Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Effect of ω-9MUFAs in Fat Emulsion on Serum Interleukin-6 in Rats with Lipopolysaccharide-induced Lung Injury

Author(s): Zheng Qianqian, Mei Gui, Yang Min, Zhang Qingfeng, Xu Xiufen, Fang Zejun, Li Yahong* and Ye Mingwei*

Volume 27, Issue 6, 2024

Published on: 22 August, 2023

Page: [877 - 884] Pages: 8

DOI: 10.2174/1386207326666230718154641

Price: $65

conference banner
Abstract

Aim: This study aimed to investigate how ω-9 MUFAs in fat emulsion affect serum IL- 6 levels in rats with lipopolysaccharide (LPS)-induced lung injury.

Background: Research suggests that acute lung injury (ALI) develops acute respiratory distress syndrome (ARDS) due to the activation of many inflammatory factors. ALI may be treated by reducing inflammation. Fat emulsion is used in parenteral nutrition for critically ill patients to regulate the body's inflammatory response. It is mostly made up of ω-9 MUFAs (Clinoleic), which can regulate the inflammatory response.

Objective: The effect of ω-9MUFAs on the secretion of IL-6 in ALI rats was studied in order to provide a basis for the rational use of fat emulsion in clinical practice and provide new ideas for the diagnosis and treatment of ALI.

Methods: The control, model, and -9MUFAs groups consisted of 18 female Sprageue-Dawley (SD) young rats (180 ± 20 g). The SD young rats received normal saline and were not operated. LPS-induced ALI animals received tail vein injections of normal saline. SD young rats were first triggered with acute lung injury by LPS (3 mg/kg) and then injected with 3 mg/kg of ω-9MUFAs via the tail vein. The expression levels of IL-6, an activator of signal transduction transcription 3 (STAT3), transforming growth factor-β (TGF-β), and glycoprotein 130 (GP130) in serum and lung tissues were determined by ELISA and Western blot methods.

Results: Compared with the model group, the survival rate of rats in the ω-9 MUFAs group was significantly increased, and the difference was statistically significant (p<0.05). Compared with the model group, the lung pathology of rats in the ω-9 MUFAs group was significantly improved, and the expression levels of IL-6, TGF-β1, GP130, IL-1 and other proteins were significantly decreased. The difference was statistically significant (p<0.05).

Conclusion: In LPS-induced lung injury, ω-9MUFAs may alleviate symptoms by inhibiting the IL-6/GP130/STAT3 pathway.

Keywords: ω-9MUFAs, IL-6, lung injury, STAT3, LPS, interleukin-6, SD.

Graphical Abstract
[1]
Salluh, J.I.F.; Wang, H.; Schneider, E.B.; Nagaraja, N.; Yenokyan, G.; Damluji, A.; Serafim, R.B.; Stevens, R.D. Outcome of delirium in critically ill patients: Systematic review and meta-analysis. BMJ, 2015, 350, h2538.
[http://dx.doi.org/10.1136/bmj.h2538] [PMID: 26041151]
[2]
Jones, S.F.; Pisani, M.A. ICU delirium. Curr. Opin. Crit. Care, 2012, 18(2), 146-151.
[http://dx.doi.org/10.1097/MCC.0b013e32835132b9] [PMID: 22322260]
[3]
Sparrow, N.A.; Anwar, F.; Covarrubias, A.E.; Rajput, P.S.; Rashid, M.H.; Nisson, P.L.; Gezalian, M.M.; Toossi, S.; Ayodele, M.O.; Karumanchi, S.A.; Ely, E.W.; Lahiri, S. IL-6 inhibition reduces neuronal injury in a murine model of ventilator-induced lung injury. Am. J. Respir. Cell Mol. Biol., 2021, 65(4), 403-412.
[http://dx.doi.org/10.1165/rcmb.2021-0072OC] [PMID: 34014798]
[4]
Tremblay, L.; Valenza, F.; Ribeiro, S.P.; Li, J.; Slutsky, A.S. Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J. Clin. Invest., 1997, 99(5), 944-952.
[http://dx.doi.org/10.1172/JCI119259] [PMID: 9062352]
[5]
Brower, R.G.; Matthay, M.A.; Morris, A.; Schoenfeld, D.; Thompson, B.T.; Wheeler, A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med., 2000, 342(18), 1301-1308.
[http://dx.doi.org/10.1056/NEJM200005043421801] [PMID: 10793162]
[6]
Capri, M.; Yani, S.L.; Chattat, R.; Fortuna, D.; Bucci, L.; Lanzarini, C.; Morsiani, C.; Catena, F.; Ansaloni, L.; Adversi, M.; Melotti, M.R.; Di Nino, G.; Franceschi, C. Pre- operative, high-IL-6 blood level is a risk factor of post-operative delirium onset in old patients. Front. Endocrinol. (Lausanne), 2014, 5, 173.
[http://dx.doi.org/10.3389/fendo.2014.00173] [PMID: 25368603]
[7]
Beitler, J.R.; Majumdar, R.; Hubmayr, R.D.; Malhotra, A.; Thompson, B.T.; Owens, R.L.; Loring, S.H.; Talmor, D. Volume delivered during recruitment maneuver predicts lung stress in acute respiratory distress syndrome. Crit. Care Med., 2016, 44(1), 91-99.
[http://dx.doi.org/10.1097/CCM.0000000000001355] [PMID: 26474111]
[8]
Wang, X.; Deng, R.; Dong, J.; Huang, L.; Li, J.; Zhang, B. Eriodictyol ameliorates lipopolysaccharide‐induced acute lung injury by suppressing the inflammatory COX‐2/NLRP3/NF‐κB pathway in mice. J. Biochem. Mol. Toxicol., 2020, 34(3), e22434.
[http://dx.doi.org/10.1002/jbt.22434] [PMID: 31860763]
[9]
Ahmed, R.F.; Moussa, R.A.; Eldemerdash, R.S.; Zakaria, M.M.; Abdel-Gaber, S.A. Ameliorative effects of silymarin on HCl-induced acute lung injury in rats; role of the Nrf-2/HO-1 pathway. Iran. J. Basic Med. Sci., 2019, 22(12), 1483-1492.
[PMID: 32133068]
[10]
Ding, Z.; Zhong, R.; Xia, T.; Yang, Y.; Xing, N.; Wang, W.; Wang, Y.; Yang, B.; Sun, X.; Shu, Z. Advances in research into the mechanisms of Chinese Materia Medica against acute lung injury. Biomed. Pharmacother., 2020, 122, 109706.
[http://dx.doi.org/10.1016/j.biopha.2019.109706] [PMID: 31918277]
[11]
Zhuo, X.J.; Hao, Y.; Cao, F.; Yan, S.F.; Li, H.; Wang, Q.; Cheng, B.H.; Ying, B.Y.; Smith, F.G.; Jin, S.W. Protectin DX increases alveolar fluid clearance in rats with lipopolysaccharide-induced acute lung injury. Exp. Mol. Med., 2018, 50(4), 1-13.
[http://dx.doi.org/10.1038/s12276-018-0075-4] [PMID: 29700291]
[12]
Deng, W.; He, J.; Tang, X.M.; Li, C.Y.; Tong, J.; Qi, D.; Wang, D.X. Alcohol inhibits alveolar fluid clearance through the epithelial sodium channel via the A2 adenosine receptor in acute lung injury. Mol. Med. Rep., 2021, 24(4), 725-737.
[http://dx.doi.org/10.3892/mmr.2021.12364] [PMID: 34396442]
[13]
Helenius, I.T.; Dada, L.A.; Sznajder, J.I. Role of ubiquitination in Na,K-ATPase regulation during lung injury. Proc. Am. Thorac. Soc., 2010, 7(1), 65-70.
[http://dx.doi.org/10.1513/pats.200907-082JS] [PMID: 20160150]
[14]
Kent, L.W.; Rahemtulla, F.; Hockett, R.D., Jr; Gilleland, R.C.; Michalek, S.M. Effect of lipopolysaccharide and inflammatory cytokines on interleukin-6 production by healthy human gingival fibroblasts. Infect. Immun., 1998, 66(2), 608-614.
[http://dx.doi.org/10.1128/IAI.66.2.608-614.1998] [PMID: 9453616]
[15]
Fukunaga, K.; Kohli, P.; Bonnans, C.; Fredenburgh, L.E.; Levy, B.D. Cyclooxygenase 2 plays a pivotal role in the resolution of acute lung injury. J. Immunol., 2005, 174(8), 5033-5039.
[http://dx.doi.org/10.4049/jimmunol.174.8.5033] [PMID: 15814734]
[16]
Chen, H.; Bai, C.; Wang, X. The value of the lipopolysaccharide-induced acute lung injury model in respiratory medicine. Expert Rev. Respir. Med., 2010, 4(6), 773-783.
[http://dx.doi.org/10.1586/ers.10.71] [PMID: 21128752]
[17]
Mehta, S.; Sharma, A.K.; Singh, R.K. Advances in ethnobotany, synthetic phytochemistry and pharmacology of endangered herb Picrorhiza kurroa (Kutki): A comprehensive review (2010-2020). Mini Rev. Med. Chem., 2021, 21(19), 2976-2995.
[http://dx.doi.org/10.2174/1389557521666210401090028] [PMID: 33797375]
[18]
Mehta, S.; Sharma, A.K.; Singh, R.K. Therapeutic journey of Andrographis paniculata (Burm.f.) nees from natural to synthetic and nanoformulations. Mini Rev. Med. Chem., 2021, 21(12), 1556-1577.
[http://dx.doi.org/10.2174/1389557521666210315162354] [PMID: 33719961]
[19]
Mehta, S.; Sharma, A.K.; Singh, R.K. Pharmacological activities and molecular mechanisms of pure and crude extract of andrographis paniculata: An update. Phytomedicine Plus, 2021, 1(4), 100085.
[20]
Singh, R.K.; Mehta, S.; Sharma, A.K. Ethnobotany, Pharmacological Activities and Bioavailability Studies on “King of Bitters” (Kalmegh): A Review (2010-2020). Comb. Chem. High Throughput Screen., 2022, 25(5), 788-807.
[http://dx.doi.org/10.2174/1386207324666210310140611] [PMID: 33745423]
[21]
Bhatia, M.; Moochhala, S. Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. J. Pathol., 2004, 202(2), 145-156.
[http://dx.doi.org/10.1002/path.1491] [PMID: 14743496]
[22]
Parsons, P.E.; Eisner, M.D.; Thompson, B.T.; Matthay, M.A.; Ancukiewicz, M.; Bernard, G.R.; Wheeler, A.P. Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury. Crit. Care Med., 2005, 33(1), 1-6.
[http://dx.doi.org/10.1097/01.CCM.0000149854.61192.DC] [PMID: 15644641]
[23]
Bi, M.H.; Wang, B.E.; Schafer, M.; Mayer, K.; Zhang, S.W.; Li, M.; Wang, H.J. Effect of different fat emulsions on acute lung injury induced by endotoxin. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue, 2006, 18(12), 711-715.
[24]
Peng, L.Y.; Yuan, M.; Shi, H.T.; Li, J.H.; Song, K.; Huang, J.N.; Yi, P.F.; Fu, B.D.; Shen, H.Q. Protective effect of piceatannol against acute lung injury through protecting the integrity of air-blood barrier and modulating the TLR4/NF-κB signaling pathway activation. Front. Pharmacol., 2020, 10, 1613-1622.
[http://dx.doi.org/10.3389/fphar.2019.01613] [PMID: 32038265]
[25]
Chen, P.; Xiao, Z.; Wu, H.; Wang, Y.; Fan, W.; Su, W.; Li, P. Beneficial effects of naringenin in cigarette smoke-induced damage to the lung based on bioinformatic prediction and in vitro analysis. Molecules, 2020, 25(20), 4704-4718.
[http://dx.doi.org/10.3390/molecules25204704] [PMID: 33066647]
[26]
Zhang, C.; Zeng, W.; Yao, Y.; Xu, B.; Wei, X.; Wang, L.; Yin, X.; Barman, A.K.; Zhang, F.; Zhang, C.; Song, Q.; Liang, W. Naringenin ameliorates radiation-induced lung injury by lowering IL-1 β Level. J. Pharmacol. Exp. Ther., 2018, 366(2), 341-348.
[http://dx.doi.org/10.1124/jpet.118.248807] [PMID: 29866791]
[27]
Liang, Y.; Luo, J.; Yang, N.; Wang, S.; Ye, M.; Pan, G. Activation of the IL-1β/KLF2/HSPH1 pathway promotes STAT3 phosphorylation in alveolar macrophages during LPS-induced acute lung injury. Biosci. Rep., 2020, 40(3), BSR20193572.
[http://dx.doi.org/10.1042/BSR20193572]
[28]
Wang, Y.M.; Qi, X.; Gong, F.C.; Chen, Y.; Yang, Z.T.; Mao, E.Q.; Chen, E.Z. Protective and predictive role of Mucin1 in sepsis-induced ALI/ARDS. Int. Immunopharmacol., 2020, 83, 106438.
[http://dx.doi.org/10.1016/j.intimp.2020.106438] [PMID: 32247267]
[29]
Garibaldi, B.T.; D’Alessio, F.R.; Mock, J.R.; Files, D.C.; Chau, E.; Eto, Y.; Drummond, M.B.; Aggarwal, N.R.; Sidhaye, V.; King, L.S. Regulatory T cells reduce acute lung injury fibroproliferation by decreasing fibrocyte recruitment. Am. J. Respir. Cell Mol. Biol., 2013, 48(1), 35-43.
[http://dx.doi.org/10.1165/rcmb.2012-0198OC] [PMID: 23002097]
[30]
Singer, B.D.; Mock, J.R.; Aggarwal, N.R.; Garibaldi, B.T.; Sidhaye, V.K.; Florez, M.A.; Chau, E.; Gibbs, K.W.; Mandke, P.; Tripathi, A.; Yegnasubramanian, S.; King, L.S.; D’Alessio, F.R. Regulatory T cell DNA methyltransferase inhibition accelerates resolution of lung inflammation. Am. J. Respir. Cell Mol. Biol., 2015, 52(5), 641-652.
[http://dx.doi.org/10.1165/rcmb.2014-0327OC] [PMID: 25295995]
[31]
O’Malley, K.; Moldawer, L.L. Interleukin-6: Still crazy after all these years. Crit. Care Med., 2006, 34(10), 2690-2691.
[http://dx.doi.org/10.1097/01.CCM.0000239424.59338.2F] [PMID: 16983274]
[32]
Ward, N.S.; Waxman, A.B.; Homer, R.J.; Mantell, L.L.; Einarsson, O.; Du, Y.; Elias, J.A. Interleukin-6-induced protection in hyperoxic acute lung injury. Am. J. Respir. Cell Mol. Biol., 2000, 22(5), 535-542.
[http://dx.doi.org/10.1165/ajrcmb.22.5.3808] [PMID: 10783124]
[33]
Xing, Z.; Gauldie, J.; Cox, G.; Baumann, H.; Jordana, M.; Lei, X.F.; Achong, M.K. IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses. J. Clin. Invest., 1998, 101(2), 311-320.
[http://dx.doi.org/10.1172/JCI1368] [PMID: 9435302]
[34]
Jones, M.R.; Quinton, L.J.; Simms, B.T.; Lupa, M.M.; Kogan, M.S.; Mizgerd, J.P. Roles of interleukin-6 in activation of STAT proteins and recruitment of neutrophils during Escherichia coli pneumonia. J. Infect. Dis., 2006, 193(3), 360-369.
[http://dx.doi.org/10.1086/499312] [PMID: 16388483]
[35]
Starcher, B.; Williams, I. A method for intratracheal instillation of endotoxin into the lungs of mice. Lab. Anim., 1989, 23(3), 234-240.
[http://dx.doi.org/10.1258/002367789780810536] [PMID: 2527323]
[36]
Kawalkowska, J.Z.; Hemmerle, T.; Pretto, F.; Matasci, M.; Neri, D.; Williams, R.O. Targeted IL-4 therapy synergizes with dexamethasone to induce a state of tolerance by promoting Treg cells and macrophages in mice with arthritis. Eur. J. Immunol., 2016, 46(5), 1246-1257.
[http://dx.doi.org/10.1002/eji.201546221] [PMID: 26919786]
[37]
Witzenrath, M.; Kuebler, W.M. The lung-brain axis in ventilator- induced brain injury: Enter IL-6. Am. J. Respir. Cell Mol. Biol., 2021, 65(4), 339-340.
[http://dx.doi.org/10.1165/rcmb.2021-0233ED] [PMID: 34153209]
[38]
Rubenfeld, G.D.; Caldwell, E.; Peabody, E.; Weaver, J.; Martin, D.P.; Neff, M.; Stern, E.J.; Hudson, L.D. Incidence and outcomes of acute lung injury. N. Engl. J. Med., 2005, 353(16), 1685-1693.
[http://dx.doi.org/10.1056/NEJMoa050333] [PMID: 16236739]
[39]
Guérin, C.; Reignier, J.; Richard, J.C.; Beuret, P.; Gacouin, A.; Boulain, T.; Mercier, E.; Badet, M.; Mercat, A.; Baudin, O.; Clavel, M.; Chatellier, D.; Jaber, S.; Rosselli, S.; Mancebo, J.; Sirodot, M.; Hilbert, G.; Bengler, C.; Richecoeur, J.; Gainnier, M.; Bayle, F.; Bourdin, G.; Leray, V.; Girard, R.; Baboi, L.; Ayzac, L. Prone positioning in severe acute respiratory distress syndrome. N. Engl. J. Med., 2013, 368(23), 2159-2168.
[http://dx.doi.org/10.1056/NEJMoa1214103] [PMID: 23688302]
[40]
Matthay, M.A.; Ware, L.B.; Zimmerman, G.A. The acute respiratory distress syndrome. J. Clin. Invest., 2012, 122(8), 2731-2740.
[http://dx.doi.org/10.1172/JCI60331] [PMID: 22850883]
[41]
Zambon, M.; Vincent, J.L. Mortality rates for patients with acute lung injury/ARDS have decreased over time. Chest, 2008, 133(5), 1120-1127.
[http://dx.doi.org/10.1378/chest.07-2134] [PMID: 18263687]
[42]
Messika, J.; Ben Ahmed, K.; Gaudry, S.; Miguel-Montanes, R.; Rafat, C.; Sztrymf, B.; Dreyfuss, D.; Ricard, J.D. Use of high-flow nasal cannula oxygen therapy in subjects with ARDS: A 1-year observational study. Respir. Care, 2015, 60(2), 162-169.
[http://dx.doi.org/10.4187/respcare.03423] [PMID: 25371400]
[43]
Muñoz, J.; Santa-Teresa, P.; Tomey, M.J.; Visedo, L.C.; Keough, E.; Barrios, J.C.; Sabell, S.; Morales, A. Extracorporeal membrane oxygenation (ECMO) in adults with acute respiratory distress syndrome (ARDS). Heart Lung, 2017, 46(2), 100-105.
[http://dx.doi.org/10.1016/j.hrtlng.2017.01.003] [PMID: 28215409]
[44]
Matute-Bello, G.; Downey, G.; Moore, B.B.; Groshong, S.D.; Matthay, M.A.; Slutsky, A.S.; Kuebler, W.M. An official American Thoracic Society workshop report: Features and measurements of experimental acute lung injury in animals. Am. J. Respir. Cell Mol. Biol., 2011, 44(5), 725-738.
[http://dx.doi.org/10.1165/rcmb.2009-0210ST] [PMID: 21531958]
[45]
Yang, J.; Sundrud, M.S.; Skepner, J.; Yamagata, T. Targeting Th17 cells in autoimmune diseases. Trends Pharmacol. Sci., 2014, 35(10), 493-500.
[http://dx.doi.org/10.1016/j.tips.2014.07.006] [PMID: 25131183]
[46]
Li, J.T.; Melton, A.C.; Su, G.; Hamm, D.E.; LaFemina, M.; Howard, J.; Fang, X.; Bhat, S.; Huynh, K.M.; O’Kane, C.M.; Ingram, R.J.; Muir, R.R.; McAuley, D.F.; Matthay, M.A.; Sheppard, D. Unexpected role for adaptive αβTh17 cells in acute respiratory distress syndrome. J. Immunol., 2015, 195(1), 87-95.
[http://dx.doi.org/10.4049/jimmunol.1500054] [PMID: 26002979]
[47]
Matute-Bello, G.; Frevert, C.W.; Martin, T.R. Animal models of acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol., 2008, 295(3), L379-L399.
[http://dx.doi.org/10.1152/ajplung.00010.2008] [PMID: 18621912]
[48]
Kim, M.R.; Hong, S.W.; Choi, E.B.; Lee, W.H.; Kim, Y.S.; Jeon, S.G.; Jang, M.H.; Gho, Y.S.; Kim, Y.K. Staphylococcus aureus -derived extracellular vesicles induce neutrophilic pulmonary inflammation via both Th1 and Th17 cell responses. Allergy, 2012, 67(10), 1271-1281.
[http://dx.doi.org/10.1111/all.12001] [PMID: 22913540]
[49]
Iwakura, Y.; Ishigame, H.; Saijo, S.; Nakae, S. Functional specialization of interleukin-17 family members. Immunity, 2011, 34(2), 149-162.
[http://dx.doi.org/10.1016/j.immuni.2011.02.012] [PMID: 21349428]
[50]
Halwani, R.; Al-Muhsen, S.; Hamid, Q. T helper 17 cells in airway diseases: From laboratory bench to bedside. Chest, 2013, 143(2), 494-501.
[http://dx.doi.org/10.1378/chest.12-0598] [PMID: 23381314]
[51]
Li, Q.; Gu, Y.; Tu, Q.; Wang, K.; Gu, X.; Ren, T. Blockade of Interlukin-17 restrains the development of acute lung injury. Scand. J. Immunol., 2016, 83(3), 203-211.
[http://dx.doi.org/10.1111/sji.12408] [PMID: 26709006]
[52]
Sakaguchi, S.; Sakaguchi, N.; Asano, M.; Itoh, M.; Toda, M. Pillars article: Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 1995. J. Immunol., 2011, 186(7), 3808-3821.
[PMID: 21422251]
[53]
Yu, Z.; Ji, M.; Yan, J.; Cai, Y.; Liu, J.; Yang, H.; Li, Y.; Jin, Z.; Zheng, J. The ratio of Th17/Treg cells as a risk indicator in early acute respiratory distress syndrome. Crit. Care, 2015, 19(1), 82.
[http://dx.doi.org/10.1186/s13054-015-0811-2] [PMID: 25887535]
[54]
Risso, K.; Kumar, G.; Ticchioni, M. Early infectious acute respiratory distress syndrome is characterized by activation and proliferation of alveolar T-cells. Eur. J. Clin. Microbiol., 2015, 34, 1111-1118.
[55]
Noack, M.; Miossec, P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun. Rev., 2014, 13(6), 668-677.
[http://dx.doi.org/10.1016/j.autrev.2013.12.004] [PMID: 24418308]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy