Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Systematic Review Article

Cinnamaldehyde as a Promising Dietary Phytochemical Against Metabolic Syndrome: A Systematic Review

Author(s): Mohaddeseh Khaafi, Zahra Tayarani-Najaran and Behjat Javadi*

Volume 24, Issue 3, 2024

Published on: 12 September, 2023

Page: [355 - 369] Pages: 15

DOI: 10.2174/1389557523666230725113446

Price: $65

Abstract

Background: Metabolic syndrome (METS) is a set of unhealthy medical conditions considered essential health problems today. Cinnamaldehyde (CA) is the major phytochemical present in the essential oil of cinnamon and possesses antioxidant, anti-inflammatory, hypoglycemic, and antihyperlipidemic activities.

Aim: We aim to systematically review the effects of CA in preventing and attenuating METS components. Moreover, the cellular and molecular mechanisms of actions of CA, its pharmacokinetics features, and potential structure-activity relationship (SAR) were also surveyed.

Methods: PubMed, Science Direct, Scopus, and Google Scholar were searched to retrieve the relevant papers.

Results: CA possesses various anti-METS activities, including anti-inflammatory, antioxidant, antidiabetic, antidyslipidemia, antiobesity, and antihypertensive properties. Various molecular mechanisms such as stimulating pancreatic insulin release, exerting an insulinotropic effect, lowering lipid peroxidation as well as pancreatic islet oxidant and inflammatory toxicity, increasing the activities of pancreatic antioxidant enzymes, suppressing pro-inflammatory cytokines production, regulating the molecular signaling pathways of the PPAR-γ and AMPK in preadipocytes and preventing adipocyte differentiation and adipogenesis are involved in these activities.

Conclusions: CA would effectively hinder METS; however, no robust clinical data supporting these effects in humans is currently available. Accordingly, conducting clinical trials to evaluate the efficacy, safe dosage, pharmacokinetics characteristics, and possible unwanted effects of CA in humans would be of great importance.

Keywords: Cinnamaldehyde, metabolic syndrome, diabetes, dyslipidemia, obesity, natural.

« Previous
Graphical Abstract
[1]
Farrokhfall, K.; Khoshbaten, A.; Zahediasl, S.; Mehrani, H.; Karbalaei, N. Improved islet function is associated with anti-inflammatory, antioxidant and hypoglycemic potential of cinnamaldehyde on metabolic syndrome induced by high tail fat in rats. J. Funct. Foods, 2014, 10, 397-406.
[http://dx.doi.org/10.1016/j.jff.2014.07.014]
[2]
Ziegenfuss, T.N.; Hofheins, J.E.; Mendel, R.W.; Landis, J.; Anderson, R.A. Effects of a water-soluble cinnamon extract on body composition and features of the metabolic syndrome in pre-diabetic men and women. J. Int. Soc. Sports Nutr., 2006, 3(2), 45-53.
[http://dx.doi.org/10.1186/1550-2783-3-2-45] [PMID: 18500972]
[3]
Rameshrad, M.; Razavi, B.M.; Lalau, J.D.; De Broe, M.E.; Hosseinzadeh, H. An overview of glucagon-like peptide-1 receptor agonists for the treatment of metabolic syndrome: A drug repositioning. Iran. J. Basic Med. Sci., 2020, 23(5), 556-568.
[PMID: 32742592]
[4]
Fayaz, E.; Damirchi, A.; Zebardast, N.; Babaei, P. Cinnamon extract combined with high-intensity endurance training alleviates metabolic syndrome via non-canonical WNT signaling. Nutrition, 2019, 65, 173-178.
[http://dx.doi.org/10.1016/j.nut.2019.03.009] [PMID: 31170681]
[5]
Dehghani, S.; Mehri, S.; Hosseinzadeh, H. The effects of Crataegus pinnatifida (Chinese hawthorn) on metabolic syndrome: A review. Iran. J. Basic Med. Sci., 2019, 22(5), 460-468.
[PMID: 31217924]
[6]
Rashwan, A.S.; El-Beltagy, M.A.; Saleh, S.Y.; Ibrahim, I.A. Potential role of cinnamaldehyde and costunolide to counteract metabolic syndrome induced by excessive fructose consumption. Beni. Suef Univ. J. Basic Appl. Sci., 2019, 8(1), 17.
[http://dx.doi.org/10.1186/s43088-019-0025-9]
[7]
Noubiap, J.J.; Nansseu, J.R.; Lontchi-Yimagou, E.; Nkeck, J.R.; Nyaga, U.F.; Ngouo, A.T.; Tounouga, D.N.; Tianyi, F.L.; Foka, A.J.; Ndoadoumgue, A.L.; Bigna, J.J. Geographic distribution of metabolic syndrome and its components in the general adult population: A meta-analysis of global data from 28 million individuals. Diabetes Res. Clin. Pract., 2022, 188, 109924.
[http://dx.doi.org/10.1016/j.diabres.2022.109924] [PMID: 35584716]
[8]
Mollazadeh, H.; Hosseinzadeh, H. Cinnamon effects on metabolic syndrome: A review based on its mechanisms. Iran. J. Basic Med. Sci., 2016, 19(12), 1258-1270.
[PMID: 28096957]
[9]
Sanati, S.; Razavi, B.M.; Hosseinzadeh, H. A review of the effects of Capsicum annuum L. and its constituent, capsaicin, in metabolic syndrome. Iran. J. Basic Med. Sci., 2018, 21(5), 439-448.
[PMID: 29922422]
[10]
Fahed, G.; Aoun, L.; Bou Zerdan, M.; Allam, S.; Bou Zerdan, M.; Bouferraa, Y.; Assi, H.I. Metabolic syndrome: Updates on pathophysiology and management in 2021. Int. J. Mol. Sci., 2022, 23(2), 786.
[http://dx.doi.org/10.3390/ijms23020786] [PMID: 35054972]
[11]
Gallagher, E.J.; LeRoith, D.; Karnieli, E. Insulin resistance in obesity as the underlying cause for the metabolic syndrome. Mt. Sinai J. Med., 2010, 77(5), 511-523.
[12]
Myers, J.; Kokkinos, P.; Nyelin, E. Physical activity, cardiorespiratory fitness, and the metabolic syndrome. Nutrients, 2019, 11(7), 1652.
[http://dx.doi.org/10.3390/nu11071652] [PMID: 31331009]
[13]
Zafar, U.; Khaliq, S.; Ahmad, H.U.; Manzoor, S.; Lone, K.P. Metabolic syndrome: An update on diagnostic criteria, pathogenesis, and genetic links. Hormones, 2018, 17(3), 299-313.
[http://dx.doi.org/10.1007/s42000-018-0051-3] [PMID: 30171523]
[14]
Gannon, N.P.; Schnuck, J.K.; Mermier, C.M.; Conn, C.A.; Vaughan, R.A. trans-Cinnamaldehyde stimulates mitochondrial biogenesis through PGC-1α and PPARβ/δ leading to enhanced GLUT4 expression. Biochimie, 2015, 119, 45-51.
[http://dx.doi.org/10.1016/j.biochi.2015.10.001] [PMID: 26449747]
[15]
Iranshahy, M.; Javadi, B.; Sahebkar, A. Protective effects of functional foods against Parkinson’s disease: A narrative review on pharmacology, phytochemistry, and molecular mechanisms. Phytother. Res., 2022, 36(5), 1952-1989.
[http://dx.doi.org/10.1002/ptr.7425] [PMID: 35244296]
[16]
Sobhani, Z.; Nami, S.R.; Emami, S.A.; Sahebkar, A.; Javadi, B. Medicinal plants targeting cardiovascular diseases in view of Avicenna. Curr. Pharm. Des., 2017, 23(17), 2428-2443.
[http://dx.doi.org/10.2174/1381612823666170215104101]
[17]
Javadi, B. Diet therapy for cancer prevention and treatment based on Traditional Persian Medicine. Nutr. Cancer, 2018, 70(3), 376-403.
[http://dx.doi.org/10.1080/01635581.2018.1446095] [PMID: 29543522]
[18]
Zakhireh Kharazmshahi (Treasure of Kharazmshahi). 1976. Available From: https://en.wikipedia.org/wiki/Zakhireye_Khwarazmshahi
[19]
Taavoni, S.; Parsaie, F. Jorjanie and zakhireh kharazmshahi. Iran. J. Pharm. Res., 2004, 3(Suppl 2)
[20]
Ramazani, E. YazdFazeli, M.; Emami, S.A.; Mohtashami, L.; Javadi, B.; Asili, J.; Tayarani-Najaran, Z. Protective effects of Cinnamomum verum, Cinnamomum cassia and cinnamaldehyde against 6-OHDA-induced apoptosis in PC12 cells. Mol. Biol. Rep., 2020, 47(4), 2437-2445.
[http://dx.doi.org/10.1007/s11033-020-05284-y] [PMID: 32166553]
[21]
Wang, R.; Li, S.; Jia, H.; Si, X.; Lei, Y.; Lyu, J. Protective effects of cinnamaldehyde on the inflammatory response, oxidative stress, and apoptosis in liver of salmonella typhimurium-challenged mice. Molecules, 2021, 26(8), 2309.
[22]
Anand, P.; Murali, K.Y.; Tandon, V.; Murthy, P.S.; Chandra, R. Insulinotropic effect of cinnamaldehyde on transcriptional regulation of pyruvate kinase, phosphoenolpyruvate carboxykinase, and GLUT4 translocation in experimental diabetic rats. Chem. Biol. Interact., 2010, 186(1), 72-81.
[http://dx.doi.org/10.1016/j.cbi.2010.03.044] [PMID: 20363216]
[23]
Lee, S-C.; Wang, S-Y.; Li, C-C.; Liu, C-T. Anti-inflammatory effect of cinnamaldehyde and linalool from the leaf essential oil of Cinnamomum osmophloeum Kanehira in endotoxin-induced mice. Yao Wu Shi Pin Fen Xi, 2018, 26(1), 211-220.
[PMID: 29389558]
[24]
Zhao, H.; Wu, H.; Duan, M.; Liu, R.; Zhu, Q.; Zhang, K.; Wang, L. Cinnamaldehyde improves metabolic functions in streptozotocin-induced diabetic mice by regulating gut microbiota. Drug Des. Devel. Ther., 2021, 15, 2339-2355.
[http://dx.doi.org/10.2147/DDDT.S288011] [PMID: 34103897]
[25]
Subash Babu, P.; Prabuseenivasan, S.; Ignacimuthu, S. Cinnamaldehyde—A potential antidiabetic agent. Phytomedicine, 2007, 14(1), 15-22.
[http://dx.doi.org/10.1016/j.phymed.2006.11.005] [PMID: 17140783]
[26]
Zhang, X-X.; Kong, J.; Yun, K. Prevalence of diabetic nephropathy among patients with type 2 diabetes mellitus in China: A meta-analysis of observational studies. J. Diabetes Res., 2020, 2020, 2315607.
[http://dx.doi.org/10.1155/2020/2315607]
[27]
Zhang, W.; Xu, Y.; Guo, F.; Meng, Y.; Li, M. Anti-diabetic effects of cinnamaldehyde and berberine and their impacts on retinol-binding protein 4 expression in rats with type 2 diabetes mellitus. Chin. Med. J., 2008, 121(21), 2124-2128.
[http://dx.doi.org/10.1097/00029330-200811010-00003] [PMID: 19080170]
[28]
Vargas, M.A.X.; Tirnauer, J.S.; Glidden, N.; Kapiloff, M.S.; Dodge-Kafka, K.L. Myocyte enhancer factor 2 (MEF2) tethering to muscle selective A-kinase anchoring protein (mAKAP) is necessary for myogenic differentiation. Cell. Signal., 2012, 24(8), 1496-1503.
[http://dx.doi.org/10.1016/j.cellsig.2012.03.017] [PMID: 22484155]
[29]
Nikzamir, A.; Palangi, A.; Kheirollaha, A.; Tabar, H.; Malakaskar, A.; Shahbazian, H.; Fathi, M. Expression of glucose transporter 4 (GLUT4) is increased by cinnamaldehyde in C2C12 mouse muscle cells. Iran. Red Crescent Med. J., 2014, 16(2), e13426.
[http://dx.doi.org/10.5812/ircmj.13426] [PMID: 24719730]
[30]
Li, J.; Liu, T.; Wang, L.; Guo, X.; Xu, T.; Wu, L.; Qin, L.; Sun, W. Antihyperglycemic and antihyperlipidemic action of cinnamaldehyde in C57blks/j Db/db mice. J. Tradit. Chin. Med., 2012, 32(3), 446-452.
[http://dx.doi.org/10.1016/S0254-6272(13)60053-9] [PMID: 23297571]
[31]
Kumar, S.; Vasudeva, N.; Sharma, S. GC-MS analysis and screening of antidiabetic, antioxidant and hypolipidemic potential of Cinnamomum tamala oil in streptozotocin induced diabetes mellitus in rats. Cardiovasc. Diabetol., 2012, 11(1), 95.
[http://dx.doi.org/10.1186/1475-2840-11-95] [PMID: 22882757]
[32]
Camacho, S.; Michlig, S.; de Senarclens-Bezençon, C.; Meylan, J.; Meystre, J.; Pezzoli, M.; Markram, H.; le Coutre, J. Anti-obesity and anti-hyperglycemic effects of cinnamaldehyde via altered ghrelin secretion and functional impact on food intake and gastric emptying. Sci. Rep., 2015, 5(1), 7919.
[http://dx.doi.org/10.1038/srep07919] [PMID: 25605129]
[33]
Guo, X.; Sun, W.; Huang, L.; Wu, L.; Hou, Y.; Qin, L.; Liu, T. Effect of cinnamaldehyde on glucose metabolism and vessel function. Med. Sci. Monit., 2017, 23, 3844-3853.
[http://dx.doi.org/10.12659/MSM.906027] [PMID: 28790298]
[34]
Ataie, Z.; Mehrani, H.; Ghasemi, A.; Farrokhfall, K. Cinnamaldehyde has beneficial effects against oxidative stress and nitric oxide metabolites in the brain of aged rats fed with long-term, high-fat diet. J. Funct. Foods, 2019, 52, 545-551.
[http://dx.doi.org/10.1016/j.jff.2018.11.038]
[35]
Huang, B.; Yuan, H.D.; Kim, D.Y.; Quan, H.Y.; Chung, S.H. Cinnamaldehyde prevents adipocyte differentiation and adipogenesis via regulation of peroxisome proliferator-activated receptor-γ (PPARγ) and AMP-activated protein kinase (AMPK) pathways. J. Agric. Food Chem., 2011, 59(8), 3666-3673.
[http://dx.doi.org/10.1021/jf104814t] [PMID: 21401097]
[36]
Subash-Babu, P.; Alshatwi, A.A.; Ignacimuthu, S. Beneficial antioxidative and antiperoxidative effect of cinnamaldehyde protect streptozotocin-induced pancreatic β-cells damage in wistar rats. Biomol. Ther., 2014, 22(1), 47-54.
[http://dx.doi.org/10.4062/biomolther.2013.100] [PMID: 24596621]
[37]
Hosni, A.A.; Abdel-Moneim, A.A.; Abdel-Reheim, E.S.; Mohamed, S.M.; Helmy, H. Cinnamaldehyde potentially attenuates gestational hyperglycemia in rats through modulation of PPARγ, proinflammatory cytokines and oxidative stress. Biomed. Pharmacother., 2017, 88, 52-60.
[http://dx.doi.org/10.1016/j.biopha.2017.01.054] [PMID: 28092845]
[38]
Wang, F.; Pu, C.; Zhou, P.; Wang, P.; Liang, D.; Wang, Q.; Hu, Y.; Li, B.; Hao, X. Cinnamaldehyde prevents endothelial dysfunction induced by high glucose by activating Nrf2. Cell. Physiol. Biochem., 2015, 36(1), 315-324.
[http://dx.doi.org/10.1159/000374074] [PMID: 25967970]
[39]
Kopp, C.; Singh, S.; Regenhard, P.; Müller, U.; Sauerwein, H.; Mielenz, M. Trans-cinnamic acid increases adiponectin and the phosphorylation of AMP-activated protein kinase through G-protein-coupled receptor signaling in 3T3-L1 adipocytes. Int. J. Mol. Sci., 2014, 15(2), 2906-2915.
[http://dx.doi.org/10.3390/ijms15022906] [PMID: 24557583]
[40]
Zuo, J.; Zhao, D.; Yu, N.; Fang, X.; Mu, Q.; Ma, Y.; Mo, F.; Wu, R.; Ma, R.; Wang, L.; Zhu, R.; Liu, H.; Zhang, D.; Gao, S. Cinnamaldehyde ameliorates diet-induced obesity in mice by inducing browning of white adipose tissue. Cell. Physiol. Biochem., 2017, 42(4), 1514-1525.
[http://dx.doi.org/10.1159/000479268] [PMID: 28719892]
[41]
Khare, P.; Jagtap, S.; Jain, Y.; Baboota, R.K.; Mangal, P.; Boparai, R.K.; Bhutani, K.K.; Sharma, S.S.; Premkumar, L.S.; Kondepudi, K.K.; Chopra, K.; Bishnoi, M. Cinnamaldehyde supplementation prevents fasting-induced hyperphagia, lipid accumulation, and inflammation in high-fat diet-fed mice. Biofactors, 2016, 42(2), 201-211.
[http://dx.doi.org/10.1002/biof.1265] [PMID: 26893251]
[42]
Neto, J.G.O.; Boechat, S.K.; Romão, J.S.; Pazos-Moura, C.C.; Oliveira, K.J. Treatment with cinnamaldehyde reduces the visceral adiposity and regulates lipid metabolism, autophagy and endoplasmic reticulum stress in the liver of a rat model of early obesity. J. Nutr. Biochem., 2020, 77, 108321.
[http://dx.doi.org/10.1016/j.jnutbio.2019.108321] [PMID: 31869758]
[43]
Welty, F.K.; Alfaddagh, A.; Elajami, T.K. Targeting inflammation in metabolic syndrome. Transl. Res., 2016, 167(1), 257-280.
[http://dx.doi.org/10.1016/j.trsl.2015.06.017] [PMID: 26207884]
[44]
Park, C.; Lee, H.; Hong, S.; Molagoda, I.M.N.; Jeong, J.W.; Jin, C.Y.; Kim, G.Y.; Choi, S.H.; Hong, S.H.; Choi, Y.H. Inhibition of lipopolysaccharide-induced inflammatory and oxidative responses by Trans -cinnamaldehyde in C2C12 Myoblasts. Int. J. Med. Sci., 2021, 18(12), 2480-2492.
[http://dx.doi.org/10.7150/ijms.59169] [PMID: 34104079]
[45]
Kim, M.E.; Na, J.Y.; Lee, J.S. Anti-inflammatory effects of trans-cinnamaldehyde on lipopolysaccharide-stimulated macrophage activation via MAPKs pathway regulation. Immunopharmacol. Immunotoxicol., 2018, 40(3), 219-224.
[http://dx.doi.org/10.1080/08923973.2018.1424902] [PMID: 29355056]
[46]
Mohammedi, K.; Woodward, M.; Hirakawa, Y.; Zoungas, S.; Williams, B.; Lisheng, L.; Rodgers, A.; Mancia, G.; Neal, B.; Harrap, S.; Marre, M.; Chalmers, J. Microvascular and macrovascular disease and risk for major peripheral arterial disease in patients with type 2 diabetes. Diabetes Care, 2016, 39(10), 1796-1803.
[http://dx.doi.org/10.2337/dc16-0588] [PMID: 27456835]
[47]
Liu, Y.; Zhang, Y.; Zhang, X.; Xu, Q.; Yang, X.; Xue, C. Medium-chain fatty acids reduce serum cholesterol by regulating the metabolism of bile acid in C57BL/6J mice. Food Funct., 2017, 8(1), 291-298.
[http://dx.doi.org/10.1039/C6FO01207H] [PMID: 28009872]
[48]
Liang, Y.; Zhang, Z.; Tu, J.; Wang, Z.; Gao, X.; Deng, K.; El-Samahy, M.A.; You, P.; Fan, Y.; Wang, F. γ-linolenic acid prevents lipid metabolism disorder in palmitic acid-treated alpha mouse liver-12 cells by balancing autophagy and apoptosis via the LKB1-AMPK-mTOR pathway. J. Agric. Food Chem., 2021, 69(29), 8257-8267.
[http://dx.doi.org/10.1021/acs.jafc.1c02596] [PMID: 34281337]
[49]
Le, H.D.; Meisel, J.A.; de Meijer, V.E.; Fallon, E.M.; Gura, K.M.; Nose, V.; Bistrian, B.R.; Puder, M. Docosahexaenoic acid and arachidonic acid prevent essential fatty acid deficiency and hepatic steatosis. JPEN J. Parenter. Enteral Nutr., 2012, 36(4), 431-441.
[http://dx.doi.org/10.1177/0148607111414580] [PMID: 22038210]
[50]
Xu, R.; Xiao, X.; Zhang, S.; Pan, J.; Tang, Y.; Zhou, W.; Ji, G.; Dang, Y. The methyltransferase METTL3-mediated fatty acid metabolism revealed the mechanism of cinnamaldehyde on alleviating steatosis. Biomed. Pharmacother., 2022, 153, 113367.
[http://dx.doi.org/10.1016/j.biopha.2022.113367] [PMID: 35780619]
[51]
Gowder, S. Safety assessment of food flavor-cinnamaldehyde. Biosafety, 2014, 3(1), 2.
[http://dx.doi.org/10.4172/2167-0331.1000e147]
[52]
Lu, L.; Xiong, Y.; Zhou, J.; Wang, G.; Mi, B.; Liu, G. The therapeutic roles of cinnamaldehyde against cardiovascular diseases. Oxid. Med. Cell. Longev., 2022, (2022), 9177108.
[http://dx.doi.org/10.1155/2022/9177108]
[53]
Hooth, M.J.; Sills, R.C.; Burka, L.T.; Haseman, J.K.; Witt, K.L.; Orzech, D.P.; Fuciarelli, A.F.; Graves, S.W.; Johnson, J.D.; Bucher, J.R. Toxicology and carcinogenesis studies of microencapsulated trans-cinnamaldehyde in rats and mice. Food Chem. Toxicol., 2004, 42(11), 1757-1768.
[http://dx.doi.org/10.1016/j.fct.2004.07.002] [PMID: 15350673]
[54]
Mereto, E.; Brambilla-Campart, G.; Ghia, M.; Martelli, A.; Brambilla, G. Cinnamaldehyde-induced micronuclei in rodent liver. Mutat. Res. Genet. Toxicol. Test., 1994, 322(1), 1-8.
[http://dx.doi.org/10.1016/0165-1218(94)90027-2] [PMID: 7517500]
[55]
Mohtashami, L.; Shakeri, A.; Javadi, B. Bioactive natural products against experimental autoimmune encephalomyelitis: A pharmacokine-tics review. Physiol Pharmacol, 2022, 26(4), 363-394.
[56]
Yuan, J.H.; Dieter, M.P.; Bucher, J.R.; Jameson, C.W. Toxicokinetics of cinnamaldehyde in F344 rats. Food Chem. Toxicol., 1992, 30(12), 997-1004.
[http://dx.doi.org/10.1016/0278-6915(92)90109-X] [PMID: 1473801]
[57]
Zhu, R.; Liu, H.; Liu, C.; Wang, L.; Ma, R.; Chen, B.; Li, L.; Niu, J.; Fu, M.; Zhang, D.; Gao, S. Cinnamaldehyde in diabetes: A review of pharmacology, pharmacokinetics and safety. Pharmacol. Res., 2017, 122, 78-89.
[http://dx.doi.org/10.1016/j.phrs.2017.05.019] [PMID: 28559210]
[58]
Zhao, H.; Xie, Y.; Yang, Q.; Cao, Y.; Tu, H.; Cao, W.; Wang, S. Pharmacokinetic study of cinnamaldehyde in rats by GC–MS after oral and intravenous administration. J. Pharm. Biomed. Anal., 2014, 89, 150-157.
[http://dx.doi.org/10.1016/j.jpba.2013.10.044] [PMID: 24291110]
[59]
Zhao, H.; Yuan, J.; Yang, Q.; Xie, Y.; Cao, W.; Wang, S. Cinnamaldehyde in a novel intravenous submicrometer emulsion: Pharmacokinetics, tissue distribution, antitumor efficacy, and toxicity. J. Agric. Food Chem., 2015, 63(28), 6386-6392.
[60]
Cabello, C.M.; Bair, W.B., III; Lamore, S.D.; Ley, S.; Bause, A.S.; Azimian, S.; Wondrak, G.T. The cinnamon-derived Michael acceptor cinnamic aldehyde impairs melanoma cell proliferation, invasiveness, and tumor growth. Free Radic. Biol. Med., 2009, 46(2), 220-231.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.10.025] [PMID: 19000754]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy