Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Mini-Review Article

Caffeine Electrochemical Sensor Constructed by Graphene Oxide and Reduced Graphene Oxide: A Mini-review

Author(s): Gan Yang*

Volume 19, Issue 6, 2023

Published on: 17 July, 2023

Page: [448 - 456] Pages: 9

DOI: 10.2174/1573411019666230705121236

Price: $65

Abstract

It is very important to determine the concentration of target substances in food safety, environmental detection, and drug supervision. Caffeine, a natural alkaloid, is widely found in various drinks and drugs. In addition to its beneficial functions, caffeine also has certain negative effects. Therefore, it is very important to determine the concentration of caffeine in drugs, beverages, wastewater, and other media. Among various analytical techniques, electrochemical sensors occupy a special position because of their high efficiency, rapidity, and relative ease to obtain the required preparation and measurement conditions. In the past decades, great progress has been made in the determination of caffeine using graphene oxide (GO) and reduced graphene oxide (RGO) as electrochemical sensor materials. GO and RGO have the advantages of low preparation cost, significant dissolution in polar solvents, such as water, wide working potential range, and relatively high electrochemical inertia in various redox reactions. Moreover, due to π -π interaction and other reasons, their reactivity to caffeine is higher; therefore, GO and RGO applications in caffeine sensors are more popular, and good results have been obtained in selectivity and sensitivity. In this study, the related literature on caffeine in electrochemical sensors preparation with GO and RGO in recent years is reviewed, with the aim of helping researchers working in this research field.

Keywords: Caffeine, graphene oxide, reduced graphene oxide, electrochemical sensor, immobilization method, redox reactions.

Graphical Abstract
[1]
Madhusudhana, A.M.; Mohana, K.N.S.; Hegde, M.B.; Swamy, N.K.; Shivamurthy, S.A. Electrochemical sensor based on phenol formaldehyde amine polymer coated ZnO/GO nanocomposite: An innovative nano-framework for the determination of caffeine. Diamond Related Materials, 2022, 130, 109531.
[http://dx.doi.org/10.1016/j.diamond.2022.109531]
[2]
Unnava, V.; Singh, A.S.; Unnava, H.R. Coffee with co-workers: Role of caffeine on evaluations of the self and others in group settings. J. Psychopharmacol., 2018, 32(8), 943-948.
[http://dx.doi.org/10.1177/0269881118760665] [PMID: 29620439]
[3]
Walter, K. Caffeine and health. JAMA, 2022, 327(7), 693.
[http://dx.doi.org/10.1001/jama.2021.21452] [PMID: 35166799]
[4]
Jee, H.J.; Lee, S.G.; Bormate, K.J.; Jung, Y.S. effect of caffeine consumption on the risk for neurological and psychiatric disorders: Sex differences in human. Nutrients, 2020, 12(10), 3080.
[http://dx.doi.org/10.3390/nu12103080] [PMID: 33050315]
[5]
Ebrahimzadeh, G.; Nodehi, R.N.; Alimohammadi, M.; Rezaei Kahkah, M.R.; Mahvi, A.H. Monitoring of caffeine concentration in infused tea, human urine, domestic wastewater and different water resources in southeast of Iran- caffeine an alternative indicator for contamination of human origin. J. Environ. Manage., 2021, 283, 111971.
[http://dx.doi.org/10.1016/j.jenvman.2021.111971] [PMID: 33482452]
[6]
Nawrot, P.; Jordan, S.; Eastwood, J.; Rotstein, J.; Hugenholtz, A.; Feeley, M. Effects of caffeine on human health. Food Addit. Contam., 2003, 20(1), 1-30.
[PMID: 12519715]
[7]
Ebele, A.J.; Oluseyi, T.; Drage, D.S.; Harrad, S.; Abou-Elwafa Abdallah, M. Occurrence, seasonal variation and human exposure to pharmaceuticals and personal care products in surface water, groundwater and drinking water in Lagos State, Nigeria. Emerg. Contam., 2020, 6, 124-132.
[http://dx.doi.org/10.1016/j.emcon.2020.02.004]
[8]
Foudah, A.I.; Shakeel, F.; Salkini, M.A.; Alshehri, S.; Ghoneim, M.M.; Alam, P. A green high-performance thin-layer chromatography method for the determination of caffeine in commercial energy drinks and formulations. Materials, 2022, 15(9), 2965.
[http://dx.doi.org/10.3390/ma15092965] [PMID: 35591300]
[9]
Yang, Q.; Wu, L.; Shi, C.; Wu, X.; Chen, X.; Wu, W.; Yang, H.; Wang, Z.; Zeng, L.; Peng, Y. Qualitative and quantitative analysis of caffeine in medicines by terahertz spectroscopy using machine learning method. IEEE Access, 2021, 9, 140008-140021.
[http://dx.doi.org/10.1109/ACCESS.2021.3116980]
[10]
Zareef, M.; Mehedi Hassan, M.; Arslan, M.; Ahmad, W.; Ali, S.; Ouyang, Q.; Li, H.; Wu, X.; Chen, Q. Rapid prediction of caffeine in tea based on surface-enhanced Raman spectroscopy coupled multivariate calibration. Microchem. J., 2020, 159, 105431.
[http://dx.doi.org/10.1016/j.microc.2020.105431]
[11]
Mayra, K.S. Novel cork-graphite electrochemical sensor for voltammetric determination of caffeine. J. Electroanal. Chem., 2019, 839, 283-289.
[12]
Baranwal, J.; Barse, B.; Gatto, G.; Broncova, G.; Kumar, A. Electrochemical sensors and their applications: A review. Chemosensors, 2022, 10(9), 363.
[http://dx.doi.org/10.3390/chemosensors10090363]
[13]
Bulgariu, L.; Radecka, H.; Pietraszkiewicz, M.; Pietraszkiewicz, O. Potentiometric response of liquid membrane electrode incorporated with macrocyclic polyamine towards benzoate. Anal. Lett., 2003, 36(7), 1325-1334.
[http://dx.doi.org/10.1081/AL-120021089]
[14]
Chen, D.; Feng, H.; Li, J. Graphene oxide: Preparation, functionalization, and electrochemical applications. Chem. Rev., 2012, 112(11), 6027-6053.
[http://dx.doi.org/10.1021/cr300115g] [PMID: 22889102]
[15]
Jiang, H. Chemical preparation of graphene-based nanomaterials and their applications in chemical and biological sensors. Small, 2011, 7(17), 2413-2427.
[http://dx.doi.org/10.1002/smll.201002352] [PMID: 21638780]
[16]
Das, B.; Kundu, R.; Chakravarty, S. Preparation and characterization of graphene oxide from coal. Mater. Chem. Phys., 2022, 290, 126597.
[http://dx.doi.org/10.1016/j.matchemphys.2022.126597]
[17]
Yu, W.; Sisi, L.; Haiyan, Y.; Jie, L. Progress in the functional modification of graphene/graphene oxide: A review. RSC Advances, 2020, 10(26), 15328-15345.
[http://dx.doi.org/10.1039/D0RA01068E] [PMID: 35495479]
[18]
Yu, X.; Cheng, H.; Zhang, M.; Zhao, Y.; Qu, L.; Shi, G. Graphene-based smart materials. Nat. Rev. Mater., 2017, 2(9), 17046.
[http://dx.doi.org/10.1038/natrevmats.2017.46]
[19]
Azman, N.H.N.; Mamat Mat Nazir, M.S.; Ngee, L.H.; Sulaiman, Y. Graphene-based ternary composites for supercapacitors. Int. J. Energy Res., 2018, 42(6), 2104-2116.
[http://dx.doi.org/10.1002/er.4001]
[20]
Anwar, A.; Chang, T.P.; Chen, C.T. Graphene oxide synthesis using a top–down approach and discrete characterization techniques: A holistic review. Carbon Letters, 2022, 32(1), 1-38.
[http://dx.doi.org/10.1007/s42823-021-00272-z]
[21]
Granzier-Nakajima, T.; Fujisawa, K.; Anil, V.; Terrones, M.; Yeh, Y.T. Controlling nitrogen doping in graphene with atomic precision: Synthesis and characterization. Nanomaterials, 2019, 9(3), 425.
[http://dx.doi.org/10.3390/nano9030425] [PMID: 30871112]
[22]
Ta, H.Q.; Mendes, R.G.; Liu, Y.; Yang, X.; Luo, J.; Bachmatiuk, A.; Gemming, T.; Zeng, M.; Fu, L.; Liu, L.; Rümmeli, M.H. In situ fabrication of freestanding single‐atom‐thick 2D metal/metallene and 2D metal/metallene oxide membranes: Recent developments. Adv. Sci., 2021, 8(20), 2100619.
[http://dx.doi.org/10.1002/advs.202100619] [PMID: 34459155]
[23]
Dave, S.H.; Gong, C.; Robertson, A.W.; Warner, J.H.; Grossman, J.C. Correction to Chemistry and structure of graphene oxide via direct imaging. ACS Nano, 2017, 11(1), 1121.
[http://dx.doi.org/10.1021/acsnano.6b07705] [PMID: 28026164]
[24]
Lee, S.; Toney, M.F.; Ko, W.; Randel, J.C.; Jung, H.J.; Munakata, K.; Lu, J.; Geballe, T.H.; Beasley, M.R.; Sinclair, R.; Manoharan, H.C.; Salleo, A.; Graphene, L-S.E. Laser-synthesized epitaxial graphene. ACS Nano, 2010, 4(12), 7524-7530.
[http://dx.doi.org/10.1021/nn101796e] [PMID: 21121692]
[25]
Sun, H.; Xu, J.; Wang, C.; Ge, G.; Jia, Y.; Liu, J.; Song, F.; Wan, J. Synthesis of large-area monolayer and bilayer graphene using solid coronene by chemical vapor deposition. Carbon, 2016, 108, 356-362.
[http://dx.doi.org/10.1016/j.carbon.2016.07.027]
[26]
Wei, T.; Kohring, M.; Weber, H.B.; Hauke, F.; Hirsch, A. Molecular embroidering of graphene. Nat. Commun., 2021, 12(1), 552.
[http://dx.doi.org/10.1038/s41467-020-20651-w] [PMID: 33483478]
[27]
Pranav, T.M.; Sakorikar, T.; Vayalamkuzhi, P.; Jaiswal, M. Humidity-induced significant microstructural reordering in partially reduced graphene oxide: Insights on water permeation mechanism. J. Appl. Phys., 2019, 125(2), 024303.
[http://dx.doi.org/10.1063/1.5078665]
[28]
Al-Gaashani, R.; Najjar, A.; Zakaria, Y.; Mansour, S.; Atieh, M.A. XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceram. Int., 2019, 45(11), 14439-14448.
[http://dx.doi.org/10.1016/j.ceramint.2019.04.165]
[29]
Abele, C.D.; Giesselmann, F. Dynamic light scattering analysis of size-selected graphene oxide 2D colloids fractioned via liquid crystal phase separation. Soft Matter, 2022, 18(35), 6607-6617.
[http://dx.doi.org/10.1039/D2SM00662F] [PMID: 35997161]
[30]
Eissa, S.; N’diaye, J.; Brisebois, P.; Izquierdo, R.; Tavares, A.C.; Siaj, M. Probing the influence of graphene oxide sheets size on the performance of label-free electrochemical biosensors. Sci. Rep., 2020, 10(1), 13612.
[http://dx.doi.org/10.1038/s41598-020-70384-5] [PMID: 32788744]
[31]
Yao, Y.; Ren, L.; Gao, S.; Li, S. Histogram method for reliable thickness measurements of graphene films using atomic force microscopy (AFM). J. Mater. Sci. Technol., 2017, 33(8), 815-820.
[http://dx.doi.org/10.1016/j.jmst.2016.07.020]
[32]
Wang, R.; Pang, H.; Li, M.; Lai, L. Atomic simulation of nanoindentation on the regular wrinkled graphene sheet. Materials, 2020, 13(5), 1127.
[http://dx.doi.org/10.3390/ma13051127] [PMID: 32138250]
[33]
Ben Gouider Trabelsi, A.; Kusmartsev, F.V.; Robinson, B.J.; Ouerghi, A.; Kusmartseva, O.E.; Kolosov, O.V.; Mazzocco, R.; Gaifullin, M.B.; Oueslati, M. Charged nano-domes and bubbles in epitaxial graphene. Nanotechnology, 2014, 25(16), 165704.
[http://dx.doi.org/10.1088/0957-4484/25/16/165704] [PMID: 24675237]
[34]
Yoshikawa, M.; Murakami, M.; Fujita, Y. Characterization of inhomogeneity at edges of graphene oxide films using tip‐enhanced Raman spectroscopy. J. Raman Spectrosc., 2022, 53(8), 1394-1401.
[http://dx.doi.org/10.1002/jrs.6374]
[35]
Petrucci, R.; Chiarotto, I.; Mattiello, L.; Passeri, D.; Rossi, M.; Zollo, G.; Feroci, M. Graphene oxide: A smart (starting) material for natural methylxanthines adsorption and detection. Molecules, 2019, 24(23), 4247.
[http://dx.doi.org/10.3390/molecules24234247] [PMID: 31766549]
[36]
Eagambaram, M.; Kumar, K. Design of an efficient tin selenide-based ternary nanocomposite electrode for simultaneous determination of paracetamol, tryptophan, and caffeine. ACS Omega, 2022, 7(40), 35486-35495.
[http://dx.doi.org/10.1021/acsomega.1c07306] [PMID: 36249364]
[37]
Abd-Rabboh, H.S.M.; E Amr, A.E.; Almehizia, A.A.; Naglah, A.M.; H Kamel, A. New potentiometric screen-printed platforms modified with reduced graphene oxide and based on man-made imprinted receptors for caffeine assessment. Polymers, 2022, 14(10), 1942.
[http://dx.doi.org/10.3390/polym14101942] [PMID: 35631825]
[38]
Man, N.Q.; Tu, N.T.T.; Vu, H.X.A.; Quyen, N.D.V.; Phong, N.H.; Tuyen, T.N.; Van Thanh Son, L.; Son, L.V.T.; Hoan, N.T.V.; To, T.C.; Khieu, D.Q. Simultaneous determination of uric acid, xanthine, and caffeine in human urine samples using nickel ferrite/reduced graphene oxide modified electrode. J. Mater. Sci. Mater. Electron., 2023, 34(1), 59.
[http://dx.doi.org/10.1007/s10854-022-09449-2]
[39]
Hadizadeh, N.; Zeidi, S.; Khodabakhsh, H.; Zeidi, S.; Rezaei, A.; Liang, Z.; Dashtizad, M.; Hashemi, E. An overview on the reproductive toxicity of graphene derivatives: Highlighting the importance. Nanotechnol. Rev., 2022, 11(1), 1076-1100.
[http://dx.doi.org/10.1515/ntrev-2022-0063]
[40]
Wang, Q.; Xue, Q.; Chen, T.; Li, J.; Liu, Y.; Shan, X.; Liu, F.; Jia, J. Recent advances in electrochemical sensors for antibiotics and their applications. Chin. Chem. Lett., 2021, 32(2), 609-619.
[http://dx.doi.org/10.1016/j.cclet.2020.10.025]
[41]
Wong, A.; Santos, A.M.; Silva, T.A.; Fatibello-Filho, O. Simultaneous determination of isoproterenol, acetaminophen, folic acid, propranolol and caffeine using a sensor platform based on carbon black, graphene oxide, copper nanoparticles and PEDOT:PSS. Talanta, 2018, 183, 329-338.
[http://dx.doi.org/10.1016/j.talanta.2018.02.066] [PMID: 29567183]
[42]
Shehata, M.; Azab, S.M.; Fekry, A.M. May glutathione and graphene oxide enhance the electrochemical detection of caffeine on carbon paste sensor in aqueous and surfactant media for beverages analysis? Synth. Met., 2019, 256, 116122.
[http://dx.doi.org/10.1016/j.synthmet.2019.116122]
[43]
Murugan, E.; Kumar, K. Fabrication of SnS/TiO 2 @GO composite coated glassy carbon electrode for concomitant determination of paracetamol, tryptophan, and caffeine in pharmaceutical formulations. Anal. Chem., 2019, 91(9), 5667-5676.
[http://dx.doi.org/10.1021/acs.analchem.8b05531] [PMID: 30946567]
[44]
Jose, J.; Subramanian, V.; Shaji, S.; Sreeja, P.B. An electrochemical sensor for nanomolar detection of caffeine based on nicotinic acid hydrazide anchored on graphene oxide (NAHGO). Sci. Rep., 2021, 11(1), 11662.
[http://dx.doi.org/10.1038/s41598-021-89427-6] [PMID: 34083560]
[45]
Murugan, E.; Poongan, A. Electrochemical determination of caffeine in beverage using graphene oxide modified glassy carbon electrode. Indian J. Chem. Technol., 2021, 28(5), 528-536.
[46]
Phong, N.H.; Toan, T.T.T.; Tinh, M.X.; Tuyen, T.N.; Mau, T.X.; Khieu, D.Q. Simultaneous voltammetric determination of ascorbic acid, paracetamol, and caffeine using electrochemically reduced graphene-oxide-modified electrode. J. Nanomater., 2018, 2018, 1-15.
[47]
Gao, L.; Yue, R.; Xu, J.; Liu, Z. One-pot Synthesis of Fe2O3/PEDOT/rGO Nanocomposite for Sensitive Determination of Caffeine. Int. J. Electrochem. Sci., 2018, 13, 6791-6802.
[http://dx.doi.org/10.20964/2018.07.66]
[48]
Raj, M.; Goyal, R.N. Silver nanoparticles and electrochemically reduced graphene oxide nanocomposite based biosensor for determining the effect of caffeine on Estradiol release in women of child-bearing age. Sens. Actuators B Chem., 2019, 284, 759-767.
[http://dx.doi.org/10.1016/j.snb.2019.01.018]
[49]
Li, R.; Yao, L.; Wang, Z.; Lv, W.; Wang, W.; Kong, F.; Wang, W. Facile synthesis gold-polyindole-reduced graphene oxide ternary nanocomposites with enhanced electrocatalytic activity for the electrochemical sensing of caffeine. J. Electrochem. Soc., 2019, 166(4), B212-B218.
[http://dx.doi.org/10.1149/2.0621904jes]
[50]
Varsha, M.V. Nickel based metal organic framework/reduced graphene oxide composite as electrode material for the voltammetric detection of caffeine. J. Electrochem. Soc., 2020, 167, 137505.
[http://dx.doi.org/10.1149/1945-7111/abb83e]
[51]
Khoo, W.Y.H.; Pumera, M.; Bonanni, A. Graphene platforms for the detection of caffeine in real samples. Anal. Chim. Acta, 2013, 804, 92-97.
[http://dx.doi.org/10.1016/j.aca.2013.09.062] [PMID: 24267068]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy