Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Research Article

Impact of HLA Class I Antigen, Killer Inhibitory Receptor, and FCGR3A Genotypes on Breast Cancer Susceptibility and Tumor Stage

Author(s): Angelica Canossi*, Anna Aureli, Tiziana Del Beato, Giorgio Novelli, Oreste Buonomo, Piero Rossi, Adriano Venditti, Franco Papola and Giuseppe Sconocchia

Volume 24, Issue 7, 2024

Published on: 12 September, 2023

Page: [920 - 930] Pages: 11

DOI: 10.2174/1566524023666230717162458

Price: $65

Abstract

Background: The identification in breast cancer (BC) of novel genetic biomarkers regulating natural killer (NK) cell function, including the HLA, KIR, and CD16A (FCGR3A), may be still a challenge.

Objective: We aimed to evaluate whether the combined effect of these polymorphisms has an impact on BC susceptibility and progression.

Methods: 47 BC Italian patients and healthy individuals (39 females and 66 males/ females) were genotyped by Sanger sequencing (HLA-C exon 2-4 and FCGR3A- 158V/F, 48L/R/H) and PCR-SSP typing (KIR genes).

Results: HLA-C gene allele analysis showed the group C1, with HLA-C*07:02:01 allele, to be significantly associated with tumor progression (16.7% vs. 4.0%, p=0.04, OR=4.867), and instead, group C2, with HLA-C*05:01:01, was protective against disease susceptibility (0.0% vs. 7.2%, p=0.019, OR=0.087). In addition, we highlighted a significant reduction of the KIR2DS4ins in BC patients (pcorr.=0.022) and an increased combined presence of KIR2DL1 and KIR2DS1 genes in advanced BC patients compared to earlier stages (66.7% vs. 19.2%, p=0.002). The concurrent lack of KIR2DL2 and KIR2DS4 genes in the presence of HLA-C2 alleles was significantly associated with increased susceptibility to BC (p=0.012, OR=5.020) or with lymph node involvement (p=0.008, OR=6.375). Lastly, we identified different combinations of the FCGR3A-48/158 variants and KIR genes in BC patients compared to controls.

Conclusion: Our findings suggest that in the development of BC probably exists a disorder of the NK innate immunity influenced by KIR/HLA-C gene content and FCGR3A-158 polymorphisms and that the combined analysis of these biomarkers might help predict genetic risk scores for tailored screening of BC patients in therapy.

Keywords: Breast cancer, killer cell immunoglobulin-like receptors (KIR), HLA-C, immunoglobulin G fragment C receptor (FCGR3A), genetic risk, NK.

[1]
DeSantis CE, Ma J, Gaudet MM, et al. Breast cancer statistics, 2019. CA Cancer J Clin 2019; 69(6): 438-51.
[http://dx.doi.org/10.3322/caac.21583] [PMID: 31577379]
[2]
Segovia-Mendoza M, Morales-Montor J. Immune tumor microenvironment in breast cancer and the participation of estrogen and its receptors in cancer physiopathology. Front Immunol 2019; 10: 348.
[http://dx.doi.org/10.3389/fimmu.2019.00348] [PMID: 30881360]
[3]
Moretta L, Bottino C, Pende D, Vitale M, Mingari MC, Moretta A. Different checkpoints in human NK-cell activation. Trends Immunol 2004; 25(12): 670-6.
[4]
Coppola A, Arriga R, Lauro D, et al. NK cell inflammation in the clinical outcome of colorectal carcinoma. Front Med 2015; 2: 33.
[5]
Wende H, Colonna M, Ziegler A, Volz A. Organization of the leukocyte receptor cluster (LRC) on human Chromosome 19q13.4. Mamm Genome 1999; 10(2): 154-60.
[http://dx.doi.org/10.1007/s003359900961] [PMID: 9922396]
[6]
Hollenbach JA, Meenagh A, Sleator C, et al. Report from the killer immunoglobulin-like receptor (KIR) anthropology component of the 15th International Histocompatibility Workshop: Worldwide variation in the KIR loci and further evidence for the co-evolution of KIR and HLA. Tissue Antigens 2010; 76(1): 9-17.
[http://dx.doi.org/10.1111/j.1399-0039.2010.01459.x] [PMID: 20331834]
[7]
Pende D, Falco M, Vitale M, et al. Killer Ig-like receptors (KIRs): Their role in nk cell modulation and developments leading to their clinical exploitation. Front Immunol 2019; 10: 1179.
[http://dx.doi.org/10.3389/fimmu.2019.01179] [PMID: 31231370]
[8]
Biassoni R, Falco M, Cambiaggi A, et al. Amino acid substitutions can influence the natural killer (NK)-mediated recognition of HLA-C molecules. Role of serine-77 and lysine-80 in the target cell protection from lysis mediated by “group 2” or “group 1” NK clones. J Exp Med 1995; 182(2): 605-6099.
[9]
Al Omar S, Middleton D, Marshall E, et al. Associations between genes for killer immunoglobulin-like receptors and their ligands in patients with solid tumors. Hum Immunol 2010; 71(10): 976-81.
[PMID: 15719024]
[10]
Parham P, Falco M, Cambiaggi A, et al. MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol 2005; 5(3): 201-14.
[11]
Middleton D, Vilchez JR, Cabrera T, et al. Analysis of KIR gene frequencies in HLA class I characterised bladder, colorectal and laryngeal tumours. Tissue Antigens 2007; 69(3): 220-6.
[http://dx.doi.org/10.1111/j.1399-0039.2006.00792.x] [PMID: 17493145]
[12]
De Re V, Caggiari L, De Zorzi M, et al. Genetic diversity of the KIR/HLA system and outcome of patients with metastatic colorectal cancer treated with chemotherapy. PLoS One 2014; 9(1): e84940.
[http://dx.doi.org/10.1371/journal.pone.0084940] [PMID: 24497922]
[13]
Berghella AM, Aureli A, Canossi A, Beato TD, Colanardi A, Pellegrini P. Redox, immune and genetic biomarker system for personalized treatments in colorectal cancer. World J Gastrointest Oncol 2019; 11(2): 117-38.
[http://dx.doi.org/10.4251/wjgo.v11.i2.117] [PMID: 30788039]
[14]
Canossi A, Aureli A, Del Beato T, et al. Role of KIR and CD16A genotypes in colorectal carcinoma genetic risk and clinical stage. J Transl Med 2016; 14(1): 239.
[http://dx.doi.org/10.1186/s12967-016-1001-y] [PMID: 27519478]
[15]
Bhat R, Watzl C. Serial killing of tumor cells by human natural killer cells-enhancement by therapeutic antibodies. PLoS One 2007; 2(3): e326.
[http://dx.doi.org/10.1371/journal.pone.0000326] [PMID: 17389917]
[16]
Arriga R, Caratelli S, Lanzilli G, et al. CD16‐158‐valine chimeric receptor T cells overcome the resistance of KRAS‐mutated colorectal carcinoma cells to cetuximab. Int J Cancer 2020; 146(9): 2531-8.
[http://dx.doi.org/10.1002/ijc.32618] [PMID: 31396956]
[17]
D’Aloia MM, Caratelli S, Palumbo C, et al. T lymphocytes engineered to express a CD16-chimeric antigen receptor redirect T-cell immune responses against immunoglobulin G–opsonized target cells. Cytotherapy 2016; 18(2): 278-90.
[http://dx.doi.org/10.1016/j.jcyt.2015.10.014] [PMID: 26705740]
[18]
Terszowski G, Klein C, Stern M. KIR/HLA interactions negatively affect rituximab- but not GA101 (obinutuzumab)-induced antibody-dependent cellular cytotoxicity. J Immunol 2014; 192(12): 5618-24.
[http://dx.doi.org/10.4049/jimmunol.1400288] [PMID: 24795454]
[19]
Caratelli S, Sconocchia T, Arriga R, et al. FCγ chimeric receptor-engineered T cells: Methodology, advantages, limitations, and clinical relevance. Front Immunol 2017; 8: 457.
[http://dx.doi.org/10.3389/fimmu.2017.00457] [PMID: 28496440]
[20]
Koene HR, Kleijer M, Algra J, Roos D, von dem Borne AE, de Haas M. Fc gammaRIIIa-158V/F polymorphism influences the binding of IgG by natural killer cell Fc gammaRIIIa, independently of the Fc gammaRIIIa-48L/R/H phenotype. Blood 1997; 90(3): 1109-14.
[http://dx.doi.org/10.1182/blood.V90.3.1109] [PMID: 9242542]
[21]
de Haas M, Koene HR, Kleijer M, et al. A triallelic Fc gamma receptor type IIIA polymorphism influences the binding of human IgG by NK cell Fc gamma RIIIa. J Immunol 1996; 156(8): 2948-55.
[http://dx.doi.org/10.4049/jimmunol.156.8.2948] [PMID: 8609432]
[22]
Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235(4785): 177-82.
[http://dx.doi.org/10.1126/science.3798106] [PMID: 3798106]
[23]
Hortobagyi GN. Trastuzumab in the treatment of breast cancer. N Engl J Med 2005; 353(16): 1734-6.
[http://dx.doi.org/10.1056/NEJMe058196] [PMID: 16236745]
[24]
Luen S, Virassamy B, Savas P, Salgado R, Loi S. The genomic landscape of breast cancer and its interaction with host immunity. Breast 2016; 29: 241-50.
[http://dx.doi.org/10.1016/j.breast.2016.07.015] [PMID: 27481651]
[25]
Savas P, Salgado R, Denkert C, et al. Clinical relevance of host immunity in breast cancer: From TILs to the clinic. Nat Rev Clin Oncol 2016; 13(4): 228-41.
[http://dx.doi.org/10.1038/nrclinonc.2015.215] [PMID: 26667975]
[26]
Ehlers FAI, Beelen NA, van Gelder M, et al. ADCC-inducing antibody trastuzumab and selection of KIR-HLA ligand mismatched donors enhance the NK cell anti-breast cancer response. Cancers 2021; 13(13): 3232.
[http://dx.doi.org/10.3390/cancers13133232] [PMID: 34203549]
[27]
Li F, Liu S. Focusing on NK cells and ADCC: A promising immunotherapy approach in targeted therapy for HER-2 positive breast cancer. Front Immunol 2022; 2022: 1083462.
[PMID: 21214544]
[28]
Campbell KS, Purdy AK. Structure/function of human killer cell immunoglobulin-like receptors: Lessons from polymorphisms, evolution, crystal structures and mutations. Immunology 2011; 132(3): 315-25.
[PMID: 21214544]
[29]
Sconocchia G, Arriga R, Tornillo L, Terracciano L, Ferrone S, Spagnoli GC. Melanoma cells inhibit NK cell functions. Cancer Res 2012; 72(20): 5428-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-1181] [PMID: 23047870]
[30]
Screpanti I, Santoni A, Gulino A, Herberman RB, Frati L. Estrogen and antiestrogen modulation of the levels of mouse natural killer activity and large granular lymphocytes. Cell Immunol 1987; 106(2): 191-202.
[http://dx.doi.org/10.1016/0008-8749(87)90163-8] [PMID: 2882860]
[31]
Manukyan G, Martirosyan A, Slavik L, et al. 17 beta-estradiol promotes proinflammatory and procoagulatory phenotype of innate immune cells in the presence of antiphospholipid antibodies. Biomed 2020; 8(6): 162.
[32]
Nilsson N, Carlsten H. Estrogen induces suppression of natural killer cell cytotoxicity and augmentation of polyclonal B cell activation. Cell Immunol 1994; 158(1): 131-9.
[http://dx.doi.org/10.1006/cimm.1994.1262] [PMID: 8087860]
[33]
Kaur G, Gras S, Mobbs JI, et al. Structural and regulatory diversity shape HLA-C protein expression levels. Nat Commun 2017; 8(1): 15924.
[http://dx.doi.org/10.1038/ncomms15924] [PMID: 28649982]
[34]
Kulkarni S, Savan R, Qi Y, et al. Differential microRNA regulation of HLA-C expression and its association with HIV control. Nature 2011; 472(7344): 495-8.
[http://dx.doi.org/10.1038/nature09914] [PMID: 21499264]
[35]
Sconocchia G, Spagnoli GC, Del Principe D, et al. Defective infiltration of natural killer cells in MICA/B-positive renal cell carcinoma involves beta(2)-integrin-mediated interaction. Neoplasia 2009; 11(7): 662-71.
[http://dx.doi.org/10.1593/neo.09296] [PMID: 19568411]
[36]
Verma C, Kaewkangsadan V, Eremin JM, et al. Natural killer (NK) cell profiles in blood and tumour in women with large and locally advanced breast cancer (LLABC) and their contribution to a pathological complete response (PCR) in the tumour following neoadjuvant chemotherapy (NAC): Differential restoration of blood profiles by NAC and surgery. J Transl Med 2015; 13(1): 180.
[http://dx.doi.org/10.1186/s12967-015-0535-8] [PMID: 26040463]
[37]
Venstrom JM, Pittari G, Gooley TA, et al. HLA-C-dependent prevention of leukemia relapse by donor activating KIR2DS1. N Engl J Med 2012; 367(9): 805-16.
[38]
Sim MJW, Rajagopalan S, Altmann DM, et al. Human NK cell receptor KIR2DS4 detects a conserved bacterial epitope presented by HLA-C. Proc Natl Acad Sci USA 2019; 116(26): 12964-73.
[PMID: 31138701]
[39]
Alomar SY, Alkhuriji A, Trayhyrn P, Alhetheel A, Al-Jurayyan A, Mansour L. Association of the genetic diversity of killer cell immunoglobulin-like receptor genes and HLA-C ligand in Saudi women with breast cancer. Immunogenetics 2017; 69(2): 69-76.
[40]
Ozturk OG, Gun FD, Polat G. Killer cell immunoglobulin-like receptor genes in patients with breast cancer. Med Oncol 2012; 29(2): 511-5.
[PMID: 21479698]
[41]
Ashouri E, Rajalingam K, Barani S, Farjadian S, Ghaderi A, Rajalingam R. Coexistence of inhibitory and activating killer-cell immunoglobulin-like receptors to the same cognate HLA-C2 and Bw4 ligands confer breast cancer risk. Sci Rep 2021; 11(1): 7932.
[http://dx.doi.org/10.1038/s41598-021-86964-y] [PMID: 33846431]
[42]
Zhang Y, Wang B, Ye S, et al. Killer cell immunoglobulin-like receptor gene polymorphisms in patients with leukemia: Possible association with susceptibility to the disease. Leuk Res 2010; 34(1): 55-8.
[http://dx.doi.org/10.1016/j.leukres.2009.04.022] [PMID: 19450876]
[43]
Butsch Kovacic M, Martin M, Gao X, et al. Variation of the killer cell immunoglobulin-like receptors and HLA-C genes in nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev 2005; 14(11): 2673-7.
[http://dx.doi.org/10.1158/1055-9965.EPI-05-0229] [PMID: 16284396]
[44]
Caratelli S, Arriga R, Sconocchia T, et al. In vitro elimination of epidermal growth factor receptor‐overexpressing cancer cells by CD32A‐chimeric receptor T cells in combination with cetuximab or panitumumab. Int J Cancer 2020; 146(1): 236-47.
[http://dx.doi.org/10.1002/ijc.32663] [PMID: 31479522]
[45]
Gavin PG, Song N, Kim SR, et al. Association of polymorphisms in FCGR2A and FCGR3A with degree of trastuzumab benefit in the adjuvant treatment of ERBB2/HER2–positive breast cancer. JAMA Oncol 2017; 3(3): 335-41.
[http://dx.doi.org/10.1001/jamaoncol.2016.4884] [PMID: 27812689]
[46]
Rataj F, Jacobi SJ, Stoiber S, et al. High-affinity CD16-polymorphism and Fc-engineered antibodies enable activity of CD16-chimeric antigen receptor-modified T cells for cancer therapy. Br J Cancer 2019; 120(1): 79-87.
[http://dx.doi.org/10.1038/s41416-018-0341-1] [PMID: 30429531]
[47]
Zheng G, Jia L, Yang AG. Roles of HLA-G/KIR2DL4 in breast cancer immune microenvironment. Front Immunol 2022; 13: 791975.
[http://dx.doi.org/10.3389/fimmu.2022.791975] [PMID: 35185887]
[48]
Muraro E, De Zorzi M, Miolo G, et al. KIR-HLA functional repertoire influences trastuzumab efficiency in patients with her2-positive breast cancer. Front Immunol 2022; 12: 791958.
[http://dx.doi.org/10.3389/fimmu.2021.791958] [PMID: 35095867]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy