Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

miR-488-3p Represses Malignant Behaviors and Facilitates Autophagy of Osteosarcoma Cells by Targeting Neurensin-2

Author(s): Chao Yun, Jincai Zhang and Morigele*

Volume 25, Issue 10, 2024

Published on: 13 July, 2023

Page: [1264 - 1275] Pages: 12

DOI: 10.2174/1389201024666230626102837

Price: $65

Abstract

Objectives: Osteosarcoma (OS) is a primary bone sarcoma that primarily affects children and adolescents and poses significant challenges in terms of treatment. microRNAs (miRNAs) have been implicated in OS cell growth and regulation. This study sought to investigate the role of hsa-miR-488-3p in autophagy and apoptosis of OS cells.

Methods: The expression of miR-488-3p was examined in normal human osteoblasts and OS cell lines (U2OS, Saos2, and OS 99-1) using RT-qPCR. U2OS cells were transfected with miR-488- 3p-mimic, and cell viability, apoptosis, migration, and invasion were assessed using CCK-8, flow cytometry, and Transwell assays, respectively. Western blotting and immunofluorescence were employed to measure apoptosis- and autophagy-related protein levels, as well as the autophagosome marker LC3. The binding sites between miR-488-3p and neurensin-2 (NRSN2) were predicted using online bioinformatics tools and confirmed by a dual-luciferase assay. Functional rescue experiments were conducted by co-transfecting miR-488-3p-mimic and pcDNA3.1-NRSN2 into U2OS cells to validate the effects of the miR-488-3p/NRSN2 axis on OS cell behaviors. Additionally, 3-MA, an autophagy inhibitor, was used to investigate the relationship between miR- 488-3p/NRSN2 and cell apoptosis and autophagy.

Results: miR-488-3p was found to be downregulated in OS cell lines, and its over-expression inhibited the viability, migration, and invasion while promoting apoptosis of U2OS cells. NRSN2 was identified as a direct target of miR-488-3p. Over-expression of NRSN2 partially counteracted the inhibitory effects of miR-488-3p on malignant behaviors of U2OS cells. Furthermore, miR- 488-3p induced autophagy in U2OS cells through NRSN2-mediated mechanisms. The autophagy inhibitor 3-MA partially reversed the effects of the miR-488-3p/NRSN2 axis in U2OS cells.

Conclusion: Our findings demonstrate that miR-488-3p suppresses malignant behaviors and promotes autophagy in OS cells by targeting NRSN2. This study provides insights into the role of miR-488-3p in OS pathogenesis and suggests its potential as a therapeutic target for OS treatment.

Keywords: Osteosarcoma, hsa-miR-488-3p, neurensin-2, autophagy, apoptosis, cell viability, migration, invasion.

Graphical Abstract
[1]
Iwai, T.; Oebisu, N.; Hoshi, M.; Orita, K.; Yamamoto, A.; Hamamoto, S.; Kageyama, K.; Nakamura, H. Promising abscopal effect of combination therapy with thermal tumour ablation and intratumoural OK-432 injection in the rat osteosarcoma model. Sci. Rep., 2020, 10(1), 9679.
[http://dx.doi.org/10.1038/s41598-020-66934-6] [PMID: 32541941]
[2]
Tobeiha, M.; Rajabi, A.; Raisi, A.; Mohajeri, M.; Yazdi, S.M.; Davoodvandi, A.; Aslanbeigi, F.; Vaziri, M.; Hamblin, M.R.; Mirzaei, H. Potential of natural products in osteosarcoma treatment: Focus on molecular mechanisms. Biomed. Pharmacother., 2021, 144, 112257.
[http://dx.doi.org/10.1016/j.biopha.2021.112257]
[3]
Chong, Z.X.; Yeap, S.K.; Ho, W.Y. Unraveling the roles of mirnas in regulating epithelial-to-mesenchymal transition (emt) in osteosarcoma. Pharmacol. Res., 2021, 172, 105818.
[4]
Huang, Q.; Liang, X.; Ren, T.; Huang, Y.; Zhang, H.; Yu, Y.; Chen, C.; Wang, W.; Niu, J.; Lou, J.; Guo, W. The role of tumor-associated macrophages in osteosarcoma progression – therapeutic implications. Cell. Oncol., 2021, 44(3), 525-539.
[http://dx.doi.org/10.1007/s13402-021-00598-w] [PMID: 33788151]
[5]
Chen, C.; Xie, L.; Ren, T.; Huang, Y.; Xu, J.; Guo, W. Immunotherapy for osteosarcoma: Fundamental mechanism, rationale, and recent breakthroughs. Cancer Lett., 2021, 500, 1-10.
[http://dx.doi.org/10.1016/j.canlet.2020.12.024]
[6]
Correia de Sousa, M.; Gjorgjieva, M.; Dolicka, D.; Sobolewski, C.; Foti, M. Deciphering miRNAs’ Action through miRNA Editing. Int. J. Mol. Sci., 2019, 20(24), 6249.
[http://dx.doi.org/10.3390/ijms20246249] [PMID: 31835747]
[7]
Singh, D.; Khan, M.A. Siddique, HR Role of p53-mirnas circuitry in immune surveillance and cancer development: A potential avenue for therapeutic intervention. Semin. Cell Dev. Biol., 2022, 124, 15-25.
[http://dx.doi.org/10.1016/j.semcdb.2021.04.003]
[8]
Lai, X.; Eberhardt, M.; Schmitz, U.; Vera, J. Systems biology-based investigation of cooperating microRNAs as monotherapy or adjuvant therapy in cancer. Nucleic Acids Res., 2019, 47(15), 7753-7766.
[http://dx.doi.org/10.1093/nar/gkz638] [PMID: 31340025]
[9]
Yang, Y.; Li, H.; He, Z.; Xie, D.; Ni, J.; Lin, X. MicroRNA‐488‐3p inhibits proliferation and induces apoptosis by targeting ZBTB2 in esophageal squamous cell carcinoma. J. Cell. Biochem., 2019, 120(11), 18702-18713.
[http://dx.doi.org/10.1002/jcb.29178] [PMID: 31243806]
[10]
Han, D.; Zhu, S.; Li, X.; Li, Z.; Huang, H.; Gao, W.; Liu, Y.; Zhu, H.; Yu, X. The NF-κB/miR-488/ERBB2 axis modulates pancreatic cancer cell malignancy and tumor growth through cell cycle signaling. Cancer Biol. Ther., 2022, 23(1), 294-309.
[http://dx.doi.org/10.1080/15384047.2022.2054257] [PMID: 35343383]
[11]
Jones, K.B.; Salah, Z.; Del Mare, S.; Galasso, M.; Gaudio, E.; Nuovo, G.J.; Lovat, F.; LeBlanc, K.; Palatini, J.; Randall, R.L.; Volinia, S.; Stein, G.S.; Croce, C.M.; Lian, J.B.; Aqeilan, R.I. miRNA signatures associate with pathogenesis and progression of osteosarcoma. Cancer Res., 2012, 72(7), 1865-1877.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-2663] [PMID: 22350417]
[12]
Sheikhvatan, M.; Chaichian, S.; Moazzami, B. A systematic review and bioinformatics study on genes and micro-rnas involving the transformation of endometriosis into ovarian cancer. MicroRNA, 2020, 9(2), 101-111.
[http://dx.doi.org/10.2174/2211536608666190917152104] [PMID: 31530272]
[13]
Zhou, J.; Xu, L.; Yang, P.; Lu, Y.; Lin, S.; Yuan, G. The exosomal transfer of human bone marrow mesenchymal stem cell-derived miR-1913 inhibits osteosarcoma progression by targeting NRSN2. Am. J. Transl. Res., 2021, 13(9), 10178-10192.
[PMID: 34650689]
[14]
Li, F.; Chen, X.; Shang, C.; Ying, Q.; Zhou, X.; Zhu, R.; Lu, H.; Hao, X.; Dong, Q.; Jiang, Z. Bone marrow mesenchymal stem cells-derived extracellular vesicles promote proliferation, invasion and migration of osteosarcoma cells via the lncrna malat1/mir-143/nrsn2/wnt/beta-catenin axis. OncoTargets Ther., 2021, 14, 737-749.
[15]
Keremu, A.; Maimaiti, X.; Aimaiti, A.; Yushan, M.; Alike, Y.; Yilihamu, Y.; Yusufu, A. NRSN2 promotes osteosarcoma cell proliferation and growth through PI3K/Akt/MTOR and Wnt/β-catenin signaling. Am. J. Cancer Res., 2017, 7(3), 565-573.
[PMID: 28401012]
[16]
Xie, C.; Liu, S.; Wu, B.; Zhao, Y.; Chen, B.; Guo, J.; Qiu, S.; Cao, Y.M. Mir-19 promotes cell proliferation, invasion, migration, and emt by inhibiting spred2-mediated autophagy in osteosarcoma cells. Cell Transplant., 2020, 29, 963689720962460.
[http://dx.doi.org/10.1177/0963689720962460]
[17]
García-Prat, L.; Martínez-Vicente, M.; Perdiguero, E.; Ortet, L.; Rodríguez-Ubreva, J.; Rebollo, E.; Ruiz-Bonilla, V.; Gutarra, S.; Ballestar, E.; Serrano, A.L.; Sandri, M.; Muñoz-Cánoves, P. Autophagy maintains stemness by preventing senescence. Nature, 2016, 529(7584), 37-42.
[http://dx.doi.org/10.1038/nature16187] [PMID: 26738589]
[18]
Jamali, Z.; Taheri-Anganeh, M.; Shabaninejad, Z.; Keshavarzi, A.; Taghizadeh, H.; Razavi, Z.S.; Mottaghi, R.; Abolhassan, M.; Movahedpour, A.; Mirzaei, H. Autophagy regulation by MICRORNAS: Novel insights into osteosarcoma therapy. IUBMB Life, 2020, 72(7), 1306-1321.
[http://dx.doi.org/10.1002/iub.2277] [PMID: 32233112]
[19]
Soghli, N.; Ferns, G.A.; Sadeghsoltani, F.; Qujeq, D.; Yousefi, T.; Vaghari-Tabari, M. Micrornas and osteosarcoma: Potential targets for inhibiting metastasis and increasing chemosensitivity. Biochem. Pharmacol., 2022, 201, 115094.
[http://dx.doi.org/10.1016/j.bcp.2022.115094]
[20]
Luo, M.; Deng, X.; Chen, Z.; Hu, Y. Circular RNA circPOFUT1 enhances malignant phenotypes and autophagy-associated chemoresistance via sequestrating miR-488-3p to activate the PLAG1-ATG12 axis in gastric cancer. Cell Death Dis., 2023, 14(1), 10.
[http://dx.doi.org/10.1038/s41419-022-05506-0] [PMID: 36624091]
[21]
Liu, Y.; Zhang, Y.; Zou, J.; Yan, L.; Yu, X.; Lu, P.; Wu, X.; Li, Q.; Gu, R.; Zhu, D. Andrographolide induces autophagic cell death and inhibits invasion and metastasis of human osteosarcoma cells in an autophagy-dependent manner. Cell. Physiol. Biochem., 2017, 44(4), 1396-1410.
[http://dx.doi.org/10.1159/000485536] [PMID: 29197865]
[22]
Yang, M.; Zheng, H.; Xu, K.; Yuan, Q.; Aihaiti, Y.; Cai, Y.; Xu, P. A novel signature to guide osteosarcoma prognosis and immune microenvironment: Cuproptosis-related lncrna. Front. Immunol., 2022, 201, 919231.
[http://dx.doi.org/10.3389/fimmu.2022.919231]
[23]
Zhang, J.; Chou, X.; Zhuang, M.; Zhu, C.; Hu, Y.; Cheng, D.; Liu, Z. circKMT2D contributes to H2O2-attenuated osteosarcoma progression via the miR-210/autophagy pathway. Exp. Ther. Med., 2020, 20(5), 1.
[http://dx.doi.org/10.3892/etm.2020.9193] [PMID: 32963595]
[24]
Runwal, G.; Stamatakou, E.; Siddiqi, F.H.; Puri, C.; Zhu, Y.; Rubinsztein, D.C. LC3-positive structures are prominent in autophagy-deficient cells. Sci. Rep., 2019, 9(1), 10147.
[http://dx.doi.org/10.1038/s41598-019-46657-z] [PMID: 31300716]
[25]
Chen, Y.; Liu, R.; Wang, W.; Wang, C.; Zhang, N.; Shao, X.; He, Q.; Ying, M. Advances in targeted therapy for osteosarcoma based on molecular classification. Pharmacol. Res., 2021, 169, 105684.
[http://dx.doi.org/10.1016/j.phrs.2021.105684]
[26]
Ebrahimi, N.; Aslani, S.; Babaie, F.; Hemmatzadeh, M.; Pourmoghadam, Z.; Azizi, G.; Jadidi-Niaragh, F.; Mohammadi, H. Micrornas implications in the onset, diagnosis, and prognosis of osteosarcoma. Curr. Mol. Med., 2021, 21(7), 573-588.
[http://dx.doi.org/10.2174/1566524020999201203212824] [PMID: 33272173]
[27]
Singh, S.; Raza, W.; Parveen, S.; Meena, A.; Luqman, S. Flavonoid display ability to target micrornas in cancer pathogenesis. Biochem. Pharmacol., 2021, 189, 114409.
[http://dx.doi.org/10.1016/j.bcp.2021.114409]
[28]
Chen, Y.; Li, Y.; Gao, H. Long noncoding RNA CASC9 promotes the proliferation and metastasis of papillary thyroid cancer via sponging miR‐488‐3p. Cancer Med., 2020, 9(5), 1830-1841.
[http://dx.doi.org/10.1002/cam4.2839] [PMID: 31943867]
[29]
Xue, W.; Chen, J.; Liu, X.; Gong, W.; Zheng, J.; Guo, X.; Liu, Y.; Liu, L.; Ma, J.; Wang, P.; Li, Z.; Xue, Y. PVT1 regulates the malignant behaviors of human glioma cells by targeting miR-190a-5p and miR-488-3p. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(5)(5 Pt A), 1783-1794.
[http://dx.doi.org/10.1016/j.bbadis.2018.02.022] [PMID: 29501773]
[30]
Bu, J.; Guo, R.; Xu, X.Z.; Luo, Y. Liu, JF Lncrna snhg16 promotes epithelial-mesenchymal transition by upregulating itga6 through mir-488 inhibition in osteosarcoma. J. Bone Oncol., 2021, 27, 100348.
[http://dx.doi.org/10.1016/j.jbo.2021.100348]
[31]
Qiu, J.; Zhang, Y.; Chen, H.; Guo, Z. MicroRNA-488 inhibits proliferation, invasion and EMT in osteosarcoma cell lines by targeting aquaporin 3. Int. J. Oncol., 2018, 53(4), 1493-1504.
[http://dx.doi.org/10.3892/ijo.2018.4483] [PMID: 30015825]
[32]
Dou, D.; Ren, X.; Han, M.; Xu, X.; Ge, X.; Gu, Y.; Wang, X.; Zhao, S. Circ_0008039 supports breast cancer cell proliferation, migration, invasion, and glycolysis by regulating the miR‐140‐3p/SKA2 axis. Mol. Oncol., 2021, 15(2), 697-709.
[http://dx.doi.org/10.1002/1878-0261.12862] [PMID: 33244865]
[33]
Keremu, A.; Aila, P.; Tusun, A.; Abulikemu, M.; Zou, X. Extracellular vesicles from bone mesenchymal stem cells transport microRNA-206 into osteosarcoma cells and target NRSN2 to block the ERK1/2-Bcl-xL signaling pathway. Eur. J. Histochem., 2022, 66(3), 3394.
[http://dx.doi.org/10.4081/ejh.2022.3394] [PMID: 35730574]
[34]
Mutlu, H.; Mutlu, S.; Bostancıklıoğlu, M. Profiling of autophagy-associated micrornas in the osteosarcoma cell line of u2os. Anticancer. Agents Med. Chem., 2021, 21(13), 1732-1737.
[http://dx.doi.org/10.2174/1871520621666201202090128] [PMID: 33267766]
[35]
Li, X.; Wu, Z.; Zhang, Y.; Xu, Y.; Han, G.; Zhao, P. Activation of autophagy contributes to sevoflurane-induced neurotoxicity in fetal rats. Front. Mol. Neurosci., 2017, 10, 432.
[http://dx.doi.org/10.3389/fnmol.2017.00432]
[36]
Tang, L.; Yu, X.; Zheng, Y. Zhou, N Inhibiting slc26a4 reverses cardiac hypertrophy in h9c2 cells and in rats. Peer J, 2020, 8, e8253.
[http://dx.doi.org/10.7717/peerj.8253]
[37]
Chen, H.; Wahafu, P.; Wang, L.; Chen, X. Lncrna linc00313 knockdown inhibits tumorigenesis and metastasis in human osteosarcoma by upregulating fosl2 through sponging mir-342-3p. Yonsei Med. J., 2020, 61(5), 359-370.
[http://dx.doi.org/10.3349/ymj.2020.61.5.359] [PMID: 32390359]
[38]
Wu, G.; Yu, W.; Zhang, M.; Yin, R.; Wu, Y.; Liu, Q. Microrna-145-3p suppresses proliferation and promotes apotosis and autophagy of osteosarcoma cell by targeting hdac4. Artif. Cells Nanomed. Biotechnol., 2018, 46, 579-586.
[http://dx.doi.org/10.1080/21691401.2018.1464459]
[39]
Liu, S.; Wang, H.; Mu, J.; Wang, H.; Peng, Y.; Li, Q.; Mao, D.; Guo, L. MiRNA-211 triggers an autophagy-dependent apoptosis in cervical cancer cells: regulation of Bcl-2. Naunyn Schmiedebergs Arch. Pharmacol., 2020, 393(3), 359-370.
[http://dx.doi.org/10.1007/s00210-019-01720-4] [PMID: 31637455]
[40]
Li, X.; Lu, Q.; Xie, W.; Wang, Y.; Wang, G. Anti-tumor effects of triptolide on angiogenesis and cell apoptosis in osteosarcoma cells by inducing autophagy via repressing Wnt/β-Catenin signaling. Biochem. Biophys. Res. Commun., 2018, 496(2), 443-449.
[http://dx.doi.org/10.1016/j.bbrc.2018.01.052] [PMID: 29330051]
[41]
Yue, Z.; Guan, X.; Chao, R.; Huang, C.; Li, D.; Yang, P.; Liu, S.; Hasegawa, T.; Guo, J.; Li, M. Diallyl disulfide induces apoptosis and autophagy in human osteosarcoma mg-63 cells through the pi3k/akt/mtor pathway. Molecules, 2019, 24(14), 2665.
[http://dx.doi.org/10.3390/molecules24142665] [PMID: 31340526]
[42]
Almeida, T.C.; Pereira, I.O.A.; Dos Anjos Oliveira, E.; de Souza, D.V.; Ribeiro, D.A.; da Silva, G.N. Modulation of non-coding rnas by natural compounds as a potential therapeutical approach in oral cancer: A comprehensive review. Pathol. Res. Pract., 2022, 239, 154166.
[http://dx.doi.org/10.1016/j.prp.2022.154166]
[43]
Ganapathy, A.; Ezekiel, U. Phytochemical modulation of mirnas in colorectal cancer. Medicines (Basel), 2019, 6(2), 48.
[http://dx.doi.org/10.3390/medicines6020048] [PMID: 30959836]
[44]
Javed, Z.; Khan, K.; Rasheed, A.; Sadia, H.; Raza, S.; Salehi, B.; Cho, W.C.; Sharifi-Rad, J.; Koch, W.; Kukula-Koch, W.; Glowniak-Lipa, A. Micrornas and natural compounds mediated regulation of tgf signaling in prostate cancer. Front. Pharmacol., 2020, 11, 613464.
[45]
Yin, S.; Jin, W.; Qiu, Y.; Fu, L.; Wang, T.; Yu, H. Solamargine induces hepatocellular carcinoma cell apoptosis and autophagy via inhibiting LIF/miR-192-5p/CYR61/Akt signaling pathways and eliciting immunostimulatory tumor microenvironment. J. Hematol. Oncol., 2022, 15(1), 32.
[http://dx.doi.org/10.1186/s13045-022-01248-w] [PMID: 35313929]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy