Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Review Article

Nanobots: Revolutionising the Next Generation of Biomedical Technology and Drug Therapy

Author(s): Vandana Panda*, Akash Saindane and Aditya Pandey

Volume 19, Issue 4, 2024

Published on: 04 August, 2023

Page: [403 - 412] Pages: 10

DOI: 10.2174/1574885518666230726123433

Price: $65

Abstract

Nanoscale machines called “nanorobots” that were hitherto only futuristic ideas are set to storm healthcare and pharmaceuticals with newer technologies for minimally invasive diagnosis, quick and precise surgeries, and targeted drug delivery, which is challenging to achieve by conventional drug delivery systems. Nanobots can be defined as controllable nano-sized mechanical or electromechanical devices which are easily incorporated into cells and used for a variety of cellular functions like combating bacteria and viruses, disposing away dead cells/tissue at the place of a wound, cell/tissue repair and destruction of cancer cells, and also for transporting drugs to cells. Nanorobots can help avoid the untoward effects of traditional drug delivery systems and ameliorate the efficiency of drug delivery by quickly entering the desired cells without affecting other organs. With the advent of mobile communication, artificial neural networks, and Information Technology, futuristic and more advanced nanobots with artificial intelligence are in the offing. However, the challenges to this revolutionary technology are umpteen, the major concern being their interaction inside the human body. This review explicitly expounds on nanobots and their applications to medicine, biomedical research, and drug delivery.

Keywords: Nano robots, nanobots, imaging and diagnosis, drug delivery, anticancer therapy, tissue engineering.

Graphical Abstract
[1]
Feynman RP. There’s plenty of room at the bottom. Eng Sci 1960; 23: 22-36.
[2]
Drexler KE. Engines of creation: The coming era of nanotechnology. New York: Anchor Books 1986.
[3]
Freitas RA Jr. Progress in nanorobotics for advancing biomedicine. IEEE Trans Biomed Eng 2021; 68(1): 130-47.
[4]
Shirai Y, Osgood AJ, Zhao Y, Kelly KF, Tour JM. Directional control in thermally driven single-molecule nanocars. Nano Lett 2005; 5(11): 2330-4.
[http://dx.doi.org/10.1021/nl051915k] [PMID: 16277478]
[5]
Soto F, Wang J, Ahmed R, Demirci U. Medical micro/nanorobots in precision medicine. Adv Sci 2020; 7(21): 2002203.
[http://dx.doi.org/10.1002/advs.202002203] [PMID: 33173743]
[6]
Malik P, Gulati N, Malik RK, Nagaich U. Carbon nanotubes, quantum dots and dendrimers as potential nanodevices for nanotechnology drug delivery systems. International Journal of Pharmaceutical Sciences and Nanotechnology 2013; 6(3): 2113-24.
[http://dx.doi.org/10.37285/ijpsn.2013.6.3.2]
[7]
Cavalcanti A, Shirinzadeh B, Freitas R Jr, Kretly L. Medical nanorobot architecture based on nanobioelectronics. Recent Pat Nanotechnol 2007; 1(1): 1-10.
[http://dx.doi.org/10.2174/187221007779814745] [PMID: 19076015]
[8]
Sun L, Yu Y, Chen Z, et al. Biohybrid robotics with living cell actuation. Chem Soc Rev 2020; 49(12): 4043-69.
[http://dx.doi.org/10.1039/D0CS00120A] [PMID: 32417875]
[9]
Giri G, Maddahi Y, Zareinia K. A brief review on challenges in design and development of nanorobots for medical applications. Appl Sci 2021; 11(21): 10385.
[http://dx.doi.org/10.3390/app112110385]
[10]
Saxena S, Pramod BJ, Dayananda BC, Nagaraju K. Design, architecture and application of nanorobotics in oncology. Indian J Cancer 2015; 52(2): 236-41.
[http://dx.doi.org/10.4103/0019-509X.175805] [PMID: 26853420]
[11]
Thiruchelvi R, Sikdar E, Das A, Rajakumari K. Nanobots in today’s world. Res J Pharm Tech 2020; 13(4): 2033-9.
[http://dx.doi.org/10.5958/0974-360X.2020.00366.2]
[12]
Ghosh A, Fischer P. Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett 2009; 9(6): 2243-5.
[http://dx.doi.org/10.1021/nl900186w] [PMID: 19413293]
[13]
Yang Z, Zhang L. Magnetic actuation systems for miniature robots: A review Adv. Adv Intell Syst 2020; 2(9): 2000082.
[http://dx.doi.org/10.1002/aisy.202000082]
[14]
Ali J, Cheang UK, Martindale JD, Jabbarzadeh M, Fu HC, Jun Kim M. Bacteria-inspired nanorobots with flagellar polymorphic transformations and bundling. Sci Rep 2017; 7(1): 14098.
[http://dx.doi.org/10.1038/s41598-017-14457-y] [PMID: 29074862]
[15]
Jo W, Freedman KJ, Yi DK, Kim MJ. Fabrication of tunable silica-mineralized nanotubes using flagella as bio-templates. Nanotechnology 2012; 23(5): 055601.
[http://dx.doi.org/10.1088/0957-4484/23/5/055601] [PMID: 22236516]
[16]
Ghassan AA, Mijan NA, Taufiq-Yap YH. Nanomaterials: An overview of nanorods synthesis and optimization. Nanorods and nanocomposites 2019; 11(11): 8-33.
[17]
Wu Z, Chen Y, Mukasa D, Pak OS, Gao W. Medical micro/nanorobots in complex media. Chem Soc Rev 2020; 49(22): 8088-112.
[http://dx.doi.org/10.1039/D0CS00309C] [PMID: 32596700]
[18]
Nummelin S, Shen B, Piskunen P, Liu Q, Kostiainen MA, Linko V. Robotic DNA Nanostructures. ACS Synth Biol 2020; 9(8): 1923-40.
[http://dx.doi.org/10.1021/acssynbio.0c00235] [PMID: 32589832]
[19]
Arvidsson R, Hansen SF. Environmental and health risks of nanorobots: An early review. Environ Sci Nano 2020; 7(10): 2875-86.
[http://dx.doi.org/10.1039/D0EN00570C]
[20]
Wang J, Li Y, Nie G. Multifunctional biomolecule nanostructures for cancer therapy. Nat Rev Mater 2021; 6(9): 766-83.
[http://dx.doi.org/10.1038/s41578-021-00315-x] [PMID: 34026278]
[21]
Hu Y, Chen Z, Zhang H, et al. Development of DNA tetrahedron-based drug delivery system. Drug Deliv 2017; 24(1): 1295-301.
[http://dx.doi.org/10.1080/10717544.2017.1373166] [PMID: 28891335]
[22]
Kothamasu P, Kanumur H, Ravur N, Maddu C, Parasuramrajam R, Thangavel S. Nanocapsules: The weapons for novel drug delivery systems. Bioimpacts 2012; 2(2): 71-81.
[PMID: 23678444]
[23]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[24]
Li S, Jiang Q, Liu S, et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat Biotechnol 2018; 36(3): 258-64.
[http://dx.doi.org/10.1038/nbt.4071] [PMID: 29431737]
[25]
Mei Y, Solovev AA, Sanchez S, Schmidt OG. Rolled-up nanotech on polymers: From basic perception to self-propelled catalytic microengines. Chem Soc Rev 2011; 40(5): 2109-19.
[http://dx.doi.org/10.1039/c0cs00078g] [PMID: 21340080]
[26]
Wani TU, Raza SN, Khan NA, Sheikh FA. Recent advances in the emergence of nanorobotics in medicine. App Nanotech BiomedSci 2020; 2020: 119-48.
[27]
Zhang Y, Zhang L, Yang L, et al. Real-time tracking of fluorescent magnetic spore–based microrobots for remote detection of C. diff toxins. Sci Adv 2019; 5(1): eaau9650.
[http://dx.doi.org/10.1126/sciadv.aau9650] [PMID: 30746470]
[28]
Wang Q, Li T, Fang D, et al. Micromotor for removal/detection of blood copper ion. Microchem J 2020; 158: 105125.
[http://dx.doi.org/10.1016/j.microc.2020.105125]
[29]
Molinero-Fernández Á, Moreno-Guzmán M, Arruza L, López MÁ, Escarpa A. Polymer-based micromotor fluorescence immunoassay for on-the-move sensitive procalcitonin determination in very low birth weight infants’ plasma. ACS Sens 2020; 5(5): 1336-44.
[http://dx.doi.org/10.1021/acssensors.9b02515] [PMID: 32204587]
[30]
Hofmann-Amtenbrink M, Hofmann H, Montet X. Superparamagnetic nanoparticles - a tool for early diagnostics. Swiss Med Wkly 2010; 140(3738): w13081.
[http://dx.doi.org/10.4414/smw.2010.13081] [PMID: 20853192]
[31]
Dong Z, Xue X, Liang H, Guan J, Chang L. DNA nanomachines for identifying cancer biomarkers in body fluids and cells. Anal Chem 2021; 93(4): 1855-65.
[http://dx.doi.org/10.1021/acs.analchem.0c03518] [PMID: 33325676]
[32]
Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents. Adv Drug Deliv Rev 2010; 62(11): 1064-79.
[http://dx.doi.org/10.1016/j.addr.2010.07.009] [PMID: 20691229]
[33]
Hu M, Ge X, Chen X, Mao W, Qian X, Yuan WE. Micro/nanorobot: A promising targeted drug delivery system. Pharmaceutics 2020; 12(7): 665.
[http://dx.doi.org/10.3390/pharmaceutics12070665] [PMID: 32679772]
[34]
Freitas RA Jr. Pharmacytes: An ideal vehicle for targeted drug delivery. J Nanosci Nanotechnol 2006; 6(9): 2769-75.
[http://dx.doi.org/10.1166/jnn.2006.413] [PMID: 17048481]
[35]
Mitra M. Medical nanobot for cell and tissue repair. Int Robot & Automat J 2017; 2(6): 00038.
[http://dx.doi.org/10.15406/iratj.2017.02.00038]
[36]
Fathi-Achachelouei M, Knopf-Marques H, Ribeiro da Silva CE, et al. Use of nanoparticles in tissue engineering and regenerative medicine. Front Bioeng Biotechnol 2019; 7: 113.
[http://dx.doi.org/10.3389/fbioe.2019.00113] [PMID: 31179276]
[37]
Lee BH, Tour JM, Kim C-Y, et al. Spinal cord fusion with PEG-GNRs (TexasPEG): Neurophysiological recovery in 24 hours in rats. Surg Neurol Int 2016; 7(25) (Suppl. 24): 632.
[http://dx.doi.org/10.4103/2152-7806.190475] [PMID: 27656326]
[38]
Freitas RA Jr. The ideal gene delivery vector: Chromallocytes, cell repair nanorobots for chromosome replacement therapy. J Evol Technol 2007; 16(1): 1-94.
[39]
Singh R. Nanotechnology based therapeutic application in cancer diagnosis and therapy. 3 Biotech 2019; 9(11): 415.
[40]
Logothetidis S, Ed. Nanomedicine: The medicine of tomorrowNanomedicine and Nanobiotechnology. Heidelberg: Springer 2012; pp. 1-26.
[http://dx.doi.org/10.1007/978-3-642-24181-9_1]
[41]
Maheswari R, Sheeba RS, Gomathy V, Sharmila P. Cancer detecting nanobot using positron emission tomography. Procedia Comput Sci 2018; 133: 315-22.
[http://dx.doi.org/10.1016/j.procs.2018.07.039]
[42]
Aggarwal M, Kumar S. The use of nanorobotics in the treatment therapy of cancer and its future aspects: A review. Cureus 2022; 14(9): e29366.
[http://dx.doi.org/10.7759/cureus.29366] [PMID: 36304358]
[43]
Andhari SS, Wavhale RD, Dhobale KD, et al. Self-propelling targeted magneto-nanobots for deep tumor penetration and pH-Responsive intracellular drug delivery. Sci Rep 2020; 10(1): 4703.
[http://dx.doi.org/10.1038/s41598-020-61586-y] [PMID: 32170128]
[44]
Li J, Esteban-Fernández de Ávila B, Gao W, Zhang L, Wang J. Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification. Sci Robot 2017; 2(4): eaam6431.
[http://dx.doi.org/10.1126/scirobotics.aam6431] [PMID: 31552379]
[45]
Marras AE, Zhou L, Su HJ, Castro CE. Programmable motion of DNA origami mechanisms. Proc Natl Acad Sci 2015; 112(3): 713-8.
[http://dx.doi.org/10.1073/pnas.1408869112] [PMID: 25561550]
[46]
Rahul VA. A brief review on nanorobots. SSRG Int J Mech Eng 2017; 4(8): 15-21.
[http://dx.doi.org/10.14445/23488360/IJME-V4I8P104]
[47]
Parashar A. Aptamers in therapeutics. J Clin Diagn Res 2016; 10(6): BE01-6.
[PMID: 27504277]
[48]
Lee JH, Tan JY, Toh CT, et al. Nanometer thick elastic graphene engine. Nano Lett 2014; 14(5): 2677-80.
[http://dx.doi.org/10.1021/nl500568d] [PMID: 24773247]
[49]
Seyedi SMR, Asoodeh A, Darroudi M. The human immune cell simulated anti-breast cancer nanorobot: The efficient, traceable, and dirigible anticancer bio-bot. Cancer Nanotechnol 2022; 13(1): 44.
[http://dx.doi.org/10.1186/s12645-022-00150-x]
[50]
Hortelão AC, Patiño T, Perez-Jiménez A, Blanco À, Sánchez S. Enzyme-powered nanobots enhance anticancer drug delivery. Adv Funct Mater 2018; 28(25): 1705086.
[http://dx.doi.org/10.1002/adfm.201705086]
[51]
Freitas RA Jr. Nanodentistry. J Am Dent Assoc 2000; 131(11): 1559-65.
[http://dx.doi.org/10.14219/jada.archive.2000.0084] [PMID: 11103574]
[52]
Nagpal A, Kaur J, Sharma S, Bansal A, Sachdev P. Nanotechnology-the era of molecular dentistry. Indian J Dent Sci 2011; 3(5)
[53]
Vijayalakshmi R, Kumar SR. Nanotechnology in dentistry. Indian J Dent Res 2006; 17(2): 62-5.
[http://dx.doi.org/10.4103/0970-9290.29890] [PMID: 17051869]
[54]
Ozak ST, Ozkan P. Nanotechnology and dentistry. Eur J Dent 2013; 7(1): 145-51.
[PMID: 23408486]
[55]
Chen H, Clarkson BH, Sun K, Mansfield JF. Self-assembly of synthetic hydroxyapatite nanorods into an enamel prism-like structure. J Colloid Interface Sci 2005; 288(1): 97-103.
[http://dx.doi.org/10.1016/j.jcis.2005.02.064] [PMID: 15927567]
[56]
Shetty NJ, Swati P, David K. Nanorobots: Future in dentistry. Saudi Dent J 2013; 25(2): 49-52.
[http://dx.doi.org/10.1016/j.sdentj.2012.12.002] [PMID: 23960556]
[57]
Saadeh Y, Vyas D. Nanorobotic applications in medicine: Current proposals and designs. Am J Robot Surg 2014; 1(1): 4-11.
[http://dx.doi.org/10.1166/ajrs.2014.1010] [PMID: 26361635]
[58]
Cavalcanti A, Rosen L, Shirinzadeh B, Rosenfeld M, Paulo S, Aviv T. Nanorobot for treatment of patients with artery occlusion. France: Springer 2006.
[59]
Malhotra P, Shahdadpuri N. Nano-robotic based thrombolysis: Dissolving blood clots using nanobots. IEEE 17th India Council International Conference (INDICON). 1.4. 2020
[60]
Kshirsagar N, Patil SG, Kshirsagar R, Wagh AS, Bade A. Review on application of nanorobots in health care. World J Pharm Pharm Sci 2014; 3(5): 472-80.
[61]
Chrusch DD, Podaima BW, Gordon R. Cytobots: Intracellular robotic micromanipulators. In: Kinsner W, Sebak A, Eds. IIE Canadian Conference on Electrical and Computer Engineering 2002;. Winnipeg. 2002; pp. 1640-5.
[62]
Cavalcanti A, Shirinzadeh B, Fukuda T, Ikeda S. Nanorobot for brain aneurysm. Int J Robot Res 2009; 28(4): 558-70.
[http://dx.doi.org/10.1177/0278364908097586]
[63]
Chang WC, Hawkes EA, Kliot M, Sretavan DW. In vivo use of a nanoknife for axon microsurgery. Neurosurgery 2007; 61(4): 683-92.
[http://dx.doi.org/10.1227/01.NEU.0000298896.31355.80] [PMID: 17986929]
[64]
Chang WC, Hawkes EA, Kliot M, Sretavan DW. The Future of HIV AIDS Treatment. Int J Sci Res 2020; 9: 420-3.
[http://dx.doi.org/10.1227/01.NEU.0000298896.31355.80] [PMID: 17986929]
[65]
Joshi A, Hawkes EA, Pardeshi A. Anti-HIV Using Nanorobots. IOSR J Elect ElectronEng 2013; 7: 84-90.
[66]
Sharma P, Garg S. Pure drug and polymer-based nanotechnologies for the improved solubility, stability, bioavailability and targeting of anti-HIV drugs. Adv Drug Deliv Rev 2010; 62(4-5): 491-502.
[http://dx.doi.org/10.1227/01.NEU.0000298896.31355.80] [PMID: 17986929]
[67]
Fotooh Abadi L, Damiri F, Zehravi M, et al. Novel Nanotechnology-Based Approaches for Targeting HIV Reservoirs. Polymers 2022; 14(15): 3090.
[http://dx.doi.org/10.3390/polym14153090] [PMID: 35956604]
[68]
Cash KJ, Clark HA. Nanosensors and nanomaterials for monitoring glucose in diabetes. Trends Mol Med 2010; 16(12): 584-93.
[http://dx.doi.org/10.1016/j.molmed.2010.08.002] [PMID: 20869318]
[69]
Cavalcanti A, Shirinzadeh B, Kretly LC. Medical nanorobotics for diabetes control. Nanomedicine 2008; 4(2): 127-38.
[http://dx.doi.org/10.1016/j.nano.2008.03.001] [PMID: 18455965]
[70]
Freitas RA Jr. Microbivores: Artificial mechanical phagocytes using digest and discharge protocol. J Evol Technol 2005; 14(1): 54-106.
[71]
Freitas RA Jr. A mechanical artificial red cell: Exploratory design in medical nanotechnology. Artif Cells Blood Substit Immobil Biotechnol 1998; 26: 411-30.
[http://dx.doi.org/10.3109/10731199809117682] [PMID: 9663339]
[72]
Aydin O, Zhang X, Nuethong S, et al. Neuromuscular actuation of biohybrid motile bots. Proc Natl Acad Sci USA 2019; 116(40): 19841-7.
[http://dx.doi.org/10.1073/pnas.1907051116] [PMID: 31527266]
[73]
Freitas RA Jr. Clottocytes: Artificial mechanical platelets. Foresight Update 2000; 41: 9-11.
[74]
Ramanujam E, Rasikannan L, Kamal NA, Kamal NA. Xenobots. A remarkable combination of an artificial intelligence-based biological living robot. Int J Sociotechnology Knowl Dev 2021; 14(1): 1-11.
[http://dx.doi.org/10.4018/IJSKD.289038]
[75]
Zhu F, Tan G, Zhong Y, et al. Smart nanoplatform for sequential drug release and enhanced chemo-thermal effect of dual drug loaded gold nanorod vesicles for cancer therapy. J Nanobiotechnology 2019; 17(1): 44.
[http://dx.doi.org/10.1186/s12951-019-0473-3] [PMID: 30917812]
[76]
Bionaut Labs launches with plans to attack brain tumors with tiny, guided robots. 2021. Available From: https://www.fiercebiotech. com/medtech/bionaut-labs-launches-plans-to-attack-brain-tumors-tiny-guided-robots
[77]
Nanorobots: Small solutions to big delivery problems. 2022. Available From: https://www.pharmaceutical-technology.com/features/nanorobots-small-solutions-to-big-delivery-problems/
[78]
Scientists at IISc Bengaluru develop helical nanobots that can deep clean teeth. 2022. Available From: https://www.financialexpress. com/healthcare/medicaldevices/scientists-at-iisc-bengaluru-develop-helical-nanobots-that-can-deep-clean-teeth/2529745/
[79]
Kriegman S, Blackiston D, Levin M, Bongard J. A scalable pipeline for designing reconfigurable organisms. Proc Natl Acad Sci USA 2020; 117(4): 1853-9.
[http://dx.doi.org/10.1073/pnas.1910837117] [PMID: 31932426]
[80]
Maharashtra: MIMER develops nano robot for rapid cancer diagnosis. 2021. Available From: https://indianexpress.com/article/cities/pune/maharashtra-mimer-develops-nanorobot-for-rapid-cancer-diagnosis-7655710/
[81]
Hoop M, Ribeiro AS, Rösch D, et al. Mobile magnetic nanocatalysts for bioorthogonal targeted cancer therapy. Adv Funct Mater 2018; 28(25): 1705920.
[http://dx.doi.org/10.1002/adfm.201705920]
[82]
The Jewish General Hospital inaugurates a research laboratory on anti-cancer treatment via Magnetodrones. 2022. Available From: https://www.newswire.ca/news-releases/the-jewish-general-hospital-inaugurates-a-research-laboratory-on-anti-cancer-treatment-via-magnetodrones-847777199.html
[83]
Nanorobots market gross revenue, trends, size, application, future growth and is expected to grow USD 19576.43 million by 2029. 2022. Available From: https://www.globenewswire.com/news-release/2022/09/08/2512342/0/en/Nanorobots-Market-Gross-Revenue-Trends-Size-Application-Future-Growth-and-is-Expected-to-Grow-USD-19576-43-Million-by-2029.html

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy