Review Article

生物功能介孔二氧化硅纳米粒子作为癌症纳米结构载体的研究进展

卷 24, 期 12, 2023

发表于: 25 August, 2023

页: [934 - 944] 页: 11

弟呕挨: 10.2174/1389450124666230817103122

价格: $65

conference banner
摘要

背景:癌症在世界范围内是一种危及生命的疾病,但目前尚未开发出合适的治疗方法。许多疗法可用于治疗癌症疾病,如化疗、手术、激素治疗和免疫疗法。化疗通常依赖于有害的、剧毒的铂基化合物的组合。此外,化疗药物和细胞毒性对大多数细胞的分布也很差,这会导致对其他健康细胞的损伤,也有产生耐药性的机会。 目的:本研究的主要目的是开发介孔二氧化硅纳米粒子。介孔二氧化硅纳米颗粒被认为是具有高载药能力和显著功能化表面积的载体,用于靶向药物递送。介孔二氧化硅纳米颗粒具有形状、粒径、孔体积、较高的表面积和表面改性的可能性。因此产生了热稳定性和化学稳定性的纳米材料。对于靶向药物递送,MSN与多种配体偶联,包括单克隆抗体、透明质酸、转铁蛋白、叶酸等,这些配体对恶性细胞表面过表达的受体具有特殊的亲和力,因此使用这种纳米载体可以降低正常细胞的剂量相关毒性。 方法:综述了合成中孔二氧化硅纳米颗粒的不同方法。采用溶胶-凝胶法和改良的stobber法合成了该纳米颗粒。 结果:成功合成了粒径在50-200nm左右的介孔二氧化硅纳米粒子,载药效率约为71%。 结论:介孔二氧化硅纳米粒子是细胞内和靶向药物递送系统的良好载体。

关键词: 介孔二氧化硅,纳米颗粒吸收机制,合成方法,应用,表征,毒性,安全性。

图形摘要
[1]
Jemal A, Siegel R, Ward E, et al. Cancer Statistics. CA Cancer J Clin 2008; 58(2): 71-96.
[http://dx.doi.org/10.3322/CA.2007.0010] [PMID: 18287387]
[2]
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007; 2(12): 751-60.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[3]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[4]
Zhang Q, Liu F, Nguyen KT, et al. Multifunctional mesoporous silica nanoparticles for cancer-targeted and controlled drug delivery. Adv Funct Mater 2012; 22(24): 5144-56.
[http://dx.doi.org/10.1002/adfm.201201316]
[5]
Farokhzad OC, Karp JM, Langer R. Nanoparticle–aptamer bioconjugates for cancer targeting. Expert Opin Drug Deliv 2006; 3(3): 311-24.
[http://dx.doi.org/10.1517/17425247.3.3.311] [PMID: 16640493]
[6]
Alemdaroglu FE, Alemdaroglu NC, Langguth P, Herrmann A. DNA block copolymer micelles: A combinatorial tool for cancer nanotechnology. Adv Mater 2008; 20(5): 899-902.
[http://dx.doi.org/10.1002/adma.200700866]
[7]
Wagner E. Programmed drug delivery: Nanosystems for tumor targeting. Expert Opin Biol Ther 2007; 7(5): 587-93.
[http://dx.doi.org/10.1517/14712598.7.5.587] [PMID: 17477797]
[8]
Park C, Oh K, Lee SC, Kim C. Controlled release of guest molecules from mesoporous silica particles based on a pH-responsive polypseudorotaxane motif. Angew Chem Int Ed 2007; 46(9): 1455-7.
[http://dx.doi.org/10.1002/anie.200603404] [PMID: 17221893]
[9]
He Q, Zhang Z, Gao Y, Shi J, Li Y. Intracellular localization and cytotoxicity of spherical mesoporous silica nano and microparticles. Small 2009; 5(23): 2722-9.
[http://dx.doi.org/10.1002/smll.200900923] [PMID: 19780070]
[10]
Jafari S, Derakhshankhah H, Alaei L, Fattahi A, Varnamkhasti BS, Saboury AA. Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomed Pharmacother 2019; 109: 1100-11.
[http://dx.doi.org/10.1016/j.biopha.2018.10.167]
[11]
Croissant JG, Fatieiev Y, Khashab NM. Degradability and clearance of silicon, organosilica, silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles. Adv Mater 2017; 29(9): 1604634.
[http://dx.doi.org/10.1002/adma.201604634] [PMID: 28084658]
[12]
Assaraf YG, Leamon CP, Reddy JA. The folate receptor as a rational therapeutic target for personalized cancer treatment. Drug Resist Updat 2014; 17(4-6): 89-95.
[http://dx.doi.org/10.1016/j.drup.2014.10.002] [PMID: 25457975]
[13]
Wang X, Tu M, Tian B, Yi Y, Wei Z, Wei F. Synthesis of tumor-targeted folate conjugated fluorescent magnetic albumin nanoparticles for enhanced intracellular dual-modal imaging into human brain tumor cells. Anal Biochem 2016; 512: 8-17.
[http://dx.doi.org/10.1016/j.ab.2016.08.010] [PMID: 27523645]
[14]
Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 2002; 54(5): 631-51.
[http://dx.doi.org/10.1016/S0169-409X(02)00044-3] [PMID: 12204596]
[15]
Ruoslahti E, Bhatia SN, Sailor MJ. Targeting of drugs and nanoparticles to tumors. J Cell Biol 2010; 188(6): 759-68.
[http://dx.doi.org/10.1083/jcb.200910104] [PMID: 20231381]
[16]
Liu R, Zhang Y, Zhao X, Agarwal A, Mueller LJ, Feng P. pH-responsive nanogated ensemble based on gold-capped mesoporous silica through an acid-labile acetal linker. J Am Chem Soc 2010; 132(5): 1500-1.
[http://dx.doi.org/10.1021/ja907838s] [PMID: 20085351]
[17]
Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J Control Release 2000; 65(1-2): 271-84.
[http://dx.doi.org/10.1016/S0168-3659(99)00248-5] [PMID: 10699287]
[18]
Hak S, Helgesen E, Hektoen HH, et al. The effect of nanoparticle polyethylene glycol surface density on ligand-directed tumor targeting studied in vivo by dual modality imaging. ACS Nano 2012; 6(6): 5648-58.
[http://dx.doi.org/10.1021/nn301630n] [PMID: 22671719]
[19]
Vivero-Escoto JL, Slowing II, Trewyn BG, Lin VSY. Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small 2010; 6(18): 1952-67.
[http://dx.doi.org/10.1002/smll.200901789] [PMID: 20690133]
[20]
Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI. Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev 2012; 41(7): 2590-605.
[http://dx.doi.org/10.1039/c1cs15246g] [PMID: 22216418]
[21]
Mayor S, Pagano RE. Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 2007; 8(8): 603-12.
[http://dx.doi.org/10.1038/nrm2216] [PMID: 17609668]
[22]
Maxfield FR, McGraw TE. Endocytic recycling. Nat Rev Mol Cell Biol 2004; 5(2): 121-32.
[http://dx.doi.org/10.1038/nrm1315] [PMID: 15040445]
[23]
Chen Y, Chen H, Zhang S, et al. Multifunctional mesoporous nanoellipsoids for biological bimodal imaging and magnetically targeted delivery of anticancer drugs. Adv Funct Mater 2011; 21(2): 270-8.
[http://dx.doi.org/10.1002/adfm.201001495]
[24]
Pal N, Bhaumik A. Soft templating strategies for the synthesis of mesoporous materials: Inorganic, organic–inorganic hybrid and purely organic solids. Adv Colloid Interface Sci 2013; 189-190: 21-41.
[http://dx.doi.org/10.1016/j.cis.2012.12.002] [PMID: 23337774]
[25]
Huo Q, Margolese DI, Ciesla U, et al. Generalized synthesis of periodic surfactant/inorganic composite materials. Nature 1994; 368(6469): 317-21.
[http://dx.doi.org/10.1038/368317a0]
[26]
Kim MJ, Ryoo R. Synthesis and pore size control of cubic mesoporous silica SBA-1. Chem Mater 1999; 11(2): 487-91.
[http://dx.doi.org/10.1021/cm980691m]
[27]
Liu J, Qiao SZ, Liu H, et al. Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angew Chem Int Ed 2011; 50(26): 5947-51.
[http://dx.doi.org/10.1002/anie.201102011] [PMID: 21630403]
[28]
Griin M, Lauer I. Advanced advanced 1997; (3): 254-7.
[29]
Nakamura T, Mizutani M, Nozaki H, Suzuki N, Yano K. Formation mechanism for monodispersed mesoporous silica spheres and its application to the synthesis of core/ shell particles. J Phys Chem C 2007; 111(3): 1093-100.
[http://dx.doi.org/10.1021/jp0648240]
[30]
Lu F, Wu S, Hung Y, Mou C. Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 2009; 5(12): 1408-13.
[http://dx.doi.org/10.1002/smll.200900005]
[31]
Zhang L, Qiao Z, Zheng M, Sun J. Rapid and substrate-independent layer-by-layer fabrication of antireflection and antifogging-integrated coatings. J Mater Chem 2010; 20(29): 6125-30.
[http://dx.doi.org/10.1039/c0jm00792g]
[32]
Chiang Y, Lian H, Leo S, Wang S, Yamauchi Y, Wu KC. Controlling particle size and structural properties of mesoporous silica nanoparticles using the Taguchi Method. J Phys Chem C 2011; 115(27): 13158-65.
[33]
Sarkar A, Ghosh S, Chowdhury S, Pandey B, Sil PC. Targeted delivery of quercetin loaded mesoporous silica nanoparticles to the breast cancer cells. Biochim Biophys Acta 2016; 1860(10): 2065-75.
[http://dx.doi.org/10.1016/j.bbagen.2016.07.001]
[34]
Online VA, Borisev I, Milenkovic S, Janackovic D, Cunin F, Djordjevic A. Hydroxylated fullerene-capped, vinblastine-loaded folic acid-functionalized mesoporous silica nanoparticles for targeted anticancer therapy. RSC Adv 2016; 9.
[http://dx.doi.org/10.1039/C5RA22937E]
[35]
Dréau D, Moore LJ, Alvarez-berrios MP, Tarannum M, Mukherjee P, Vivero-escoto JL. Mucin-1-antibody-conjugated mesoporous silica nanoparticles for selective breast cancer detection in a mucin-1 transgenic Murine Mouse Model. J Biomed Nanotechnol 2016; 12(12): 2172-84.
[http://dx.doi.org/10.1166/jbn.2016.2318]
[36]
Slowing I, Trewyn BG. Hyaluronic acid-conjugated mesoporous silicananoparticles: Excellent colloidal dispersity in physiological fluids and targeting efficacy. J Mater Chem 2012; 12
[http://dx.doi.org/10.1039/c2jm15489g]
[37]
Slowing I, Trewyn BG, Lin VS. Effect of surface functionalization of mcm-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. Am Chem Soc 2006; 128(46): 14792-3.
[38]
Gan Q, Lu X, Yuan Y, et al. A magnetic, reversible pH-responsive nanogated ensemble based on Fe3O4 nanoparticles-capped mesoporous silica. Biomaterials 2011; 32(7): 1932-42.
[http://dx.doi.org/10.1016/j.biomaterials.2010.11.020] [PMID: 21131045]
[39]
Fang S. Showcasing research from the Capital Medical As featured in : Nanoscale the intracellular controlled release from bioresponsive mesoporous silica with folate as both targeting and capping agent † 2012; 207890
[http://dx.doi.org/10.1039/c2nr30425b]
[40]
Das DB, Mabrouk M, Beherei HH, Arthanareeswaran G. Pharmaceutical particulates and membranes for the delivery of drugs and bioactive molecules. Pharmaceutics 2020; 12(5): 412.
[http://dx.doi.org/10.3390/pharmaceutics12050412] [PMID: 32369897]
[41]
Knežević NŽ, Mrđanović J, Borišev I, et al. Hydroxylated fullerene-capped, vinblastine-loaded folic acid-functionalized mesoporous silica nanoparticles for targeted anticancer therapy. RSC Advances 2016; 6(9): 7061-5.
[http://dx.doi.org/10.1039/C5RA22937E]
[42]
Wan J, Zhang X, Fu K, Zhang X, Shang L, Su Z. Highly fluorescent carbon dots as novel theranostic agents for biomedical applications. Nanoscale 2021; 13(41): 17236-53.
[http://dx.doi.org/10.1039/D1NR03740D] [PMID: 34651156]
[43]
Zhao S, Sun S, Jiang K, et al. In situ synthesis of fluorescent mesoporous silica–carbon dot nanohybrids featuring folate receptor-overexpressing cancer cell targeting and drug delivery. Nano-Micro Lett 2019; 11(1): 32.
[http://dx.doi.org/10.1007/s40820-019-0263-3] [PMID: 34137970]
[44]
Zheng H, Wang Y, Che S. Coordination bonding-based mesoporous silica for pH-responsive anticancer drug doxorubicin delivery. J Phys Chem C 2011; 115(34): 16803-13.
[http://dx.doi.org/10.1021/jp203799m]
[45]
Chang D, Gao Y, Wang L, et al. Polydopamine-based surface modification of mesoporous silica nanoparticles as pH-sensitive drug delivery vehicles for cancer therapy. J Colloid Interface Sci 2016; 463: 279-87.
[http://dx.doi.org/10.1016/j.jcis.2015.11.001] [PMID: 26550786]
[46]
Apostolos RCR, Andrade GF, Silva WM, Assis Gomes D, Miranda MC, Sousa EMB. Hybrid polymeric systems of mesoporous silica/hydroxyapatite nanoparticles applied as antitumor drug delivery platform. Int J Appl Ceram Technol 2019; 16(5): 1836-49.
[http://dx.doi.org/10.1111/ijac.13231]
[47]
Baeza A, Guisasola E, Ruiz-Hernández E, Vallet-Regí M. Magnetically triggered multidrug release by hybrid mesoporous silica nanoparticles. Chem Mater 2012; 24(3): 517-24.
[http://dx.doi.org/10.1021/cm203000u]
[48]
Zhang Z, Liu C, Bai J, et al. Silver nanoparticle gated, mesoporous silica coated gold nanorods (AuNR@MS@AgNPs): Low premature release and multifunctional cancer theranostic platform. ACS Appl Mater Interfaces 2015; 7(11): 6211-9.
[http://dx.doi.org/10.1021/acsami.5b00368] [PMID: 25707533]
[49]
Hadipour Moghaddam SP, Mohammadpour R, Ghandehari H. RETRACTED: in vitro and in vivo evaluation of degradation, toxicity, biodistribution, and clearance of silica nanoparticles as a function of size, porosity, density, and composition. J Control Release 2019; 311-312: 1-15.
[http://dx.doi.org/10.1016/j.jconrel.2019.08.028] [PMID: 31465825]
[50]
Gonçalves MC. Sol-gel silica nanoparticles in medicine: A natural choice. design, synthesis and products. Molecules 2018; 23(8): 2021.
[http://dx.doi.org/10.3390/molecules23082021] [PMID: 30104542]
[51]
Fu C, Liu T, Li L, Liu H, Chen D, Tang F. The absorption, distribution, excretion and toxicity of mesoporous silica nanoparticles in mice following different exposure routes. Biomaterials 2013; 34(10): 2565-75.
[http://dx.doi.org/10.1016/j.biomaterials.2012.12.043] [PMID: 23332175]
[52]
Liu TP, Wu SH, Chen YP, Chou CM, Chen CT. Biosafety evaluations of well-dispersed mesoporous silica nanoparticles: Towards in vivo-relevant conditions. Nanoscale 2015; 7(15): 6471-80.
[http://dx.doi.org/10.1039/C4NR07421A] [PMID: 25804371]
[53]
Chen G, Teng Z, Su X, Liu Y, Lu G. Unique biological degradation behavior of stöber mesoporous silica nanoparticles from their interiors to their exteriors. J Biomed Nanotechnol 2015; 11(4): 722-9.
[http://dx.doi.org/10.1166/jbn.2015.2072] [PMID: 26310078]
[54]
Li L, Liu T, Fu C, Tan L, Meng X, Liu H. Biodistribution, excretion, and toxicity of mesoporous silica nanoparticles after oral administration depend on their shape. Nanomedicine 2015; 11(8): 1915-24.
[http://dx.doi.org/10.1016/j.nano.2015.07.004] [PMID: 26238077]
[55]
Hudson S, Cooney J, Magner E. Proteins in mesoporous silicates angewandte. Angew Chem Int Ed Engl 2008; 47(45): 8582-94.
[http://dx.doi.org/10.1002/anie.200705238]
[56]
Phuong T, Nguyen B, Lee J, Geun W, Moon H. Synthesis of functionalized SBA-15 with ordered large pore size and its adsorption properties of BSA. Microporous Mesoporous Mater 2008; 10: 560-9.
[http://dx.doi.org/10.1016/j.micromeso.2007.06.054]
[57]
Betancor L, Luckarift H R. Bioinspired enzyme encapsulation for biocatalysis. Trends Biotechnol 2008; 26(10): 566-72.
[http://dx.doi.org/10.1016/j.tibtech.2008.06.009]
[58]
Torney OIS, Trewyn BG, Lin VS, Wang KAN. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2007; 2(5): 295-300.
[http://dx.doi.org/10.1038/nnano.2007.108]
[59]
Hricak H. MR imaging and MR spectroscopic imaging in the pre-treatment evaluation of prostate cancer. Br J Radiol 2005; 78(2): S103-11.
[http://dx.doi.org/10.1259/bjr/11253478]
[60]
Wartenberg N, Fries P, Raccurt O, Guillermo A. A Gadolinium Complex Confined in Silica Nanoparticles as a Highly. Chem 2013; 19(22): 6980-3.
[http://dx.doi.org/10.1002/chem.201300635]
[61]
Piao BY, Burns A, Kim J, Wiesner U, Hyeon T. Designed fabrication of silica-based nanostructured particle systems for nanomedicine applications. Adv Func Mater 2008; 18(33): 3745-58.
[http://dx.doi.org/10.1002/adfm.200800731]
[62]
Song G, Li C, Hu J, et al. A simple transformation from silica core–shell–shell to yolk–shell nanostructures: A useful platform for effective cell imaging and drug delivery. J Mater Chem 2012; 2012(33): 17011-8.
[http://dx.doi.org/10.1039/c2jm32382f]
[63]
Tarn D, Ashley C E, Xue M I N, Carnes E C, Zink J I, Brinker C J. Mesoporous silica nanoparticle nanocarriers: Biofunctionality and biocompatibility. Acc Chem Res 2012; 46(3): 792-801.
[64]
Lu J, Liong M, Zink JI, Tamanoi F. Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small 2007; 3(8): 1341-6.
[http://dx.doi.org/10.1002/smll.200700005] [PMID: 17566138]
[65]
Chang B, Guo J, Liu C, Yang W. Surface functionalization of magnetic mesoporous silica nanoparticles for controlled drug release. J Mater Chem 2010; 20(44): 9941-7.
[http://dx.doi.org/10.1039/c0jm01237h]
[66]
Chem JM, Cheng S, Liao W, Chen L, Lee C. pH-controllable release using functionalized mesoporous silica nanoparticles as an oral drug delivery system †. J Mater Chem 2011; 21(20): 7130-7.
[http://dx.doi.org/10.1039/c0jm04490c]
[67]
Liu J, Qiao SZ, Hartono SB, Qing G, Lu M. Monodisperse yolk-shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors. Angew Chem Int Ed Engl 2010; 49(29): 4981-5.
[http://dx.doi.org/10.1002/anie.201001252]
[68]
Pe J, Salinas AJ. Compositional variations in the calcium phosphate layer growth on gel glasses soaked in a simulated body fluid Chem Mater 2000; 12(12): 3770-5.
[69]
Izquierdo-barba I, Ruiz-gonza L, Ruiz-gonza L, Izquierdo-barba I. Revisiting silica based ordered mesoporous materials : Medical applications. J Mater Chem 2006; 16(1): 26-31.
[http://dx.doi.org/10.1039/B509744D]
[70]
Horcajada P, Rámila A, Boulahya K. Bioactivity in ordered mesoporous materials. Solid State Sci 2004; 6(11): 1295-300.
[http://dx.doi.org/10.1016/j.solidstatesciences.2004.07.026]
[71]
Vallet-regí M. Recent advances in ceramic implants as drug delivery systems for biomedical applications. Int J Nanomedicine 2014; 3(4): 403-14.
[http://dx.doi.org/10.2147/IJN.S3548]
[72]
Lv R, Yang P, He F, et al. A yolk-like multifunctional platform for multimodal imaging and synergistic therapy triggered by a single near-infrared light. ACS Nano 2015; 9(2): 1630-47.
[73]
Lin Y, Haynes CL. Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity J Am Chem Soc 2010; 32(13): 4834-42.
[74]
Li L, Liu T, Hao N. The Shape Effect of Mesoporous Silica Nanoparticles on Biodistribution, Clearance, and Biocompatibility in vivo. ACS Nano 2011; 5(7): 5390-999.
[75]
Poonia N, Lather V, Pandita D. Multifunctional MSNs provide solutions for multidrug resistance issues SC. Drug Discov Today 2018; 23(2): 315-32.
[http://dx.doi.org/10.1016/j.drudis.2017.10.022] [PMID: 29128658]
[76]
Zhang Q, Wang X, Li PZ, et al. Biocompatible, Uniform, and Redispersible Mesoporous Silica Nanoparticles for Cancer-Targeted Drug Delivery in vivo. Adv Funct Mater 2014; 24(17): 2450-61.
[http://dx.doi.org/10.1002/adfm.201302988]
[77]
Tiwari N, Nawale L, Sarkar D, Badiger M V. Carboxymethyl cellulose-grafted mesoporous silica hybrid nanogels for enhanced cellular uptake and release of curcumin Gels 2017; 3
[http://dx.doi.org/10.3390/gels3010008]
[78]
Huang P, Chen Y, Lin H, et al. Molecularly organic/inorganic hybrid hollow mesoporous organosilica nanocapsules with tumor-specific biodegradability and enhanced chemotherapeutic functionality. Biomaterials 2017; 125: 23-37.
[http://dx.doi.org/10.1016/j.biomaterials.2017.02.018] [PMID: 28226244]
[79]
Elbialy NS, Aboushoushah SF, Sofi BF, Noorwali A. Multifunctional curcumin-loaded mesoporous silica nanoparticles for cancer chemoprevention and therapy. Microporous Mesoporous Mater 2020; 291: 109540.
[http://dx.doi.org/10.1016/j.micromeso.2019.06.002]
[80]
Li Z, Zhang Y, Zhu C, et al. Folic acid modified lipid-bilayer coated mesoporous silica nanoparticles co-loading paclitaxel and tanshinone IIA for the treatment of acute promyelocytic leukemia. Int J Pharm 2020; 586: 119576.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119576] [PMID: 32603839]
[81]
Kong M, Tang J, Qiao Q, et al. Biodegradable hollow mesoporous silica nanoparticles for regulating tumor microenvironment and enhancing antitumor efficiency. Theranostics 2017; 7(13): 3276-92.
[http://dx.doi.org/10.7150/thno.19987] [PMID: 28900509]
[82]
Lin CH, Cheng SH, Liao WN, et al. Mesoporous silica nanoparticles for the improved anticancer efficacy of cis-platin. Int J Pharm 2012; 429(1-2): 138-47.
[http://dx.doi.org/10.1016/j.ijpharm.2012.03.026] [PMID: 22465413]
[83]
Tonbul H, Sahin A, Tavukcuoglu E, et al. Folic acid decoration of mesoporous silica nanoparticles to increase cellular uptake and cytotoxic activity of doxorubicin in human breast cancer cells. J Drug Deliv Sci Technol 2021; 63: 102535.
[http://dx.doi.org/10.1016/j.jddst.2021.102535]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy