Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Machine Learning-derived Multi-omics Prognostic Signature of Pyroptosis-related lncRNA with Regard to ZKSCAN2-DT and Tumor Immune Infiltration in Colorectal Cancer

Author(s): Jiamin Chen, Dan Jin, Liming Shao, Lingling Wang, Liuzhi Zhou* and Jianting Cai*

Volume 27, Issue 8, 2024

Published on: 14 September, 2023

Page: [1161 - 1174] Pages: 14

DOI: 10.2174/1386207326666230823104952

open access plus

Abstract

Background: Colorectal cancer (CRC) has become the most prevalent gastrointestinal malignant tumor, ranking third (10.2%) in incidence and second (9.2%) in death among all malignancies globally. The most common histological subtype of CRC is colon adenocarcinoma (COAD), although the cause of CRC remains unknown, as there are no valid biomarkers.

Methods: A thorough investigation was used to build a credible biomolecular risk model based on the pyroptosis-associated lncRNAs discovered for COAD prediction. Furthermore, Cibersort and Tumor Immune Dysfunction and Exclusion (TIDE), the methods of exploring tumor immune infiltration, were adopted in our paper to detect the effects of differential lncRNAs on the tumor microenvironment. Finally, quantitative real-time polymerase chain reaction (qPCR), as the approach of exploring expressions, was utilized on four different cell lines.

Results: Seven pyroptosis-related lncRNAs have been identified as COAD predictive risk factors. Cox analysis, both univariate and multivariate, revealed that the established signature might serve as a novel independent factor with prognostic meaning in COAD patients. ZKSCAN2-DT was shown to be considerably overexpressed in the COAD cell line when compared to normal human colonic epithelial cells. Furthermore, ssGSEA analysis results revealed that the immune infiltration percentage of most immune cells dropped considerably as ZKSCAN2-DT expression increased, implying that ZKSCAN2-DT may play an important role in COAD immunotherapy.

Conclusion: Our research is the first to identify pyroptosis-related lncRNAs connected with COAD patient prognosis and to construct a predictive prognosis signature, directing COAD patient prognosis in therapeutic interventions.

Keywords: Colon adenocarcinoma, pyroptosis-related lncRNA, prognosis, biomarkers, immune infiltration, colorectal cancer (CRC).

Graphical Abstract
[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Siegel, R.L.; Miller, K.D.; Goding Sauer, A.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(3), 145-164.
[http://dx.doi.org/10.3322/caac.21601] [PMID: 32133645]
[3]
Baidoun, F.; Elshiwy, K.; Elkeraie, Y.; Merjaneh, Z.; Khoudari, G.; Sarmini, M.T.; Gad, M.; Al-Husseini, M.; Saad, A. Colorectal cancer epidemiology: Recent trends and impact on outcomes. Curr. Drug Targets, 2021, 22(9), 998-1009.
[http://dx.doi.org/10.2174/18735592MTEx9NTk2y] [PMID: 33208072]
[4]
Villariba-Tolentino, C.; Cariño, A.M.; Notarte, K.I.; Macaranas, I.; Fellizar, A.; Tomas, R.C.; Angeles, L.M.; Abanilla, L.; Lim, A.; Aguilar, M.K.C.; Albano, P.M. pks+ Escherichia coli more prevalent in benign than malignant colorectal tumors. Mol. Biol. Rep., 2021, 48(7), 5451-5458.
[http://dx.doi.org/10.1007/s11033-021-06552-1] [PMID: 34297324]
[5]
Wang, J.; Li, S.; Liu, Y.; Zhang, C.; Li, H.; Lai, B. Metastatic patterns and survival outcomes in patients with stage IV colon cancer: A population‐based analysis. Cancer Med., 2020, 9(1), 361-373.
[http://dx.doi.org/10.1002/cam4.2673] [PMID: 31693304]
[6]
Shi, J.; Gao, W.; Shao, F. Pyroptosis: Gasdermin-mediated programmed necrotic cell death. Trends Biochem. Sci., 2017, 42(4), 245-254.
[http://dx.doi.org/10.1016/j.tibs.2016.10.004] [PMID: 27932073]
[7]
Liu, X.; Xia, S.; Zhang, Z.; Wu, H.; Lieberman, J. Channelling inflammation: Gasdermins in physiology and disease. Nat. Rev. Drug Discov., 2021, 20(5), 384-405.
[http://dx.doi.org/10.1038/s41573-021-00154-z] [PMID: 33692549]
[8]
Broz, P.; Pelegrín, P.; Shao, F. The gasdermins, a protein family executing cell death and inflammation. Nat. Rev. Immunol., 2020, 20(3), 143-157.
[http://dx.doi.org/10.1038/s41577-019-0228-2] [PMID: 31690840]
[9]
Miguchi, M.; Hinoi, T.; Shimomura, M.; Adachi, T.; Saito, Y.; Niitsu, H.; Kochi, M.; Sada, H.; Sotomaru, Y.; Ikenoue, T.; Shigeyasu, K.; Tanakaya, K.; Kitadai, Y.; Sentani, K.; Oue, N.; Yasui, W.; Ohdan, H.; Gasdermin, C. Gasdermin C is upregulated by inactivation of transforming growth factor β receptor type II in the presence of mutated Apc, promoting colorectal cancer proliferation. PLoS One, 2016, 11(11), e0166422.
[http://dx.doi.org/10.1371/journal.pone.0166422] [PMID: 27835699]
[10]
Kim, M.S.; Chang, X.; Yamashita, K.; Nagpal, J.K.; Baek, J.H.; Wu, G.; Trink, B.; Ratovitski, E.A.; Mori, M.; Sidransky, D. Aberrant promoter methylation and tumor suppressive activity of the DFNA5 gene in colorectal carcinoma. Oncogene, 2008, 27(25), 3624-3634.
[http://dx.doi.org/10.1038/sj.onc.1211021] [PMID: 18223688]
[11]
Tan, G.; Huang, C.; Chen, J.; Zhi, F. HMGB1 released from GSDME-mediated pyroptotic epithelial cells participates in the] tumorigenesis of colitis-associated colorectal cancer through the ERK1/2 pathway. J. Hematol. Oncol., 2020, 13(1), 149.
[http://dx.doi.org/10.1186/s13045-020-00985-0] [PMID: 33160389]
[12]
Zhang, Z.; Zhang, Y.; Xia, S.; Kong, Q.; Li, S.; Liu, X.; Junqueira, C.; Meza-Sosa, K.F.; Mok, T.M.Y.; Ansara, J.; Sengupta, S.; Yao, Y.; Wu, H.; Lieberman, J. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature, 2020, 579(7799), 415-420.
[http://dx.doi.org/10.1038/s41586-020-2071-9] [PMID: 32188940]
[13]
Hou, J.; Hsu, J.M.; Hung, M.C. Molecular mechanisms and functions of pyroptosis in inflammation and antitumor immunity. Mol. Cell, 2021, 81(22), 4579-4590.
[http://dx.doi.org/10.1016/j.molcel.2021.09.003] [PMID: 34562371]
[14]
Wang, Y.; Gao, W.; Shi, X.; Ding, J.; Liu, W.; He, H.; Wang, K.; Shao, F. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature, 2017, 547(7661), 99-103.
[http://dx.doi.org/10.1038/nature22393] [PMID: 28459430]
[15]
Zhang, X.; Zhang, H. Chemotherapy drugs induce pyroptosis through caspase-3-dependent cleavage of GSDME. Sci. China Life Sci., 2018, 61(6), 739-740.
[http://dx.doi.org/10.1007/s11427-017-9158-x] [PMID: 29497957]
[16]
Ganesh, K.; Stadler, Z.K.; Cercek, A.; Mendelsohn, R.B.; Shia, J.; Segal, N.H.; Diaz, L.A., Jr Immunotherapy in colorectal cancer: Rationale, challenges and potential. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(6), 361-375.
[http://dx.doi.org/10.1038/s41575-019-0126-x] [PMID: 30886395]
[17]
Mercer, T.R.; Dinger, M.E.; Mattick, J.S. Long non-coding RNAs: Insights into functions. Nat. Rev. Genet., 2009, 10(3), 155-159.
[http://dx.doi.org/10.1038/nrg2521] [PMID: 19188922]
[18]
Zhang, G.; Sun, J.; Zhang, X. A novel Cuproptosis-related LncRNA signature to predict prognosis in hepatocellular carcinoma. Sci. Rep., 2022, 12(1), 11325.
[http://dx.doi.org/10.1038/s41598-022-15251-1] [PMID: 35790864]
[19]
Notarte, K.I.; Senanayake, S.; Macaranas, I.; Albano, P.M.; Mundo, L.; Fennell, E.; Leoncini, L.; Murray, P. MicroRNA and other non-coding RNAs in epstein–barr virus-associated cancers. Cancers., 2021, 13(15), 3909.
[http://dx.doi.org/10.3390/cancers13153909] [PMID: 34359809]
[20]
Denaro, N.; Merlano, M.C.; Lo Nigro, C. Long noncoding RNA s as regulators of cancer immunity. Mol. Oncol., 2019, 13(1), 61-73.
[http://dx.doi.org/10.1002/1878-0261.12413] [PMID: 30499165]
[21]
He, D.; Zheng, J.; Hu, J.; Chen, J.; Wei, X. Long non-coding RNAs and pyroptosis. Clin. Chim. Acta, 2020, 504, 201-208.
[http://dx.doi.org/10.1016/j.cca.2019.11.035] [PMID: 31794769]
[22]
Zhang, X.; Sun, S.; Pu, J.K.S.; Tsang, A.C.O.; Lee, D.; Man, V.O.Y.; Lui, W.M.; Wong, S.T.S.; Leung, G.K.K. Long non-coding RNA expression profiles predict clinical phenotypes in glioma. Neurobiol. Dis., 2012, 48(1), 1-8.
[http://dx.doi.org/10.1016/j.nbd.2012.06.004] [PMID: 22709987]
[23]
Wu, J.; Zhu, Y.; Luo, M.; Li, L. Comprehensive analysis of pyroptosis-related genes and tumor microenvironment infiltration characterization in breast cancer. Front. Immunol., 2021, 12, 748221.
[http://dx.doi.org/10.3389/fimmu.2021.748221] [PMID: 34659246]
[24]
Lossos, I.S.; Czerwinski, D.K.; Alizadeh, A.A.; Wechser, M.A.; Tibshirani, R.; Botstein, D.; Levy, R. Prediction of survival in diffuse large-B-cell lymphoma based on the expression of six genes. N. Engl. J. Med., 2004, 350(18), 1828-1837.
[http://dx.doi.org/10.1056/NEJMoa032520] [PMID: 15115829]
[25]
Blanche, P.; Dartigues, J.F.; Jacqmin-Gadda, H. Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks. Stat. Med., 2013, 32(30), 5381-5397.
[http://dx.doi.org/10.1002/sim.5958] [PMID: 24027076]
[26]
Newman, A.M.; Liu, C.L.; Green, M.R.; Gentles, A.J.; Feng, W.; Xu, Y.; Hoang, C.D.; Diehn, M.; Alizadeh, A.A. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods, 2015, 12(5), 453-457.
[http://dx.doi.org/10.1038/nmeth.3337] [PMID: 25822800]
[27]
Xiao, B.; Liu, L.; Li, A.; Xiang, C.; Wang, P.; Li, H.; Xiao, T. Identification and verification of immune-related gene prognostic signature based on ssGSEA for osteosarcoma. Front. Oncol., 2020, 10, 607622.
[http://dx.doi.org/10.3389/fonc.2020.607622] [PMID: 33384961]
[28]
Cao, R.; Yuan, L.; Ma, B.; Wang, G.; Tian, Y. Tumour microenvironment (TME) characterization identified prognosis and immunotherapy response in muscle-invasive bladder cancer (MIBC). Cancer Immunol. Immunother., 2021, 70(1), 1-18.
[http://dx.doi.org/10.1007/s00262-020-02649-x] [PMID: 32617668]
[29]
Goodman, A.; Patel, S.P.; Kurzrock, R. PD-1–PD-L1 immune-checkpoint blockade in B-cell lymphomas. Nat. Rev. Clin. Oncol., 2017, 14(4), 203-220.
[http://dx.doi.org/10.1038/nrclinonc.2016.168] [PMID: 27805626]
[30]
Nishino, M.; Ramaiya, N.H.; Hatabu, H.; Hodi, F.S. Monitoring immune-checkpoint blockade: Response evaluation and biomarker development. Nat. Rev. Clin. Oncol., 2017, 14(11), 655-668.
[http://dx.doi.org/10.1038/nrclinonc.2017.88] [PMID: 28653677]
[31]
Zhai, L.; Ladomersky, E.; Lenzen, A.; Nguyen, B.; Patel, R.; Lauing, K.L.; Wu, M.; Wainwright, D.A. IDO1 in cancer: A Gemini of immune checkpoints. Cell. Mol. Immunol., 2018, 15(5), 447-457.
[http://dx.doi.org/10.1038/cmi.2017.143] [PMID: 29375124]
[32]
Kim, J.E.; Patel, M.A.; Mangraviti, A.; Kim, E.S.; Theodros, D.; Velarde, E.; Liu, A.; Sankey, E.W.; Tam, A.; Xu, H.; Mathios, D.; Jackson, C.M.; Harris-Bookman, S.; Garzon-Muvdi, T.; Sheu, M.; Martin, A.M.; Tyler, B.M.; Tran, P.T.; Ye, X.; Olivi, A.; Taube, J.M.; Burger, P.C.; Drake, C.G.; Brem, H.; Pardoll, D.M.; Lim, M. Combination therapy with Anti-PD-1, Anti-TIM-3, and focal radiation results in regression of murine gliomas. Clin. Cancer Res., 2017, 23(1), 124-136.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1535] [PMID: 27358487]
[33]
Sun, D.; Wang, J.; Han, Y.; Dong, X.; Ge, J.; Zheng, R.; Shi, X.; Wang, B.; Li, Z.; Ren, P.; Sun, L.; Yan, Y.; Zhang, P.; Zhang, F.; Li, T.; Wang, C. TISCH: A comprehensive web resource enabling interactive single-cell transcriptome visualization of tumor microenvironment. Nucleic Acids Res., 2021, 49(D1), D1420-D1430.
[http://dx.doi.org/10.1093/nar/gkaa1020] [PMID: 33179754]
[34]
Raskov, H.; Søby, J.H.; Troelsen, J.; Bojesen, R.D.; Gögenur, I. Driver gene mutations and epigenetics in colorectal cancer. Ann. Surg., 2020, 271(1), 75-85.
[http://dx.doi.org/10.1097/SLA.0000000000003393] [PMID: 31188207]
[35]
Tang, R.; Xu, J.; Zhang, B.; Liu, J.; Liang, C.; Hua, J.; Meng, Q.; Yu, X.; Shi, S. Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J. Hematol. Oncol., 2020, 13(1), 110.
[http://dx.doi.org/10.1186/s13045-020-00946-7] [PMID: 32778143]
[36]
Huang, M.; Chen, Y.; Han, D.; Lei, Z.; Chu, X. Role of the zinc finger and SCAN domain-containing transcription factors in cancer. Am. J. Cancer Res., 2019, 9(5), 816-836.
[PMID: 31218096]
[37]
Bi, J.; Liu, H.; Dong, W.; Xie, W.; He, Q.; Cai, Z.; Huang, J.; Lin, T. Correction to: Circular RNA circ-ZKSCAN1 inhibits bladder cancer progression through miR-1178-3p/p21 axis and acts as a prognostic factor of recurrence. Mol. Cancer, 2020, 19(1), 148.
[http://dx.doi.org/10.1186/s12943-020-01265-8] [PMID: 33046073]
[38]
Benedix, F.; Kube, R.; Meyer, F.; Schmidt, U.; Gastinger, I.; Lippert, H. Colon/rectum carcinomas study, comparison of 17,641 patients with right- and left-sided colon cancer: Differences in epidemiology, perioperative course, histology, and survival. Dis. Colon Rectum, 2010, 53(1), 57-64.
[http://dx.doi.org/10.1007/DCR.0b013e3181c703a4]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy