Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Understanding the Molecular Basis for Enhanced Glutenase Activity of Actinidin using Structural Bioinformatics

Author(s): Shivangi Puja, Shreya Seth, Rachna Hora, Satinder Kaur and Prakash Chandra Mishra*

Volume 30, Issue 9, 2023

Published on: 04 September, 2023

Page: [777 - 782] Pages: 6

DOI: 10.2174/0929866530666230817141100

Price: $65

Abstract

Background: Management of gluten intolerance is currently possible only by consumption of a gluten-free diet (GFD) for a lifetime. The scientific community has been searching for alternatives to GFD, like the inclusion of natural proteases with meals or pre-treatment of gluten-containing foods with glutenases. Actinidin from kiwifruit has shown considerable promise in digesting immunogenic gliadin peptides compared to other plant-derived cysteine proteases.

Methods: In this study, we aimed to understand the structural basis for the elevated protease action of actinidin against gliadin peptides by using an in silico approach.

Results: Docking experiments revealed key differences between the binding of gliadin peptide to actinidin and papain, which may be responsible for their differential digestive action.

Conclusion: Sequence comparison of different plant cysteine proteases highlights amino acid residues surrounding the active site pocket of actinidin that are unique to this molecule and hence likely to contribute to its digestive properties.

Keywords: Cysteine protease, actinidin, glutenase, celiac disease, gliadin, molecular docking.

Graphical Abstract
[1]
Balakireva, A.; Zamyatnin, A., Jr Properties of gluten intolerance: Gluten structure, evolution, pathogenicity and detoxification capabilities. Nutrients, 2016, 8(10), 644.
[http://dx.doi.org/10.3390/nu8100644] [PMID: 27763541]
[2]
Calado, J.; Verdelho, M.M. Celiac disease revisited. GE Port. J. Gastroenterol., 2022, 29(2), 111-124.
[http://dx.doi.org/10.1159/000514716] [PMID: 35497669]
[3]
Czaja-Bulsa, G. Non coeliac gluten sensitivity – A new disease with gluten intolerance. Clin. Nutr., 2015, 34(2), 189-194.
[http://dx.doi.org/10.1016/j.clnu.2014.08.012] [PMID: 25245857]
[4]
Levy, J.; Bernstein, L.; Silber, N. Celiac disease: An immune dysregulation syndrome. Curr. Probl. Pediatr. Adolesc. Health Care, 2014, 44(11), 324-327.
[http://dx.doi.org/10.1016/j.cppeds.2014.10.002] [PMID: 25499458]
[5]
Jayawardana, I.A.; Boland, M.J.; Higgs, K.; Zou, M.; Loo, T.; Mcnabb, W.C.; Montoya, C.A. The kiwifruit enzyme actinidin enhances the hydrolysis of gluten proteins during simulated gastrointestinal digestion. Food Chem., 2021, 341(Pt 1)128239
[http://dx.doi.org/10.1016/j.foodchem.2020.128239] [PMID: 33035854]
[6]
Shan, L.; Molberg, Ø.; Parrot, I.; Hausch, F.; Filiz, F.; Gray, G.M.; Sollid, L.M.; Khosla, C. Structural basis for gluten intolerance in celiac sprue. Science, 2002, 297(5590), 2275-2279.
[http://dx.doi.org/10.1126/science.1074129] [PMID: 12351792]
[7]
Niewinski, M.M. Advances in celiac disease and gluten-free diet. J. Am. Diet. Assoc., 2008, 108(4), 661-672.
[http://dx.doi.org/10.1016/j.jada.2008.01.011] [PMID: 18375224]
[8]
Wei, G.; Helmerhorst, E.J.; Darwish, G.; Blumenkranz, G.; Schuppan, D. Gluten degrading enzymes for treatment of celiac disease. Nutrients, 2020, 12(7), 2095.
[http://dx.doi.org/10.3390/nu12072095] [PMID: 32679754]
[9]
Jayawardana, I.A.; Montoya, C.A.; McNabb, W.C.; Boland, M.J. Possibility of minimizing gluten intolerance by co-consumption of some fruits – A case for positive food synergy? Trends Food Sci. Technol., 2019, 94, 91-97.
[http://dx.doi.org/10.1016/j.tifs.2019.10.003]
[10]
Savvateeva, L.V.; Gorokhovets, N.V.; Makarov, V.A.; Serebryakova, M.V.; Solovyev, A.G.; Morozov, S.Y.; Reddy, V.P.; Zernii, E.Y.; Zamyatnin, A.A., Jr; Aliev, G. Glutenase and collagenase activities of wheat cysteine protease Triticain-α: Feasibility for enzymatic therapy assays. Int. J. Biochem. Cell Biol., 2015, 62, 115-124.
[http://dx.doi.org/10.1016/j.biocel.2015.03.001] [PMID: 25765959]
[11]
Kaur, L.; Rutherfurd, S.M.; Moughan, P.J.; Drummond, L.; Boland, M.J. Actinidin enhances protein digestion in the small intestine as assessed using an in vitro digestion model. J. Agric. Food Chem., 2010, 58(8), 5074-5080.
[http://dx.doi.org/10.1021/jf903835g] [PMID: 20232891]
[12]
Montoya, C.A.; Cabrera, D.L.; Zou, M.; Boland, M.J.; Moughan, P.J. 'The rate at which digested protein enters the small intestine modulates the rate of amino acid digestibility throughout the small intestine of growing pigs. J. Nutr., 2018, 148(11), 1743-1750.
[http://dx.doi.org/10.1093/jn/nxy193] [PMID: 30383281]
[13]
Apweiler, R.; Bairoch, A.; Wu, C.H.; Barker, W.C.; Boeckmann, B.; Ferro, S.; Gasteiger, E.; Huang, H.; Lopez, R.; Magrane, M.; Martin, M.J.; Natale, D.A.; O’Donovan, C.; Redaschi, N.; Yeh, L.S. UniProt: The universal protein knowledgebase. Nucleic Acids Res., 2004, 32(90001)(S1), 115D-119.
[http://dx.doi.org/10.1093/nar/gkh131] [PMID: 14681372]
[14]
LaLonde, J.M.; Zhao, B.; Smith, W.W.; Janson, C.A.; DesJarlais, R.L.; Tomaszek, T.A.; Carr, T.J.; Thompson, S.K.; Oh, H.J.; Yamashita, D.S.; Veber, D.F.; Abdel-Meguid, S.S. Use of papain as a model for the structure-based design of cathepsin K inhibitors: crystal structures of two papain-inhibitor complexes demonstrate binding to S′-subsites. J. Med. Chem., 1998, 41(23), 4567-4576.
[http://dx.doi.org/10.1021/jm980249f] [PMID: 9804696]
[15]
Varughese, K.I.; Su, Y.; Cromwell, D.; Hasnain, S.; Xuong, N.H. Crystal structure of an actinidin-E-64 complex. Biochemistry, 1992, 31(22), 5172-5176.
[http://dx.doi.org/10.1021/bi00137a012] [PMID: 1606141]
[16]
Calvanese, L.; Nanayakkara, M.; Aitoro, R.; Sanseverino, M.; Tornesello, A.L.; Falcigno, L.; D’Auria, G.; Barone, M.V. Structural insights on P31-43, a gliadin peptide able to promote an innate but not an adaptive response in celiac disease. J. Pept. Sci., 2019, 25(5), e3161
[http://dx.doi.org/10.1002/psc.3161] [PMID: 30912242]
[17]
Sievers, F.; Higgins, D.G. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci., 2018, 27(1), 135-145.
[http://dx.doi.org/10.1002/pro.3290] [PMID: 28884485]
[18]
de Vries, S.J.; van Dijk, M.; Bonvin, A.M.J.J. The HADDOCK web server for data-driven biomolecular docking. Nat. Protoc., 2010, 5(5), 883-897.
[http://dx.doi.org/10.1038/nprot.2010.32] [PMID: 20431534]
[19]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera?A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[20]
Xue, L.C.; Rodrigues, J.P.; Kastritis, P.L.; Bonvin, A.M.; Vangone, A. PRODIGY: A web server for predicting the binding affinity of protein–protein complexes. Bioinformatics, 2016, 32(23), 3676-3678.
[http://dx.doi.org/10.1093/bioinformatics/btw514] [PMID: 27503228]
[21]
Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng. Des. Sel., 1995, 8(2), 127-134.
[http://dx.doi.org/10.1093/protein/8.2.127] [PMID: 7630882]
[22]
Yuan, S.; Chan, H.C.S.; Hu, Z. Using PYMOL as a platform for computational drug design. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2017, 7(2), e1298
[http://dx.doi.org/10.1002/wcms.1298]
[23]
Haertlé, T. Enzymes: Analysis and food processing.Encyclopedia of Food and Health; Caballero, B.; Finglas, P.M.; Toldrá, F., Eds.; Academic Press: Oxford, 2016, pp. 524-531.
[http://dx.doi.org/10.1016/B978-0-12-384947-2.00257-9]
[24]
Novinec, M.; Lenarčič, B. Papain-like peptidases: Structure, function, and evolution. Biomol. Concepts, 2013, 4(3), 287-308.
[http://dx.doi.org/10.1515/bmc-2012-0054] [PMID: 25436581]
[25]
He, X.; Fang, J.; Chen, X.; Zhao, Z.; Li, Y.; Meng, Y.; Huang, L. Actinidia chinensis planch.: A review of chemistry and pharmacology. Front. Pharmacol., 2019, 10, 1236.
[http://dx.doi.org/10.3389/fphar.2019.01236] [PMID: 31736750]
[26]
Shastri, K.V.; Bhatia, V.; Parikh, P.R.; Chaphekar, V.N. Actinidia deliciosa: A review. Int. J. Pharm. Sci. Res., 2012, 3(10), 3543.
[27]
Montoya, C.A.; Rutherfurd, S.M.; Olson, T.D.; Purba, A.S.; Drummond, L.N.; Boland, M.J.; Moughan, P.J. Actinidin from kiwifruit (Actinidia deliciosa cv. Hayward) increases the digestion and rate of gastric emptying of meat proteins in the growing pig. Br. J. Nutr., 2014, 111(6), 957-967.
[http://dx.doi.org/10.1017/S0007114513003401] [PMID: 24252432]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy