Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Thrombin - A Molecular Dynamics Perspective

Author(s): Dizhou Wu, Athul Prem, Jiajie Xiao and Freddie R. Salsbury*

Volume 24, Issue 11, 2024

Published on: 11 September, 2023

Page: [1112 - 1124] Pages: 13

DOI: 10.2174/1389557523666230821102655

Price: $65

Abstract

Thrombin is a crucial enzyme involved in blood coagulation, essential for maintaining circulatory system integrity and preventing excessive bleeding. However, thrombin is also implicated in pathological conditions such as thrombosis and cancer. Despite the application of various experimental techniques, including X-ray crystallography, NMR spectroscopy, and HDXMS, none of these methods can precisely detect thrombin's dynamics and conformational ensembles at high spatial and temporal resolution. Fortunately, molecular dynamics (MD) simulation, a computational technique that allows the investigation of molecular functions and dynamics in atomic detail, can be used to explore thrombin behavior. This review summarizes recent MD simulation studies on thrombin and its interactions with other biomolecules. Specifically, the 17 studies discussed here provide insights into thrombin's switch between 'slow' and 'fast' forms, active and inactive forms, the role of Na+ binding, the effects of light chain mutation, and thrombin's interactions with other biomolecules. The findings of these studies have significant implications for developing new therapies for thrombosis and cancer. By understanding thrombin's complex behavior, researchers can design more effective drugs and treatments that target thrombin.

Keywords: Thrombin, molecular dynamics (MD) simulation, pathological conditions , thrombosis, cancer, allosteric effects, nuclear magnetic resonance (NMR).

Graphical Abstract
[1]
Di Cera, E. Thrombin. Mol. Aspects Med., 2008, 29(4), 203-254.
[http://dx.doi.org/10.1016/j.mam.2008.01.001]
[2]
Susan, W. The circulatory system; Infobase Publishing, 2014.
[3]
Brummel-Ziedins, K.E.; Vossen, C.Y.; Butenas, S.; Mann, K.G.; Rosendaal, F.R. Thrombin generation profiles in deep venous thrombosis. J. Thromb. Haemost., 2005, 3(11), 2497-2505.
[http://dx.doi.org/10.1111/j.1538-7836.2005.01584.x]
[4]
Reddel, C.; Tan, C.; Chen, V. Thrombin generation and cancer: Contributors and consequences. Cancers, 2019, 11(1), 100.
[http://dx.doi.org/10.3390/cancers11010100]
[5]
Alisa, S. Wolberg; Frits, R.R.; Jeffrey, I.W.; Iqbal, H.J.; Giancarlo, A.; Trevor, B.; Nigel, M. Venous thrombosis. Nat. Rev. Dis. Primers, 2015, 1(1), 1-17.
[6]
Jesse, P. Greenstein. Biochemistry of cancer; Elsevier, 2016.
[7]
Ahmad, F.B.; Anderson, R.N. The leading causes of death in the US for 2020. JAMA, 2021, 325(18), 1829-1830.
[http://dx.doi.org/10.1001/jama.2021.5469]
[8]
Zakharova, M.Y.; Meyer, R.M.; Brandy, K.R.; Datta, Y.H.; Joseph, M.S.; Schreiner, P.J.; Rao, G.H.; Divani, A.A. Risk factors for heart attack, stroke, and venous thrombosis associated with hormonal contraceptive use. Clin. Appl. Thromb. Hemost., 2011, 17(4), 323-331.
[http://dx.doi.org/10.1177/1076029610368670]
[9]
Bode, W.; Mayr, I.; Baumann, U.; Huber, R.; Stone, S.R.; Hofsteenge, J. The refined 1.9 A crystal structure of human alpha thrombin: Interaction with D-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Pro-Trp insertion segment. EMBO J., 1989, 8(11), 3467-3475.
[http://dx.doi.org/10.1002/j.1460-2075.1989.tb08511.x]
[10]
Fuentes-Prior, P.; Iwanaga, Y.; Huber, R.; Pagila, R.; Rumennik, G.; Seto, M.; Morser, J.; Light, D.R.; Bode, W. Structural basis for the anticoagulant activity of the thrombin–thrombomodulin complex. Nature, 2000, 404(6777), 518-525.
[http://dx.doi.org/10.1038/35006683]
[11]
Fuglestad, B.; Gasper, P.M.; Tonelli, M.; McCammon, J.A.; Markwick, P.R.L.; Komives, E.A. The dynamic structure of thrombin in solution. Biophys. J., 2012, 103(1), 79-88.
[http://dx.doi.org/10.1016/j.bpj.2012.05.047]
[12]
Papaconstantinou, M.E.; Bah, A.; Di Cera, E. Role of the A chain in thrombin function. Cell. Mol. Life Sci., 2008, 65(12), 1943-1947.
[http://dx.doi.org/10.1007/s00018-008-8179-y]
[13]
Handley, L.D.; Treuheit, N.A.; Venkatesh, V.J.; Komives, E.A. Thrombomodulin binding selects the catalytically active form of thrombin. Biochemistry, 2015, 54(43), 6650-6658.
[http://dx.doi.org/10.1021/acs.biochem.5b00825]
[14]
Xiao, J.; Melvin, R.L.; Salsbury, F.R. Mechanistic insights into thrombin’s switch between “slow” and “fast” forms. Phys. Chem. Chem. Phys., 2017, 19(36), 24522-24533.
[http://dx.doi.org/10.1039/C7CP03671J]
[15]
Kahler, U.; Anna, S.; Johannes, K.; Klaus, R.L. Sodiuminduced population shift drives activation of thrombin. Sci. Rep., 2020, 10(1), 1-10.
[http://dx.doi.org/10.1038/s41598-020-57822-0]
[16]
Xiao, J.; Salsbury, F.R. Na + -binding modes involved in thrombin’s allosteric response as revealed by molecular dynamics simulations, correlation networks and Markov modeling. Phys. Chem. Chem. Phys., 2019, 21(8), 4320-4330.
[http://dx.doi.org/10.1039/C8CP07293K]
[17]
Wu, D.; Salsbury, F.R., Jr Simulations suggest double sodium binding induces unexpected conformational changes in thrombin. J. Mol. Model., 2022, 28(5), 120.
[http://dx.doi.org/10.1007/s00894-022-05076-0]
[18]
Kurisaki, I.; Takayanagi, M.; Nagaoka, M. Toward understanding allosteric activation of thrombin: A conjecture for important roles of unbound Na+ molecules around thrombin. J. Phys. Chem. B, 2015, 119(9), 3635-3642.
[http://dx.doi.org/10.1021/jp510657n]
[19]
Gdalya, H.; Nachliel, E.; Gutman, M.; Einav, Y.; Tsfadia, Y. The translocation of Na+ ion inside human thrombin accounts for the activation of the enzyme. Isr. J. Chem., 2017, 57(5), 413-423.
[http://dx.doi.org/10.1002/ijch.201600128]
[20]
Kurisaki, I.; Barberot, C.; Takayanagi, M.; Nagaoka, M. Dewetting of S1-pocket via water channel upon thrombin–substrate association reaction. J. Phys. Chem. B, 2015, 119(52), 15807-15812.
[http://dx.doi.org/10.1021/acs.jpcb.5b09581]
[21]
Xiao, J.; Melvin, R.L.; Salsbury, F.R., Jr Probing light chain mutation effects on thrombin via molecular dynamics simulations and machine learning. J. Biomol. Struct. Dyn., 2019, 37(4), 982-999.
[http://dx.doi.org/10.1080/07391102.2018.1445032]
[22]
Wu, D.; Xiao, J.; Salsbury, F.R., Jr Light chain mutation effects on the dynamics of thrombin. J. Chem. Inf. Model., 2021, 61(2), 950-965.
[http://dx.doi.org/10.1021/acs.jcim.0c01303]
[23]
Fuglestad, B.; Gasper, P.M.; McCammon, J.A.; Markwick, P.R.L.; Komives, E.A. Correlated motions and residual frustration in thrombin. J. Phys. Chem. B, 2013, 117(42), 12857-12863.
[http://dx.doi.org/10.1021/jp402107u]
[24]
Bowerman, S.; Wereszczynski, J. Detecting allosteric networks using molecular dynamics simulation. Methods Enzymol., 2016, 578, 429-447.
[http://dx.doi.org/10.1016/bs.mie.2016.05.027]
[25]
Gasper, P.M.; Fuglestad, B.; Komives, E.A.; Markwick, P.R.L.; McCammon, J.A. Allosteric networks in thrombin distinguish procoagulant vs. anticoagulant activities. Proc. Natl. Acad. Sci., 2012, 109(52), 21216-21222.
[http://dx.doi.org/10.1073/pnas.1218414109]
[26]
Xiao, J.; Salsbury, F.R. Molecular dynamics simulations of aptamer-binding reveal generalized allostery in thrombin. J. Biomol. Struct. Dyn., 2017, 35(15), 3354-3369.
[http://dx.doi.org/10.1080/07391102.2016.1254682]
[27]
Troisi, R.; Balasco, N.; Santamaria, A.; Vitagliano, L.; Sica, F. Structural and functional analysis of the simultaneous binding of two duplex/quadruplex aptamers to human α-thrombin. Int. J. Biol. Macromol., 2021, 181, 858-867.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.04.076]
[28]
Troisi, R.; Balasco, N.; Vitagliano, L.; Sica, F. Molecular dynamics simulations of human α-thrombin in different structural contexts: evidence for an aptamer-guided cooperation between the two exosites. J. Biomol. Struct. Dyn., 2021, 39(6), 2199-2209.
[http://dx.doi.org/10.1080/07391102.2020.1746693]
[29]
Dharmawardana, K.R.; Bock, P.E. Demonstration of exosite I-dependent interactions of thrombin with human factor V and factor va involving the factor va heavy chain: Analysis by affinity chromatography employing a novel method for active-site-selective immobilization of serine proteinases. Biochemistry, 1998, 37(38), 13143-13152.
[http://dx.doi.org/10.1021/bi9812165]
[30]
Wells, C.M.; Di Cera, E. Thrombin is a sodium ion activated enzyme. Biochemistry, 1992, 31(47), 11721-11730.
[http://dx.doi.org/10.1021/bi00162a008]
[31]
Kenneth, G.; Saulius, B.; Kathleen, B. The dynamics of throm bin formation. Arterioscler. Thromb. Vasc. Biol., 2003, 23(1), 17-25.
[32]
Turitto, V.T.; Hall, C.L. Mechanical factors affecting hemostasis and thrombosis. Thromb. Res., 1998, 92(6), S25-S31.
[http://dx.doi.org/10.1016/S0049-3848(98)00157-1]
[33]
Sarangi, P.P.; Lee, H.; Kim, M. Activated protein C action in inflammation. Br. J. Haematol., 2010, 148(6), 817-833.
[http://dx.doi.org/10.1111/j.1365-2141.2009.08020.x]
[34]
Julie, B.L.; Anne-Mette, H. Thrombin: A pivotal player in hemostasis and beyond.In: Seminars in Thrombosis and Hemostasis; Thieme Medical Publishers, Inc., 2021, pp. 759-774.
[35]
Nussinov, R.; Tsai, C.J. Allostery in disease and in drug discovery. Cell, 2013, 153(2), 293-305.
[http://dx.doi.org/10.1016/j.cell.2013.03.034]
[36]
Tsai, C.J.; del Sol, A.; Nussinov, R. Allostery: Absence of a change in shape does not imply that allostery is not at play. J. Mol. Biol., 2008, 378(1), 1-11.
[http://dx.doi.org/10.1016/j.jmb.2008.02.034]
[37]
Di Cera, E.; Dang, Q.D.; Ayala, Y.M. Molecular mechanisms of thrombin function. CMLS. Cell. Mol. Life Sci., 1997, 53, 701-730.
[http://dx.doi.org/10.1007/s000180050091]
[38]
Cera, D. Thrombin as procoagulant and anticoagulant. J. Thromb. Haemost., 2007, 5, 196-202.
[http://dx.doi.org/10.1111/j.1538-7836.2007.02485.x]
[39]
Wu, D.; Freddie, R. Unraveling the role of hydrogen bonds in thrombin via two machine learning methods. J. Chem. Inf. Model., 2023, 63(12), 3705-3718.
[http://dx.doi.org/10.1021/acs.jcim.3c00153]
[40]
Di Cera, E. Thrombin Interactions. Chest, 2003, 124(3), 11S-17S.
[http://dx.doi.org/10.1378/chest.124.3_suppl.11S]
[41]
Padmanabhan, K.; Padmanabhan, K.P.; Ferrara, J.D.; Sadler, J.E.; Tulinsky, A. The structure of alpha-thrombin inhibited by a 15-mer single-stranded DNA aptamer. J. Biol. Chem., 1993, 268(24), 17651-17654.
[http://dx.doi.org/10.1016/S0021-9258(17)46749-4]
[42]
Vindigni, A.; White, C.E.; Komives, E.A.; Di Cera, E. Energetics of thrombin thrombomodulin interaction. Biochemistry, 1997, 36(22), 6674-6681.
[http://dx.doi.org/10.1021/bi962766a]
[43]
Dang, O.D.; Vindigni, A.; Di Cera, E. An allosteric switch controls the procoagulant and anticoagulant activities of thrombin. Proc. Natl. Acad. Sci., 1995, 92(13), 5977-5981.
[http://dx.doi.org/10.1073/pnas.92.13.5977]
[44]
Koeppe, J.R.; Seitova, A.; Mather, T.; Komives, E.A. Thrombomodulin tightens the thrombin active site loops to promote protein C activation. Biochemistry, 2005, 44(45), 14784-14791.
[http://dx.doi.org/10.1021/bi0510577]
[45]
Dizhou, W.; Freddie, R.S. Thrombosis in rare bleeding disorders. Hematology, 2012, 17(S1), s156-s158.
[46]
Timothy, J.; Ravichandran, K.G.; Tulinsky, A.; Bode, W.; Huber, R.; Roitsch, C.; Fenton, J.W. The structure of a complex of recombinant hirudin and human α-thrombin. Science, 1990, 249(4966), 277-280.
[47]
Carter, W.J.; Cama, E.; Huntington, J.A. Crystal structure of thrombin bound to heparin. J. Biol. Chem., 2005, 280(4), 2745-2749.
[http://dx.doi.org/10.1074/jbc.M411606200]
[48]
Bah, A.; Garvey, L.C.; Ge, J.; Di Cera, E. rapid kinetics of Na+ binding to thrombin. J. Biol. Chem., 2006, 281(52), 40049-40056.
[http://dx.doi.org/10.1074/jbc.M608600200]
[49]
Gianni, S.; Ivarsson, Y.; Bah, A. Mechanism of Na+ binding to thrombin resolved by ultra-rapid kinetics. Biophys. Chem., 2007, 131(1-3), 111-114.
[50]
Lechtenberg, B.C.; Freund, S.M.V.; Huntington, J.A. An ensemble view of thrombin allostery. BCHM, 2012, 393(9), 889-898.
[http://dx.doi.org/10.1515/hsz-2012-0178]
[51]
McCammon, A.J.; Bruce, R. Dynamics of folded proteins. Nature, 1977, 267(5612), 585-590.
[52]
Smyth, M.S.; Martin, J.H.J. X-Ray crystallography. Mol. Pathol., 2000, 53(1), 8-14.
[http://dx.doi.org/10.1136/mp.53.1.8]
[53]
Peter, J. Hore. Nuclear magnetic resonance; Oxford University Press: USA, 2015.
[54]
Bai, X.; McMullan, G.; Scheres, S.H.W. How cryo-EM is revolutionizing structural biology. Trends Biochem. Sci., 2015, 40(1), 49-57.
[http://dx.doi.org/10.1016/j.tibs.2014.10.005]
[55]
Tamara, S.; den Boer, M.A.; Heck, A.J.R. High-resolution native mass spectrometry. Chem. Rev., 2022, 122(8), 7269-7326.
[http://dx.doi.org/10.1021/acs.chemrev.1c00212]
[56]
Roy, R.; Hohng, S.; Ha, T. A practical guide to single-molecule FRET. Nat. Methods, 2008, 5(6), 507-516.
[http://dx.doi.org/10.1038/nmeth.1208]
[57]
John, F. Stopped-flow techniques. In: Protein-ligand interactions: structure and spectroscopy; , 2001; pp. 201-237.
[58]
Yan, X.; Claudia, S. Hydrogen/deuterium exchange mass spectrometry.In: Mass Spectrometry of Proteins and Peptides; Methods and Protocols, 2009, pp. 255-271.
[59]
Karplus, M.; McCammon, J.A. Molecular dynamics simulations of biomolecules. Nat. Struct. Biol., 2002, 9(9), 646-652.
[http://dx.doi.org/10.1038/nsb0902-646]
[60]
Godwin, R.; Gmeiner, W.; Salsbury, F.R., Jr Importance of long time simulations for rare event sampling in zinc finger proteins. J. Biomol. Struct. Dyn., 2016, 34(1), 125-134.
[http://dx.doi.org/10.1080/07391102.2015.1015168]
[61]
Lu, S.; Ji, M.; Ni, D.; Zhang, J. Discovery of hidden allosteric sites as novel targets for allosteric drug design. Drug Discov. Today, 2018, 23(2), 359-365.
[http://dx.doi.org/10.1016/j.drudis.2017.10.001]
[62]
Ahmed, F Allosteric modulators: An emerging concept in drug discovery. ACS Med. Chem. Lett., 2015, 6(2), 104-107.
[63]
Salsbury, F.R., Jr Molecular dynamics simulations of protein dynamics and their relevance to drug discovery. Curr. Opin. Pharmacol., 2010, 10(6), 738-744.
[http://dx.doi.org/10.1016/j.coph.2010.09.016]
[64]
Ryan, C.; Ryan, M.; Freddie, R.S. Molecular dynamics simulations and computer-aided drug discovery.In: Computer-aided drug discovery; Springer, 2015, pp. 1-30.
[65]
Melvin, R.L.; Godwin, R.C.; Xiao, J.; Thompson, W.G.; Berenhaut, K.S.; Salsbury, F.R., Jr Uncovering large-scale conformational change in molecular dynamics without prior knowledge. J. Chem. Theory Comput., 2016, 12(12), 6130-6146.
[http://dx.doi.org/10.1021/acs.jctc.6b00757]
[66]
Pal, S.; Paul, S. Conformational deviation of Thrombin binding G-quadruplex aptamer (TBA) in presence of divalent cation Sr2+: A classical molecular dynamics simulation study. Int. J. Biol. Macromol., 2019, 121, 350-363.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.102]
[67]
Melvin, R.L.; Gmeiner, W.H.; Salsbury, F.R. All-atom MD indicates ion-dependent behavior of therapeutic DNA polymer. Phys. Chem. Chem. Phys., 2017, 19(33), 22363-22374.
[http://dx.doi.org/10.1039/C7CP03479B]
[68]
MacKerell, A.D., Jr; Bashford, D.; Bellott, M.; Dunbrack, R.L., Jr; Evanseck, J.D.; Field, M.J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F.T.K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D.T.; Prodhom, B.; Reiher, W.E.; Roux, B.; Schlenkrich, M.; Smith, J.C.; Stote, R.; Straub, J.; Watanabe, M.; Wiórkiewicz-Kuczera, J.; Yin, D.; Karplus, M. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B, 1998, 102(18), 3586-3616.
[http://dx.doi.org/10.1021/jp973084f]
[69]
Buck, M.; Bouguet-Bonnet, S.; Pastor, R.W.; MacKerell, A.D., Jr Importance of the CMAP correction to the CHARMM22 protein force field: Dynamics of hen lysozyme. Biophys. J., 2006, 90(4), L36-L38.
[http://dx.doi.org/10.1529/biophysj.105.078154]
[70]
Beglov, D.; Roux, B. Finite representation of an infinite bulk system: Solvent boundary potential for computer simulations. J. Chem. Phys., 1994, 100(12), 9050-9063.
[http://dx.doi.org/10.1063/1.466711]
[71]
James, A. How Na+ activates thrombin – a review of the functional and structural data. Biol. Chem., 2008, 389(8), 1025-1035.
[72]
James, A. Thrombin plasticity. Biochim. Biophys. Acta, 2012, 1824(1), 246-252.
[73]
Information Systems and Wake Forest University. WFU High Performance Computing Facility., 2021.
[http://dx.doi.org/10.57682/G13Z-2362]
[74]
Gunasekaran, K.; Ma, B.; Nussinov, R. Is allostery an intrinsic property of all dynamic proteins? Proteins, 2004, 57(3), 433-443.
[http://dx.doi.org/10.1002/prot.20232]
[75]
Chakraborty, P.; Di Cera, E. Induced fit is a special case of conformational selection. Biochemistry, 2017, 56(22), 2853-2859.
[http://dx.doi.org/10.1021/acs.biochem.7b00340]
[76]
Zuckerman, D.M.; Chong, L.T. Weighted ensemble simulation: Review of methodology, applications, and software. Annu. Rev. Biophys., 2017, 46(1), 43-57.
[http://dx.doi.org/10.1146/annurev-biophys-070816-033834]
[77]
Huber, G.A.; Kim, S. Weighted-ensemble Brownian dynamics simulations for protein association reactions. Biophys. J., 1996, 70(1), 97-110.
[http://dx.doi.org/10.1016/S0006-3495(96)79552-8]
[78]
Sztain, T.; Ahn, S-H. A glycan gate controls opening of the SARS-CoV-2 spike protein. bioRxiv, 2021.
[http://dx.doi.org/10.1101/2021.02.15.431212]
[79]
Enriqueta, R.G.; Alessandro, V.; Quoc, D.D.; Youhna, M.A.; Meng, W.; Alexander, T. The Na+ binding site of thrombin. J. Biol. Chem., 1995, 270(38), 22089-22092.
[80]
Zhang, E.; Tulinsky, A. The molecular environment of the Na+ binding site of thrombin. Biophys. Chem., 1997, 63(2–3), 185-200.
[http://dx.doi.org/10.1016/S0301-4622(96)02227-2]
[81]
Enrico, D.C.; Michael, J.P.; Alaji, B.; Bush-Pelc, L.A.; Laura, C.G. Thrombin allostery. Phys. Chem. Chem. Phys., 2007, 9(11), 1291-1306.
[82]
Kurisaki, I.; Nagaoka, M. Na+ binding is ineffective in forming a primary substrate pocket of thrombin. J. Phys. Chem. B, 2016, 120(46), 11873-11879.
[http://dx.doi.org/10.1021/acs.jpcb.6b07827]
[83]
Kurisaki, I.; Takayanagi, M.; Nagaoka, M. Bound Na+ is a negative effecter for thrombin-substrate stereospecific complex formation. J. Phys. Chem. B, 2016, 120(20), 4540-4547.
[http://dx.doi.org/10.1021/acs.jpcb.6b00976]
[84]
Agustin, O.; Zhi-Wei, C.; Sonia, C.; Angelene, M.C.; Savvas, N.S.; Gabriel, W.; Mathews, F.S.; Enrico, D.C. The anticoagulant thrombin mutant W215A/E217A has a collapsed primary specificity pocket. J. Biol. Chem., 2004, 279(38), 39824-39828.
[85]
Koeppe, J.R.; Komives, E.A. Amide H/2H exchange reveals a mechanism of thrombin activation. Biochemistry, 2006, 45(25), 7724-7732.
[http://dx.doi.org/10.1021/bi060405h]
[86]
Bah, A.; Chen, Z.; Bush-Pelc, L.A.; Mathews, F.S.; Di Cera, E. Crystal structures of murine thrombin in complex with the extracellular fragments of murine protease-activated receptors PAR3 and PAR4. Proc. Natl. Acad. Sci. USA, 2007, 104(28), 11603-11608.
[http://dx.doi.org/10.1073/pnas.0704409104]
[87]
Lindsey, D.; Brian, F.; Kyle, S.; Marco, T.; Fenwick, R.B.; Phineus, R.L.M.; Elizabeth, A.K. NMR reveals a dynamic allosteric pathway in thrombin. Sci. Rep., 2017, 7(1), 39575.
[88]
Shahid, M.N.; Sabah, O.; Zoya, V.; Kristin, M.B.; Steve, B.L.; Maureane, H.; Bruce, A.S. Synergistic effect of aptamers that inhibit exosites 1 and 2 on thrombin. RNA, 2009, 15(12), 2105-2111.
[89]
Petrera, N.S.; Stafford, A.R.; Leslie, B.A.; Kretz, C.A.; Fredenburgh, J.C.; Weitz, J.I. Long range communication between exosites 1 and 2 modulates thrombin function. J. Biol. Chem., 2009, 284(38), 25620-25629.
[http://dx.doi.org/10.1074/jbc.M109.000042]
[90]
Hünenberger, P.H.; Mark, A.E.; van Gunsteren, W.F. Fluctuation and cross-correlation analysis of protein motions observed in nanosecond molecular dynamics simulations. J. Mol. Biol., 1995, 252(4), 492-503.
[http://dx.doi.org/10.1006/jmbi.1995.0514]
[91]
Sethi, A.; Eargle, J.; Black, A.A.; Luthey-Schulten, Z. Dynamical networks in tRNA: Protein complexes. Proc. Natl. Acad. Sci., 2009, 106(16), 6620-6625.
[http://dx.doi.org/10.1073/pnas.0810961106]
[92]
Girvan, M.; Newman, M.E.J. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA, 2002, 99(12), 7821-7826.
[http://dx.doi.org/10.1073/pnas.122653799]
[93]
Boris, K.; Simon, K. The role of thrombin in tumor biology.In: Thrombin: Physiology and Disease; , 2009, pp. 161-172.
[94]
Mannucci, P.; Lak, M.; Mancuso, G.; Mazzucconi, M.; Rocino, A.; Jenkins, P.; Perkins, S.; Akhavan, S. Identification and three dimensional structural analysis of nine novel mutations in patients with prothrombin deficiency. Thromb. Haemost., 2000, 84(12), 989-997.
[http://dx.doi.org/10.1055/s-0037-1614161]
[95]
Jerry, B. The prothrombin denver patient has two different prothrombin point mutations resulting in Glu-300→ Lys and Glu-309→ Lys substitutions. Br. J. Haematol., 2000, 108(1), 182-187.
[96]
Famulok, M.; Hartig, J.S.; Mayer, G. Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem. Rev., 2007, 107(9), 3715-3743.
[http://dx.doi.org/10.1021/cr0306743]
[97]
Roxo, C.; Kotkowiak, W.; Pasternak, A. G-quadruplex-forming aptamers—characteristics, applications, and perspectives. Molecules, 2019, 24(20), 3781.
[http://dx.doi.org/10.3390/molecules24203781]
[98]
Zavyalova, E.; Golovin, A.; Timoshenko, T.; Babiy, A.; Pavlova, G.; Kopylov, A. DNA aptamers for human thrombin with high anticoagulant activity demonstrate target-and species-specificity. Curr. Med. Chem., 2012, 19(30), 5232-5237.
[http://dx.doi.org/10.2174/092986712803530575]
[99]
Bock, P.E.; Panizzi, P.; Verhamme, I.M.A. Exosites in the substrate specificity of blood coagulation reactions. J. Thromb. Haemost., 2007, 5, 81-94.
[http://dx.doi.org/10.1111/j.1538-7836.2007.02496.x]
[100]
Ng, N.M-Y.; Quinsey, N.S.; Matthews, A.Y.; Kaiser-man, D.; Wijeyewickrema, L.C.; Bird, P.I.; Thompson, P.E.; Pike, R.N. The effects of exosite occupancy on the substrate specificity of thrombin. Arch. Biochem. Biophys., 2009, 489(1-2), 48-54.
[http://dx.doi.org/10.1016/j.abb.2009.07.012]
[101]
Sun, H.; Zu, Y. A highlight of recent advances in aptamer technology and its application. Molecules, 2015, 20(7), 11959-11980.
[http://dx.doi.org/10.3390/molecules200711959]
[102]
Zhou, J.; Rossi, J. Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug Discov., 2017, 16(3), 181-202.
[http://dx.doi.org/10.1038/nrd.2016.199]
[103]
Christopher, P. RNA aptamers as reversible antagonists of coagulation factor IXa. Nature, 2002, 419(6902), 90-94.
[104]
Gunaratne, R.; Kumar, S. Combination of aptamer and drug for reversible anticoagulation in cardiopulmonary bypass. Nat. Biotechnol., 2018, 36(7), 606-613.
[105]
Blake, C.M.; Wang, H.; Laskowitz, D.T.; Sullenger, B.A. A reversible aptamer improves outcome and safety in murine models of stroke and hemorrhage. Oligonucleotides, 2011, 21(1), 11-19.
[http://dx.doi.org/10.1089/oli.2010.0262]
[106]
Christopher, R. Aptamer-based factor IXainhibition preserves hemostasis and prevents thrombosis in a piglet model of ECMO. Mol. Ther. Nucleic Acids, 2022, 27, 524-534.
[107]
Pica, A.; Russo Krauss, I.; Parente, V.; Tateishi-Karimata, H.; Nagatoishi, S.; Tsumoto, K.; Sugimoto, N.; Sica, F. Through-bond effects in the ternary complexes of thrombin sandwiched by two DNA aptamers. Nucleic Acids Res., 2017, 45(1), 461-469.
[http://dx.doi.org/10.1093/nar/gkw1113]
[108]
Troisi, R.; Napolitano, V.; Spiridonova, V.; Russo Krauss, I.; Sica, F. Several structural motifs cooperate in determining the highly effective anti-thrombin activity of NU172 aptamer. Nucleic Acids Res., 2018, 46(22), 12177-12185.
[http://dx.doi.org/10.1093/nar/gky990]
[109]
Akul, Y. An update on recent patents on thrombin inhibitors (2010 - 2013). Expert Opin. Ther. Pat., 2014, 24(1), 47-67.
[110]
Melvin, R.L.; Salsbury, F.R., Jr Visualizing ensembles in structural biology. J. Mol. Graph. Model., 2016, 67, 44-53.
[http://dx.doi.org/10.1016/j.jmgm.2016.05.001]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy