X, et al. Icariin exerts an antidepressant effect in an unpredictable chronic mild stress model of depression in rats and is associated with the regulation of hippocampal neuroinflammation. Neuroscience 2015; 294: 193-205.
[http://dx.doi.org/10.1016/j.neuroscience.2015.02.053] [PMID: 25791226]
[21]
Xing H, Zhang K, Zhang R, et al. Determination of depression biomarkers in rat plasma by liquid chromatography-mass spectrometry for the study of the antidepressant effect of Zhi-Zi-Hou-Po decoction on rat model of chronic unpredictable mild stress. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 988: 135-42.
[http://dx.doi.org/10.1016/j.jchromb.2015.02.037] [PMID: 25770791]
[22]
Ladep NG, Obindo TJ, Audu MD, Okeke EN, Malu AO. Depression in patients with irritable bowel syndrome in Jos, Nigeria. World J Gastroenterol 2006; 12(48): 7844-7.
[http://dx.doi.org/10.3748/wjg.v12.i48.7844] [PMID: 17203531]
[23]
Sarris J, Panossian A, Schweitzer I, Stough C, Scholey A. Herbal medicine for depression, anxiety and insomnia: A review of psychopharmacology and clinical evidence. Eur Neuropsychopharmacol 2011; 21(12): 841-60.
[http://dx.doi.org/10.1016/j.euroneuro.2011.04.002] [PMID: 21601431]
[24]
Takeda H, Tsuji M, Miyamoto J, Matsumiya T. Rosmarinic acid and caffeic acid reduce the defensive freezing behavior of mice exposed to conditioned fear stress. Psychopharmacology 2002; 164(2): 233-5.
[http://dx.doi.org/10.1007/s00213-002-1253-5] [PMID: 12404088]
[25]
Chen CR, Tan R, Qu WM, et al. Magnolol, a major bioactive constituent of the bark of Magnolia officinalis, exerts antiepileptic effects via the GABA/benzodiazepine receptor complex in mice. Br J Pharmacol 2011; 164(5): 1534-46.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01456.x] [PMID: 21518336]
[26]
Saaby L, Rasmussen HB, Jäger AK. MAO-A inhibitory activity of quercetin from Calluna vulgaris (L.) Hull. J Ethnopharmacol 2009; 121(1): 178-81.
[http://dx.doi.org/10.1016/j.jep.2008.10.012] [PMID: 19013512]
[27]
Butterweck V. Mechanism of action of St John’s wort in depression: What is known? CNS Drugs 2003; 17(8): 539-62.
[http://dx.doi.org/10.2165/00023210-200317080-00001] [PMID: 12775192]
[28]
Seol GH, Shim HS, Kim PJ, et al. Antidepressant-like effect of Salvia sclarea is explained by modulation of dopamine activities in rats. J Ethnopharmacol 2010; 130(1): 187-90.
[http://dx.doi.org/10.1016/j.jep.2010.04.035] [PMID: 20441789]
[29]
Machado DG, Bettio LEB, Cunha MP, et al. Antidepressant-like effect of the extract of Rosmarinus officinalis in mice: Involvement of the monoaminergic system. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33(4): 642-50.
[http://dx.doi.org/10.1016/j.pnpbp.2009.03.004] [PMID: 19286446]
[30]
Sibi PI, Meera P. In silico docking analysis of constituents of Zingiber officinale as antidepressant. J Pharmacogn Phytother 2013; 5(6): 101-5.
[http://dx.doi.org/10.5897/JPP2013.0280]
[31]
Biswas UK, Choudhry B, Amrita K. Comparative evaluation of the antidepressant effects of ethanolic and queous extract of Glycyrrhiza Glabra in rats and mice. JGTPS 2012; 3(1): 585-601.
[32]
Schmidt M, Betti G, Hensel A. Saffron in phytotherapy: Pharmacology and clinical uses. Wien Med Wochenschr 2007; 157(13-14): 315-9.
[http://dx.doi.org/10.1007/s10354-007-0428-4] [PMID: 17704979]
[33]
Uebelhack R, Franke L, Schewe HJ. Inhibition of platelet MAO-B by kava pyrone-enriched extract from Piper methysticum Forster (kava-kava). Pharmacopsychiatry 1998; 31(5): 187-92.
[http://dx.doi.org/10.1055/s-2007-979325] [PMID: 9832350]
[34]
Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W. Isolation of melatonin, the pineal gland factor that lightens melanocyteS1. J Am Chem Soc 1958; 80(10): 2587.
[http://dx.doi.org/10.1021/ja01543a060]
[35]
Allegra M, Reiter RJ, Tan DX, Gentile C, Tesoriere L, Livrea MA. The chemistry of melatonin’s interaction with reactive species. J Pineal Res 2003; 34(1): 1-10.
[http://dx.doi.org/10.1034/j.1600-079X.2003.02112.x] [PMID: 12485365]
[36]
Marta B, Szafrańska K, Posmyk MM. Exogenous melatonin improves antioxidant defense in cucumber seeds (Cucumis sativus L.) germinated under chilling stress. Front Plant Sci 2016; 7: 575.
[http://dx.doi.org/10.3389/fpls.2016.00575] [PMID: 27200048]
[37]
Fischer TW, Kleszczyński K, Hardkop LH, Kruse N, Zillikens D. Melatonin enhances antioxidative enzyme gene expression (CAT, GPx, SOD), prevents their UVR-induced depletion, and protects against the formation of DNA damage (8-hydroxy-2′-deoxyguanosine) in ex vivo human skin. J Pineal Res 2013; 54(3): 303-12.
[http://dx.doi.org/10.1111/jpi.12018] [PMID: 23110400]
[38]
Gitto E, Tan DX, Reiter RJ, et al. Individual and synergistic antioxidative actions of melatonin: Studies with vitamin E, vitamin C, glutathione and desferrrioxamine (desferoxamine) in rat liver homogenates. J Pharm Pharmacol 2010; 53(10): 1393-401.
[http://dx.doi.org/10.1211/0022357011777747] [PMID: 11697548]
[39]
Szafra ´nska K, Posmyk MM. Phytomelatonin physiological functions.Serotonin and Melatonin: Their Functional Role in Plants, Food, Phytomedicine, and Human Health. Boca Raton, FL, USA: CRC Press Taylor & Francis Group 2016; pp. 61-72.
[http://dx.doi.org/10.1201/9781315369334-6]
[40]
Wang P, Yin L, Liang D, Li C, Ma F, Yue Z. Delayed senescence of apple leaves by exogenous melatonin treatment: Toward regulating the ascorbate-glutathione cycle. J Pineal Res 2012; 53(1): 11-20.
[http://dx.doi.org/10.1111/j.1600-079X.2011.00966.x] [PMID: 21988707]
[41]
Kołodziejczyk I, Bałabusta M, Szewczyk R, Posmyk MM. The levels of melatonin and its metabolites in conditioned corn (Zea mays L.) and cucumber (Cucumis sativus L.) seeds during storage. Acta Physiol Plant 2015; 37(6): 105.
[http://dx.doi.org/10.1007/s11738-015-1850-7]
[42]
Rosen J, Than NN, Koch D, Poeggeler B, Laatsch H, Hardeland R. Interactions of melatonin and its metabolites with the ABTS cation radical: Extension of the radical scavenger cascade and formation of a novel class of oxidation products, C2-substituted 3-indolinones. J Pineal Res 2006; 41(4): 374-81.
[http://dx.doi.org/10.1111/j.1600-079X.2006.00379.x] [PMID: 17014695]
[43]
Tan DX, Manchester LC, Di Mascio P, Martinez GR, Prado FM, Reiter RJ. Novel rhythms of N1-acetyl-N2-formyl-5-methoxykynuramine and its precursor melatonin in water hyacinth: Importance for phytoremediation. FASEB J 2007; 21(8): 1724-9.
[http://dx.doi.org/10.1096/fj.06-7745com] [PMID: 17314136]
[44]
Galano A, Tan DX, Reiter R. On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK. J Pineal Res 2013; 54: 245-57.
[45]
Chen G, Huo Y, Tan DX, Liang Z, Zhang W, Zhang Y. Melatonin in Chinese medicinal herbs. Life Sci 2003; 73(1): 19-26.
[http://dx.doi.org/10.1016/S0024-3205(03)00252-2] [PMID: 12726883]
[46]
Tan DX, Hardeland R, Manchester LC, et al. Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. J Exp Bot 2012; 63(2): 577-97.
[http://dx.doi.org/10.1093/jxb/err256] [PMID: 22016420]
[47]
Okazaki M, Ezura H. Profiling of melatonin in the model tomato (Solanum lycopersicum L.) cultivar Micro-Tom. J Pineal Res 2009; 46(3): 338-43.
[http://dx.doi.org/10.1111/j.1600-079X.2009.00668.x] [PMID: 19317796]
[48]
Bagoly E, Fehér G, Szapáry L. The role of vinpocetine in the treatment of cerebrovascular diseases based on human studies. Orv Hetil 2007; 148(29): 1353-8.
[http://dx.doi.org/10.1556/oh.2007.28115] [PMID: 17631470]
[49]
Dézsi L, Kis-Varga I, Nagy J, Komlódi Z, Kárpáti E. [Neuroprotective effects of vinpocetine in vivo and in vitro. Apovincaminic acid derivatives as potential therapeutic tools in ischemic stroke]. Acta Pharm Hung 2002; 72(2): 84-91.
[PMID: 12498034]
[50]
Saurabh CV, Kishor NG. Vinpocetine: Hype, hope and hurdles towardsneuroprotection. Asian J Pharm Res Dev 2013; 1: 17-23.
[51]
Sabry SM, Belal TS, Barary MH, Ibrahim MEAL. A validated HPLCmethod for the simultaneous determination of vincamine and its potentialdegradant (metabolite) vincaminic acid: Applications to pharmaceuticalformulations and pharmacokinetic studies. Yao Wu Shi Pin Fen Xi 2010; 18: 447-57.
[52]
Ando K, Hironaka N, Shuto K. Effects of vinconate on scopolamine-induced memory impairment in rhesus monkeys. Nihon Shinkei Seishin Yakurigaku Zasshi 2003; 23(1): 43-6.
[PMID: 12690640]
[53]
Manda V, Avula B, Dale O, et al. Studies on pharmacokinetic drug interaction potential ofvinpocetine. Medicines 2015; 2(2): 93-105.
[http://dx.doi.org/10.3390/medicines2020093] [PMID: 28930203]
[54]
Levy J. Process of preparation of vincamine from tabersonine. US3892755, 1975.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy