Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Review Article

Applications of Nanotechnology-mediated Herbal Nanosystems for Ophthalmic Drug

Author(s): Dipthi Shree*, Chinam Niranjan Patra and Biswa Mohan Sahoo

Volume 12, Issue 3, 2024

Published on: 25 September, 2023

Page: [229 - 250] Pages: 22

DOI: 10.2174/2211738511666230816090046

Price: $65

Abstract

In recent years, herbal nanomedicines have gained tremendous popularity for novel drug discovery. Nanotechnology has provided several advances in the healthcare sector, emerging several novel nanocarriers that potentiate the bioavailability and therapeutic efficacy of the herbal drug. The recent advances in nanotechnology with accelerated strategies of ophthalmic nanosystems have paved a new path for overcoming the limitations associated with ocular drug delivery systems, such as low bioavailability, poor absorption, stability, and precorneal drug loss. Ophthalmic drug delivery is challenging due to anatomical and physiological barriers. Due to the presence of these barriers, the herbal drug entry into the eyes can be affected when administered by following multiple routes, i.e., topical, injectables, or systemic. However, the advancement of nanotechnology with intelligent systems enables the herbal active constituent to successfully entrap within the system, which is usually difficult to reach employing conventional herbal formulations. Herbal-loaded nanocarrier drug delivery systems demonstrated enhanced herbal drug permeation and prolonged herbal drug delivery.

In this current manuscript, an extensive search is conducted for original research papers using databases Viz., PubMed, Google Scholar, Science Direct, Web of Science, etc. Further painstaking efforts are made to compile and update the novel herbal nanocarriers such as liposomes, polymeric nanoparticles, solid lipid nanoparticles, nanostructure lipid carriers, micelles, niosomes, nanoemulsions, dendrimers, etc., which are mostly used for ophthalmic drug delivery system. This article presents a comprehensive survey of diverse applications used for the preventative measures and treatment therapy of varied eye disorders. Further, this article highlights the recent findings that the innovators are exclusively working on ophthalmic nanosystems for herbal drug delivery systems.

The nanocarriers are promising drug delivery systems that enable an effective and supreme therapeutic potential circumventing the limitations associated with conventional ocular drug delivery systems. The nanotechnology-based approach is useful to encapsulate the herbal bioactive and prevent them from degradation and therefore providing them for controlled and sustained release with enhanced herbal drug permeation. Extensive research is still being carried out in the field of herbal nanotechnology to design an ophthalmic nanosystem with improved biopharmaceutical properties.

Keywords: Nanocarriers, ocular drug delivery system, bioavailability, therapeutic efficacy, natural plant metabolite, nanomedicines, eye diseases.

Graphical Abstract
[1]
Demmin DL, Silverstein SM. Visual impairment and mental health: Unmet needs and treatment options. Clin Ophthalmol 2020; 14: 4229-51.
[http://dx.doi.org/10.2147/OPTH.S258783] [PMID: 33299297]
[2]
Assi L, Chamseddine F, Ibrahim P, et al. A global assessment of eye health and quality of life: A systematic review of systematic reviews. JAMA Ophthalmol 2021; 139(5): 526-41.
[http://dx.doi.org/10.1001/jamaophthalmol.2021.0146] [PMID: 33576772]
[3]
Quillen DA. Common causes of vision loss in elderly patients. Am Fam Physician 1999; 60(1): 99-108.
[PMID: 10414631]
[4]
Chen Y, Mehta G, Vasiliou V. Antioxidant defenses in the ocular surface. Ocul Surf 2009; 7(4): 176-85.
[http://dx.doi.org/10.1016/S1542-0124(12)70185-4] [PMID: 19948101]
[5]
Nita M, Grzybowski A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid Med Cell Longev 2016; 2016: 1-23.
[http://dx.doi.org/10.1155/2016/3164734] [PMID: 26881021]
[6]
Álvarez-Barrios A, Álvarez L, García M, Artime E, Pereiro R, González-Iglesias H. Antioxidant defenses in the human eye: A focus on Metallothioneins. Antioxidants 2021; 10(1): 89.
[http://dx.doi.org/10.3390/antiox10010089] [PMID: 33440661]
[7]
Sies H. Oxidative stress: A concept in redox biology and medicine. Redox Biol 2015; 4: 180-3.
[http://dx.doi.org/10.1016/j.redox.2015.01.002] [PMID: 25588755]
[8]
Ivanov IV, Mappes T, Schaupp P, Lappe C, Wahl S. Ultraviolet radiation oxidative stress affects eye health. J Biophotonics 2018; 11(7): e201700377.
[http://dx.doi.org/10.1002/jbio.201700377] [PMID: 29603665]
[9]
Kuse Y, Ogawa K, Tsuruma K, Shimazawa M, Hara H. Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light. Sci Rep 2014; 4(1): 5223.
[http://dx.doi.org/10.1038/srep05223] [PMID: 24909301]
[10]
Jaadane I, Villalpando Rodriguez GE, Boulenguez P, et al. Effects of white light-emitting diode (LED) exposure on retinal pigment epithelium in vivo. J Cell Mol Med 2017; 21(12): 3453-66.
[http://dx.doi.org/10.1111/jcmm.13255] [PMID: 28661040]
[11]
Jaadane I, Boulenguez P, Chahory S, et al. Retinal damage induced by commercial light emitting diodes (LEDs). Free Radic Biol Med 2015; 84: 373-84.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.03.034] [PMID: 25863264]
[12]
Saccà SC, Roszkowska AM, Izzotti A. Environmental light and endogenous antioxidants as the main determinants of non-cancer ocular diseases. Mutat Res Rev Mutat Res 2013; 752(2): 153-71.
[http://dx.doi.org/10.1016/j.mrrev.2013.01.001] [PMID: 23337404]
[13]
Beatty S, Koh HH, Phil M, Henson D, Boulton M. The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 2000; 45(2): 115-34.
[http://dx.doi.org/10.1016/S0039-6257(00)00140-5] [PMID: 11033038]
[14]
Somasundaran S, Constable IJ, Mellough CB, Carvalho LS. Retinal pigment epithelium and age‐related macular degeneration: A review of major disease mechanisms. Clin Exp Ophthalmol 2020; 48(8): 1043-56.
[http://dx.doi.org/10.1111/ceo.13834] [PMID: 32710488]
[15]
Liang FQ, Godley BF. Oxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells: A possible mechanism for RPE aging and age-related macular degeneration. Exp Eye Res 2003; 76(4): 397-403.
[http://dx.doi.org/10.1016/S0014-4835(03)00023-X] [PMID: 12634104]
[16]
Jarrett SG, Boulton ME. Consequences of oxidative stress in age-related macular degeneration. Mol Aspects Med 2012; 33(4): 399-417.
[http://dx.doi.org/10.1016/j.mam.2012.03.009] [PMID: 22510306]
[17]
Patel A, Cholkar K, Agrahari V, Mitra AK. Ocular drug delivery systems: An overview. World J Pharmacol 2013; 2(2): 47-64.
[http://dx.doi.org/10.5497/wjp.v2.i2.47] [PMID: 25590022]
[18]
Mun EA, Morrison PWJ, Williams AC, Khutoryanskiy VV. On the barrier properties of the cornea: A microscopy study of the penetration of fluorescently labeled nanoparticles, polymers, and sodium fluorescein. Mol Pharm 2014; 11(10): 3556-64.
[http://dx.doi.org/10.1021/mp500332m] [PMID: 25165886]
[19]
Cholkar K, Dasari SR, Pal D, Mitra AK. Eye: Anatomy, physiology and barriers to drug delivery. In: Ocular transporters and receptors their role in drug delivery. Woodhead Publishing series in biomedicine. 2013; p. 1-36.
[http://dx.doi.org/10.1533/9781908818317.1]
[20]
Ghate D, Edelhauser HF. Ocular drug delivery. Expert Opin Drug Deliv 2006; 3(2): 275-87.
[http://dx.doi.org/10.1517/17425247.3.2.275] [PMID: 16506953]
[21]
Barar J, Javadzadeh AR, Omidi Y. Ocular novel drug delivery: Impacts of membranes and barriers. Expert Opin Drug Deliv 2008; 5(5): 567-81.
[http://dx.doi.org/10.1517/17425247.5.5.567] [PMID: 18491982]
[22]
Gaudana R, Jwala J, Boddu SHS, Mitra AK. Recent perspectives in ocular drug delivery. Pharm Res 2009; 26(5): 1197-216.
[http://dx.doi.org/10.1007/s11095-008-9694-0] [PMID: 18758924]
[23]
Suri R, Beg S, Kohli K. Target strategies for drug delivery bypassing ocular barriers. J Drug Deliv Sci Technol 2020; 55: 101389.
[http://dx.doi.org/10.1016/j.jddst.2019.101389]
[24]
Huang D, Chen YS, Rupenthal ID. Overcoming ocular drug delivery barriers through the use of physical forces. Adv Drug Deliv Rev 2018; 126: 96-112.
[http://dx.doi.org/10.1016/j.addr.2017.09.008] [PMID: 28916492]
[25]
Nafees S, Akhtar J, Kaur J. Indian traditional medicinal plants in ophthalmic diseases. Avicenna J Phytomed 2022; 12(6): 566-75.
[PMID: 36583172]
[26]
Chu KO, Pang CP. Herbal molecules in eye diseases. Taiwan J Ophthalmol 2014; 4(3): 103-9.
[http://dx.doi.org/10.1016/j.tjo.2014.03.005]
[27]
Jumelle C, Gholizadeh S, Annabi N, Dana R. Advances and limitations of drug delivery systems formulated as eye drops. J Control Release 2020; 321: 1-22.
[http://dx.doi.org/10.1016/j.jconrel.2020.01.057] [PMID: 32027938]
[28]
Bachu R, Chowdhury P, Al-Saedi Z, Karla P, Boddu S. Ocular drug delivery barriers-role of nanocarriers in the treatment of anterior segment ocular diseases. Pharmaceutics 2018; 10(1): 28.
[http://dx.doi.org/10.3390/pharmaceutics10010028] [PMID: 29495528]
[29]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnol 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[30]
Kesarwani K, Gupta R, Mukerjee A. Bioavailability enhancers of herbal origin: An overview. Asian Pac J Trop Biomed 2013; 3(4): 253-66.
[http://dx.doi.org/10.1016/S2221-1691(13)60060-X] [PMID: 23620848]
[31]
Ansari SH, Sameem M, Islam F. Influence of nanotechnology on herbal drugs: A Review. J Adv Pharm Technol Res 2012; 3(3): 142-6.
[http://dx.doi.org/10.4103/2231-4040.101006] [PMID: 23057000]
[32]
Razavi MS, Ebrahimnejad P, Fatahi Y, D’Emanuele A, Dinarvand R. Recent developments of nanostructures for the ocular delivery of natural compounds. Front Chem 2022; 10: 850757.
[http://dx.doi.org/10.3389/fchem.2022.850757] [PMID: 35494641]
[33]
Gorantla S, Rapalli VK, Waghule T, et al. Nanocarriers for ocular drug delivery: Current status and translational opportunity. RSC Advances 2020; 10(46): 27835-55.
[http://dx.doi.org/10.1039/D0RA04971A] [PMID: 35516960]
[34]
Lee VHL, Robinson JR. Topical ocular drug delivery: Recent developments and future challenges. J Ocul Pharmacol Ther 1986; 2(1): 67-108.
[http://dx.doi.org/10.1089/jop.1986.2.67] [PMID: 3332284]
[35]
Tian B, Bilsbury E, Doherty S, et al. Ocular drug delivery: Advancements and innovations. Pharmaceutics 2022; 14(9): 1931.
[http://dx.doi.org/10.3390/pharmaceutics14091931] [PMID: 36145679]
[36]
Agrahari V, Mandal A, Agrahari V, et al. A comprehensive insight on ocular pharmacokinetics. Drug Deliv Transl Res 2016; 6(6): 735-54.
[http://dx.doi.org/10.1007/s13346-016-0339-2] [PMID: 27798766]
[37]
Obeid MA, Al Qaraghuli MM, Alsaadi M, Alzahrani AR, Niwasabutra K, Ferro VA. Delivering natural products and biotherapeutics to improve drug efficacy. Ther Deliv 2017; 8(11): 947-56.
[http://dx.doi.org/10.4155/tde-2017-0060] [PMID: 29061102]
[38]
Musthaba SM, Baboota S, Ahmed S, Ahuja A, Ali J. Status of novel drug delivery technology for phytotherapeutics. Expert Opin Drug Deliv 2009; 6(6): 625-37.
[http://dx.doi.org/10.1517/17425240902980154] [PMID: 19505192]
[39]
Janagam DR, Wu L, Lowe TL. Nanoparticles for drug delivery to the anterior segment of the eye. Adv Drug Deliv Rev 2017; 122: 31-64.
[http://dx.doi.org/10.1016/j.addr.2017.04.001] [PMID: 28392306]
[40]
Pulipaka S, Kumar MR, Sriram P, Suttee A. A review on nano drug delivery systems of herbal medicine. J Emerg Technol Innov Res 2021; 8(2): 1569-92.
[41]
Pinheiro GKLO, Araújo Filho I, Araújo Neto I, et al. Nature as a source of drugs for ophthalmology. Arq Bras Oftalmol 2018; 81(5): 443-54.
[PMID: 30208150]
[42]
Sandhu PS, Singh B, Gupta V, Bansal P, Kumar D. Potential herbs used in ocular diseases. J Pharm Sci Res 2011; 3(4): 1127-40.
[43]
Le Bourlais C, Acar L, Zia H, Sado PA, Needham T, Leverge R. Ophthalmic drug delivery systems-Recent advances. Prog Retin Eye Res 1998; 17(1): 33-58.
[http://dx.doi.org/10.1016/S1350-9462(97)00002-5] [PMID: 9537794]
[44]
Kaur IP, Garg A, Singla AK, Aggarwal D. Vesicular systems in ocular drug delivery: An overview. Int J Pharm 2004; 269(1): 1-14.
[http://dx.doi.org/10.1016/j.ijpharm.2003.09.016] [PMID: 14698571]
[45]
Pal Kaur I, Kanwar M. Ocular preparations: The formulation approach. Drug Dev Ind Pharm 2002; 28(5): 473-93.
[http://dx.doi.org/10.1081/DDC-120003445] [PMID: 12098838]
[46]
Mishima S, Gasset A, Klyce SD Jr, Baum JL. Determination of tear volume and tear flow. Invest Ophthalmol 1966; 5(3): 264-76.
[PMID: 5947945]
[47]
Chrai SS, Patton TF, Mehta A, Robinson JR. Lacrimal and instilled fluid dynamics in rabbit eyes. J Pharm Sci 1973; 62(7): 1112-21.
[http://dx.doi.org/10.1002/jps.2600620712] [PMID: 4576801]
[48]
File RR, Patton TF. Topically applied pilocarpine. Human pupillary response as a function of drop size. Arch Ophthalmol 1980; 98(1): 112-5.
[http://dx.doi.org/10.1001/archopht.1980.01020030114010] [PMID: 7352857]
[49]
Raj VK, Mazumder R, Madhra M. Ocular drug delivery system: Challenges and approaches. Int J Appl Pharmaceut 2020; 12(5): 49-57.
[http://dx.doi.org/10.22159/ijap.2020v12i5.38762]
[50]
Ahmed I, Patton T. Disposition of timolol and inulin in the rabbit eye following corneal versus non-corneal absorption. Int J Pharm 1987; 38(1-3): 9-21.
[http://dx.doi.org/10.1016/0378-5173(87)90092-5]
[51]
Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J 2010; 12(3): 348-60.
[http://dx.doi.org/10.1208/s12248-010-9183-3] [PMID: 20437123]
[52]
Suresh PK, Barsa G, Sah AK, Daharwal SJ. Ocular implants as drug delivery device in opthalmic therapeutics. Anoverview Research J Pharm and Tech 2014; 7(6): 665-76.
[53]
Sangeetha J, Asokan S. A review on traditional medicine used as treatment for conjunctivitis. Int J Pharm Drug Anal 2018; 6(2): 191-6.
[54]
Patel PB, Shastri DH, Shelat PK, Shukla AK. Ophthalmic drug delivery system: Challenges and approaches. Sys Rev Pharm 2010; 1(2): 114-20.
[55]
Chen YZ, Chen ZY, Tang YJ, et al. Development of lutein-containing eye drops for the treatment of dry eye syndrome. Pharmaceutics 2021; 13(11): 1801.
[http://dx.doi.org/10.3390/pharmaceutics13111801] [PMID: 34834216]
[56]
Kotagiri SR, Morde A, Rai D, et al. Superior bioavailability of a novel lutein and Zeaxanthin formulation in healthy human subjects. Ophthalmol Ther 2022; 11(4): 1463-77.
[http://dx.doi.org/10.1007/s40123-022-00522-x] [PMID: 35585428]
[57]
El-Kamel AH, Ashour AA. Recent strategies for ocular drug delivery: Promises and challenges. In: Advanced Drug Delivery Systems. IntechOpen 2022.
[http://dx.doi.org/10.5772/intechopen.106335]
[58]
Abdelkader H, Alany RG. Controlled and continuous release ocular drug delivery systems: Pros and cons. Curr Drug Deliv 2012; 9(4): 421-30.
[http://dx.doi.org/10.2174/156720112801323125] [PMID: 22640036]
[59]
Poland DE, Kaufman HE. Clinical uses of collagen shields. J Cataract Refract Surg 1988; 14(5): 489-91.
[http://dx.doi.org/10.1016/S0886-3350(88)80003-8] [PMID: 3183929]
[60]
Friedberg ML, Pleyer U, Mondino BJ. Device drug delivery to the eye. Collagen shields, iontophoresis, and pumps. Ophthalmology 1991; 98(5): 725-32.
[http://dx.doi.org/10.1016/S0161-6420(91)32227-9] [PMID: 2062508]
[61]
Kumari A, Sharma P, Garg V, Garg G. Ocular inserts - Advancement in therapy of eye diseases. J Adv Pharm Technol Res 2010; 1(3): 291-6.
[http://dx.doi.org/10.4103/0110-5558.72419] [PMID: 22247860]
[62]
Kunou N, Ogura Y, Hashizoe M, Honda Y, Hyon S-H, Ikada Y. Controlled intraocular delivery of ganciclovir with use of biodegradable scleral implant in rabbits. J Control Release 1995; 37(1-2): 143-50.
[http://dx.doi.org/10.1016/0168-3659(95)00074-I]
[63]
Bonifácio BV, Silva PB, Ramos MAS, Negri KMS, Bauab TM, Chorilli M. Nanotechnology-based drug delivery systems and herbal medicines: A review. Int J Nanomedicine 2014; 9: 1-15.
[PMID: 24363556]
[64]
Sandhiya V, Ubaidulla U. A review on herbal drug loaded into pharmaceutical carrier techniques and its evaluation process. Future J Pharmaceut Sci 2020; 6(1): 51.
[http://dx.doi.org/10.1186/s43094-020-00050-0]
[65]
Afarid M, Mahmoodi S, Baghban R. Recent achievements in nano-based technologies for ocular disease diagnosis and treatment, review and update. J Nanobiotechnology 2022; 20(1): 361.
[http://dx.doi.org/10.1186/s12951-022-01567-7] [PMID: 35918688]
[66]
Vaneev A, Tikhomirova V, Chesnokova N, et al. Nanotechnology for topical drug delivery to the anterior segment of the eye. Int J Mol Sci 2021; 22(22): 12368.
[http://dx.doi.org/10.3390/ijms222212368] [PMID: 34830247]
[67]
Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: Structure, composition, types, and clinical applications. Heliyon 2022; 8(5): e09394.
[http://dx.doi.org/10.1016/j.heliyon.2022.e09394] [PMID: 35600452]
[68]
Chrai SS, Murari R, Imran A. Liposomes: A review. Bio Pharm 2001; 14(11): 10-4.
[69]
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: Classification, preparation, and applications. Nanoscale Res Lett 2013; 8(1): 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[70]
Sharma A, Sharma US. Liposomes in drug delivery: Progress and limitations. Int J Pharm 1997; 154(2): 123-40.
[http://dx.doi.org/10.1016/S0378-5173(97)00135-X]
[71]
Kumar HM, Spandana V. Liposomal encapsulation technology a novel drug delivery system designed for ayurvedic drug preparation. Int Res J Pharm 2011; 2(10): 4-6.
[72]
Ebrahim S, Peyman GA, Lee PJ. Applications of liposomes in ophthalmology. Surv Ophthalmol 2005; 50(2): 167-82.
[http://dx.doi.org/10.1016/j.survophthal.2004.12.006] [PMID: 15749307]
[73]
Dean DA, Byrd JN Jr, Dean BS. Nuclear targeting of plasmid DNA in human corneal cells. Curr Eye Res 1999; 19(1): 66-75.
[http://dx.doi.org/10.1076/ceyr.19.1.66.5344] [PMID: 10415459]
[74]
Bochot A, Couvreur P, Fattal E. Intravitreal administration of antisense oligonucleotides: Potential of liposomal delivery. Prog Retin Eye Res 2000; 19(2): 131-47.
[http://dx.doi.org/10.1016/S1350-9462(99)00014-2] [PMID: 10674705]
[75]
Stratford RE Jr, Yang DC, Redell MA, Lee VHL. Ocular distribution of liposome-encapsulated epinephrine and inulin in the albino rabbit. Curr Eye Res 1982-1983; 2(6): 377-86.
[http://dx.doi.org/10.3109/02713688209000783] [PMID: 7188304]
[76]
Schaeffer HE, Breitfeller JM, Krohn DL. Lectin-mediated attachment of liposomes to cornea: Influence on transcorneal drug flux. Invest Ophthalmol Vis Sci 1982; 23(4): 530-3.
[PMID: 7118509]
[77]
Kuotsu K, Karim KM, Mandal AS, et al. Niosome: A future of targeted drug delivery systems. J Adv Pharm Technol Res 2010; 1(4): 374-80.
[http://dx.doi.org/10.4103/0110-5558.76435] [PMID: 22247876]
[78]
Mahale NB, Thakkar PD, Mali RG, Walunj DR, Chaudhari SR. Niosomes: Novel sustained release nonionic stable vesicular systems - An overview. Adv Colloid Interface Sci 2012; 183-184: 46-54.
[http://dx.doi.org/10.1016/j.cis.2012.08.002] [PMID: 22947187]
[79]
Yeo PL, Lim CL, Chye SM, Kiong Ling AP, Koh RY. Niosomes: A review of their structure, properties, methods of preparation, and medical applications. Asian Biomed 2018; 11(4): 301-14.
[http://dx.doi.org/10.1515/abm-2018-0002]
[80]
Sharma V, Anandhakumar S, Sasidharan M. Self-degrading niosomes for encapsulation of hydrophilic and hydrophobic drugs: An efficient carrier for cancer multi-drug delivery. Mater Sci Eng C 2015; 56: 393-400.
[http://dx.doi.org/10.1016/j.msec.2015.06.049] [PMID: 26249606]
[81]
Verma A, Tiwari A, Saraf S, Panda PK, Jain A, Jain SK. Emerging potential of niosomes in ocular delivery. Expert Opin Drug Deliv 2021; 18(1): 55-71.
[http://dx.doi.org/10.1080/17425247.2020.1822322] [PMID: 32903034]
[82]
Durak S, Esmaeili Rad M, Alp Yetisgin A, et al. Niosomal drug delivery systems for ocular disease-Recent advances and future prospects. Nanomaterials 2020; 10(6): 1191.
[http://dx.doi.org/10.3390/nano10061191] [PMID: 32570885]
[83]
Alyami H, Abdelaziz K, Dahmash EZ, Iyire A. Nonionic surfactant vesicles (niosomes) for ocular drug delivery: Development, evaluation and toxicological profiling. J Drug Deliv Sci Technol 2020; 60: 102069.
[http://dx.doi.org/10.1016/j.jddst.2020.102069]
[84]
Paliwal R, Paliwal SR, Kenwat R, Kurmi BD, Sahu MK. Solid lipid nanoparticles: A review on recent perspectives and patents. Expert Opin Ther Pat 2020; 30(3): 179-94.
[http://dx.doi.org/10.1080/13543776.2020.1720649]
[85]
Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J Pharm Sci 2009; 71(4): 349-58.
[http://dx.doi.org/10.4103/0250-474X.57282] [PMID: 20502539]
[86]
Seyfoddin A, Shaw J, Al-Kassas R. Solid lipid nanoparticles for ocular drug delivery. Drug Deliv 2010; 17(7): 467-89.
[http://dx.doi.org/10.3109/10717544.2010.483257] [PMID: 20491540]
[87]
Fang CL, Al-Suwayeh SA, Fang JY. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Pat Nanotechnol 2013; 7(1): 41-55.
[http://dx.doi.org/10.2174/187221013804484827] [PMID: 22946628]
[88]
Elmowafy M, Al-Sanea MM. Nanostructured lipid carriers (NLCs) as drug delivery platform: Advances in formulation and delivery strategies. Saudi Pharm J 2021; 29(9): 999-1012.
[http://dx.doi.org/10.1016/j.jsps.2021.07.015] [PMID: 34588846]
[89]
Liu R, Liu Z, Zhang C, Zhang B. Nanostructured lipid carriers as novel ophthalmic delivery system for mangiferin: Improving in vivo ocular bioavailability. J Pharm Sci 2012; 101(10): 3833-44.
[http://dx.doi.org/10.1002/jps.23251] [PMID: 22767401]
[90]
Jain K, Bharkatiya M. Nanoparticulate based ocular drug delivery technology: “Nanoemulsion a novel approach”. Indian J Pharma Pharmacol 2020; 7(3): 168-76.
[http://dx.doi.org/10.18231/j.ijpp.2020.029]
[91]
Dhahir RK, Al-Nima AM, Al-Bazzaz F. Nanoemulsions as ophthalmic drug delivery systems. Turkish J Pharmaceut Sci 2021; 18(5): 652-64.
[http://dx.doi.org/10.4274/tjps.galenos.2020.59319] [PMID: 34708428]
[92]
Gawin-Mikołajewicz A, Nartowski KP, Dyba AJ, Gołkowska AM, Malec K, Karolewicz B. Ophthalmic nanoemulsions: From composition to technological processes and quality control. Mol Pharm 2021; 18(10): 3719-40.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00650]
[93]
Choradiya BR, Patil SB. A comprehensive review on nanoemulsion as an ophthalmic drug delivery system. J Mol Liq 2021; 339: 116751.
[http://dx.doi.org/10.1016/j.molliq.2021.116751]
[94]
Mukherjee PK, Harwansh RK, Bhattacharyya S. Bioavailability of herbal products: Approach toward improved pharmacokinetics. In: Evidence-Based Validation of Herbal Medicine. Elsevier 2015; pp. 217-45.
[95]
Harika P, Deepthi BVP, Vinitha B, Baherji R, Ali J, Sharma JVC. Herbal nanoparticles. World J Pharm Med Res 2021; 7(3): 127-30.
[96]
Yadav D, Suri S, Choudhary AA, et al. Novel approach: Herbal remedies and natural products in pharmaceuticalscience as nano drug delivery systems. Int J Pharm Tech 2011; 3: 3092-116.
[97]
Zielińska A, Carreiró F, Oliveira AM, et al. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules 2020; 25(16): 3731.
[http://dx.doi.org/10.3390/molecules25163731] [PMID: 32824172]
[98]
Jawahar N, Meyyanathan SN. Polymeric nanoparticles for drug delivery and targeting: A comprehensive review. Int J Health Allied Sci 2012; 1(4): 217-23.
[http://dx.doi.org/10.4103/2278-344X.107832]
[99]
Din F, Aman W, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 2017; 12: 7291-309.
[http://dx.doi.org/10.2147/IJN.S146315] [PMID: 29042776]
[100]
Chiriac AP, Rusu AG, Nita LE, Chiriac VM, Neamtu I, Sandu A. Polymeric carriers designed for encapsulation of essential oils withbiological activity. Pharmaceutics 2021; 13(5): 631.
[http://dx.doi.org/10.3390/pharmaceutics13050631] [PMID: 33925127]
[101]
Tsai CH, Wang PY, Lin IC, Huang H, Liu GS, Tseng CL. Ocular drug delivery: Role of degradable polymeric nanocarriers for ophthalmic application. Int J Mol Sci 2018; 19(9): 2830.
[http://dx.doi.org/10.3390/ijms19092830] [PMID: 30235809]
[102]
Begines B, Ortiz T, Pérez-Aranda M, et al. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials 2020; 10(7): 1403.
[http://dx.doi.org/10.3390/nano10071403] [PMID: 32707641]
[103]
Vaitkuviene A, Kaseta V, Voronovic J, et al. Evaluation of cytotoxicity of polypyrrole nanoparticles synthesized by oxidative polymerization. J Hazard Mater 2013; 250-251: 167-74.
[http://dx.doi.org/10.1016/j.jhazmat.2013.01.038] [PMID: 23454454]
[104]
Ramanaviciene A, Kausaite A, Tautkus S, Ramanavicius A. Biocompatibility of polypyrrole particles: An in-vivo study in mice. J Pharm Pharmacol 2010; 59(2): 311-5.
[http://dx.doi.org/10.1211/jpp.59.2.0017] [PMID: 17270084]
[105]
Tseng CL, Chen KH, Su WY, Lee Y-H, Wu C-C, Lin F-H. Cationic gelatin nanoparticles for drug delivery to the ocular surface: In vitro and in vivo evaluation. J Nanomater 2013; 2013: 1-11.
[http://dx.doi.org/10.1155/2013/238351]
[106]
Pandey M, Choudhury H, Binti Abd Aziz A, et al. Potential of stimuli-responsive in situ gel system for sustained ocular drug delivery: Recent progress and contemporary research. Polymers 2021; 13(8): 1340.
[http://dx.doi.org/10.3390/polym13081340] [PMID: 33923900]
[107]
Kabiri M, Kamal SH, Pawar SV, et al. A stimulus-responsive, in situ-forming, nanoparticle-laden hydrogel for ocular drug delivery. Drug Deliv Transl Res 2018; 8(3): 484-95.
[http://dx.doi.org/10.1007/s13346-018-0504-x] [PMID: 29508159]
[108]
Ghezzi M, Pescina S, Padula C, et al. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release 2021; 332: 312-36.
[http://dx.doi.org/10.1016/j.jconrel.2021.02.031] [PMID: 33652113]
[109]
Mandal A, Bisht R, Rupenthal ID, Mitra AK. Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies. J Control Release 2017; 248: 96-116.
[http://dx.doi.org/10.1016/j.jconrel.2017.01.012] [PMID: 28087407]
[110]
Li Z, Liu M, Ke L, et al. Flexible polymeric nanosized micelles for ophthalmic drug delivery: Research progress in the last three years. Nanoscale Adv 2021; 3(18): 5240-54.
[http://dx.doi.org/10.1039/D1NA00596K] [PMID: 36132623]
[111]
Durgun ME, Güngör S, Özsoy Y. Micelles: Promising ocular drug carriers for anterior and posterior segment diseases. J Ocul Pharmacol Ther 2020; 36(6): 323-41.
[http://dx.doi.org/10.1089/jop.2019.0109] [PMID: 32310723]
[112]
Ashraf O, Nasr M, Nebsen M, Said AMA, Sammour O. In vitro stabilization and in vivo improvement of ocular pharmacokinetics of the multi-therapeutic agent baicalin: Delineating the most suitable vesicular systems. Int J Pharm 2018; 539(1-2): 83-94.
[http://dx.doi.org/10.1016/j.ijpharm.2018.01.041] [PMID: 29374518]
[113]
Liu Z, Zhang X, Wu H, et al. Preparation and evaluation of solid lipid nanoparticles of baicalin for ocular drug delivery system in vitro and in vivo. Drug Dev Ind Pharm 2011; 37(4): 475-81.
[http://dx.doi.org/10.3109/03639045.2010.522193] [PMID: 21054217]
[114]
Arana L, Salado C, Vega S, et al. Solid lipid nanoparticles for delivery of Calendula officinalis extract. Colloids Surf B Biointerfaces 2015; 135: 18-26.
[http://dx.doi.org/10.1016/j.colsurfb.2015.07.020] [PMID: 26231862]
[115]
Lakhani P, Patil A, Taskar P, Ashour E, Majumdar S. Curcumin-loaded Nanostructured Lipid Carriers for ocular drug delivery: Design optimization and characterization. J Drug Deliv Sci Technol 2018; 47: 159-66.
[http://dx.doi.org/10.1016/j.jddst.2018.07.010] [PMID: 32601526]
[116]
Jain N, Verma A, Jain N. Formulation and investigation of pilocarpine hydrochloride niosomal gels for the treatment of glaucoma: Intraocular pressure measurement in white albino rabbits. Drug Deliv 2020; 27(1): 888-99.
[http://dx.doi.org/10.1080/10717544.2020.1775726] [PMID: 32551978]
[117]
Liu CH, Huang YC, Jhang JW, Liu Y-H, Wu W-C. Quercetin delivery to porcine cornea and sclera by solid lipid nanoparticles and nanoemulsion. RSC Advances 2015; 5(122): 100923-33.
[http://dx.doi.org/10.1039/C5RA17423F]
[118]
Lim C, Kim D, Sim T, et al. Preparation and characterization of a lutein loading nanoemulsion system for ophthalmic eye drops. J Drug Deliv Sci Technol 2016; 36: 168-74.
[http://dx.doi.org/10.1016/j.jddst.2016.10.009]
[119]
da Silva SB, Ferreira D, Pintado M, Sarmento B. Chitosan-based nanoparticles for rosmarinic acid ocular delivery—in vitro tests. Int J Biol Macromol 2016; 84: 112-20.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.11.070] [PMID: 26645149]
[120]
Li C, Chen R, Xu M, Qiao J, Yan L, Guo XD. Hyaluronic acid modified MPEG- b -PAE block copolymer aqueous micelles for efficient ophthalmic drug delivery of hydrophobic genistein. Drug Deliv 2018; 25(1): 1258-65.
[http://dx.doi.org/10.1080/10717544.2018.1474972] [PMID: 29847210]
[121]
Dong Y, Wan G, Yan P, Qian C, Li F, Peng G. Fabrication of resveratrol coated gold nanoparticles and investigation of their effect on diabetic retinopathy in streptozotocin induced diabetic rats. J Photochem Photobiol B 2019; 195: 51-7.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.04.012] [PMID: 31082734]
[122]
Liu CH, Chiu HC, Wu WC, Sahoo SL, Hsu CY. Novel lutein loaded lipid nanoparticles on porcine corneal distribution. J Ophthalmol 2014; 2014: 1-11.
[http://dx.doi.org/10.1155/2014/304694] [PMID: 25101172]
[123]
Fangueiro JF, Andreani T, Fernandes L, et al. Physicochemical characterization of epigallocatechin gallate lipid nanoparticles (EGCG-LNs) for ocular instillation. Colloids Surf B Biointerfaces 2014; 123: 452-60.
[http://dx.doi.org/10.1016/j.colsurfb.2014.09.042] [PMID: 25303852]
[124]
Nair KL, Vidyanand S, James J, Kumar GSV. Pilocarpine-loaded poly(DL-lactic-co-glycolic acid) nanoparticles as potential candidates for controlled drug delivery with enhanced ocular pharmacological response. J Appl Polym Sci 2012; 124(3): 2030-6.
[http://dx.doi.org/10.1002/app.35229]
[125]
Vicario-de-la-Torre M, Benítez-del-Castillo JM, Vico E, et al. Design and characterization of an ocular topical liposomal preparation to replenish the lipids of the tear film. Invest Ophthalmol Vis Sci 2014; 55(12): 7839-47.
[http://dx.doi.org/10.1167/iovs.14-14700] [PMID: 25377221]
[126]
Chang CY, Wang MC, Miyagawa T, et al. Preparation of arginine–glycine–aspartic acid-modified biopolymeric nanoparticles containing epigalloccatechin-3-gallate for targeting vascular endothelial cells to inhibit corneal neovascularization. Int J Nanomedicine 2016; 12: 279-94.
[http://dx.doi.org/10.2147/IJN.S114754] [PMID: 28115846]
[127]
Li M, Xin M, Guo C, Lin G, Wu X. New nanomicelle curcumin formulation for ocular delivery: Improved stability, solubility, and ocular anti-inflammatory treatment. Drug Dev Ind Pharm 2017; 43(11): 1846-57.
[http://dx.doi.org/10.1080/03639045.2017.1349787] [PMID: 28665151]
[128]
Huang HY, Wang MC, Chen ZY, et al. Gelatin–epigallocatechin gallate nanoparticles with hyaluronic acid decoration as eye drops can treat rabbit dry-eye syndrome effectively via inflammatory relief. Int J Nanomedicine 2018; 13: 7251-73.
[http://dx.doi.org/10.2147/IJN.S173198] [PMID: 30510416]
[129]
Bodoki E, Vostinaru O, Samoila O, et al. Topical nanodelivery system of lutein for the prevention of selenite-induced cataract. Nanomedicine 2019; 15(1): 188-97.
[http://dx.doi.org/10.1016/j.nano.2018.09.016] [PMID: 30312662]
[130]
Natesan S, Pandian S, Ponnusamy C, Palanichamy R, Muthusamy S, Kandasamy R. Co-encapsulated resveratrol and quercetin in chitosan and peg modified chitosan nanoparticles: For efficient intra ocular pressure reduction. Int J Biol Macromol 2017; 104(Pt B): 1837-45.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.04.117] [PMID: 28472691]
[131]
He W, Guo X, Feng M, Mao N. In vitro and in vivo studies on ocular vitamin A palmitate cationic liposomal in situ gels. Int J Pharm 2013; 458(2): 305-14.
[http://dx.doi.org/10.1016/j.ijpharm.2013.10.033] [PMID: 24409520]
[132]
Hoyo J, Ivanova K, Guaus E, Tzanov T. Multifunctional ZnO NPs-chitosan-gallic acid hybrid nanocoating to overcome contact lenses associated conditions and discomfort. J Colloid Interface Sci 2019; 543: 114-21.
[http://dx.doi.org/10.1016/j.jcis.2019.02.043] [PMID: 30782517]
[133]
Monem AS, Ali FM, Ismail MW. Prolonged effect of liposomes encapsulating pilocarpine HCl in normal and glaucomatous rabbits. Int J Pharm 2000; 198(1): 29-38.
[http://dx.doi.org/10.1016/S0378-5173(99)00348-8] [PMID: 10722948]
[134]
Anbukkarasi M, Thomas PA, Sheu JR, Geraldine P. In vitro antioxidant and anticataractogenic potential of silver nanoparticles biosynthesized using an ethanolic extract of Tabernaemontana divaricata leaves. Biomed Pharmacother 2017; 91: 467-75.
[http://dx.doi.org/10.1016/j.biopha.2017.04.079] [PMID: 28477463]
[135]
Kim D, Maharjan P, Jin M, et al. Potentialalbumin-based antioxidant nanoformulations for ocular protection against oxidative stress. Pharmaceutics 2019; 11(7): 297.
[http://dx.doi.org/10.3390/pharmaceutics11070297] [PMID: 31248013]
[136]
Wang S, Zhang J, Jiang T, et al. Protective effect of Coenzyme Q10 against oxidative damage in human lens epithelial cells by novel ocular drug carriers. Int J Pharm 2011; 403(1-2): 219-29.
[http://dx.doi.org/10.1016/j.ijpharm.2010.10.020] [PMID: 20971176]
[137]
Lou J, Hu W, Tian R, et al. Optimization and evaluation of a thermoresponsive ophthalmic in situ gel containing curcumin-loaded albumin nanoparticles. Int J Nanomedicine 2014; 9: 2517-25.
[PMID: 24904211]
[138]
Alonso MJ, Sánchez A. The potential of chitosan in ocular drug delivery. J Pharm Pharmacol 2010; 55(11): 1451-63.
[http://dx.doi.org/10.1211/0022357022476] [PMID: 14713355]
[139]
Zheng HS, Zhong X-W, Zhou H-S, Xu J-Y, Xu JY. Effects of curcumin nanoparticles on proliferation and VEGF expression of human retinal pigment epithelial cells. Int J Ophthalmol 2022; 15(6): 905-13.
[http://dx.doi.org/10.18240/ijo.2022.06.07] [PMID: 35814903]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy