Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Casein Kinase 2 Affects Epilepsy by Regulating Ion Channels: A Potential Mechanism

Author(s): Yan Liu, Di Xia, Lianmei Zhong, Ling Chen*, Linming Zhang, Mingda Ai, Rong Mei and Ruijing Pang

Volume 23, Issue 7, 2024

Published on: 12 July, 2023

Page: [894 - 905] Pages: 12

DOI: 10.2174/1871527322666230622124618

Price: $65

Abstract

Epilepsy, characterized by recurrent seizures and abnormal brain discharges, is the third most common chronic disorder of the Central Nervous System (CNS). Although significant progress has been made in the research on antiepileptic drugs (AEDs), approximately one-third of patients with epilepsy are refractory to these drugs. Thus, research on the pathogenesis of epilepsy is ongoing to find more effective treatments. Many pathological mechanisms are involved in epilepsy, including neuronal apoptosis, mossy fiber sprouting, neuroinflammation, and dysfunction of neuronal ion channels, leading to abnormal neuronal excitatory networks in the brain. CK2 (Casein kinase 2), which plays a critical role in modulating neuronal excitability and synaptic transmission, has been shown to be associated with epilepsy. However, there is limited research on the mechanisms involved. Recent studies have suggested that CK2 is involved in regulating the function of neuronal ion channels by directly phosphorylating them or their binding partners. Therefore, in this review, we will summarize recent research advances regarding the potential role of CK2 regulating ion channels in epilepsy, aiming to provide more evidence for future studies.

Keywords: Casein kinase 2, ion channels, epilepsy, calmodulin, ankyrin G, neuronal excitability.

[1]
Chen S, Chen Y, Zhang Y, et al. Iron metabolism and ferroptosis in epilepsy. Front Neurosci 2020; 14: 601193.
[http://dx.doi.org/10.3389/fnins.2020.601193] [PMID: 33424539]
[2]
Moshé SL, Perucca E, Ryvlin P, Tomson T. Epilepsy: New advances. Lancet 2015; 385(9971): 884-98.
[http://dx.doi.org/10.1016/S0140-6736(14)60456-6] [PMID: 25260236]
[3]
Gan J, Qu Y, Li J, Zhao F, Mu D. An evaluation of the links between microRNA, autophagy, and epilepsy. Rev Neurosci 2015; 26(2): 225-37.
[http://dx.doi.org/10.1515/revneuro-2014-0062] [PMID: 25719305]
[4]
Wei F, Yan LM, Su T, et al. Ion channel genes and epilepsy: Functional alteration, pathogenic potential, and mechanism of epilepsy. Neurosci Bull 2017; 33(4): 455-77.
[http://dx.doi.org/10.1007/s12264-017-0134-1] [PMID: 28488083]
[5]
Köhling R, Wolfart J. Potassium channels in epilepsy. Cold Spring Harb Perspect Med 2016; 6(5): a022871.
[http://dx.doi.org/10.1101/cshperspect.a022871] [PMID: 27141079]
[6]
Pinna LA. A historical view of protein kinase CK2. Cell Mol Biol Res 1994; 40(5-6): 383-90.
[PMID: 7735312]
[7]
Raaf J, Brunstein E, Issinger OG, Niefind K. The interaction of CK2α and CK2β the subunits of protein kinase CK2, requires CK2β in a preformed conformation and is enthalpically driven. Protein Sci 2008; 17(12): 2180-6.
[http://dx.doi.org/10.1110/ps.037770.108] [PMID: 18824508]
[8]
Meggio F, Boldyreff B, Marin O, Pinna LA, Issinger OG. Role of the beta subunit of casein kinase-2 on the stability and specificity of the recombinant reconstituted holoenzyme. Eur J Biochem 1992; 204(1): 293-7.
[http://dx.doi.org/10.1111/j.1432-1033.1992.tb16636.x] [PMID: 1740140]
[9]
Boldyreff B, Meggio F, Pinna LA, Issinger OG. Casein kinase-2 structure-function relationship: Creation of a set of mutants of the β subunit that variably surrogate the wildtype β subunit function. Biochem Biophys Res Commun 1992; 188(1): 228-34.
[http://dx.doi.org/10.1016/0006-291X(92)92374-7] [PMID: 1417846]
[10]
Rodriguez FA, Contreras C, Bolanos-Garcia V, Allende JE. Protein kinase CK2 as an ectokinase: The role of the regulatory CK2β subunit. Proc Natl Acad Sci 2008; 105(15): 5693-8.
[http://dx.doi.org/10.1073/pnas.0802065105] [PMID: 18391191]
[11]
Bojanowski K, Filhol O, Cochet C, Chambaz EM, Larsen AK. DNA topoisomerase II and casein kinase II associate in a molecular complex that is catalytically active. J Biol Chem 1993; 268(30): 22920-6.
[http://dx.doi.org/10.1016/S0021-9258(18)41614-6] [PMID: 8226802]
[12]
Appel K, Wagner P, Boldyreff B, Issinger OG, Montenarh M. Mapping of the interaction sites of the growth suppressor protein p53 with the regulatory beta-subunit of protein kinase CK2. Oncogene 1995; 11(10): 1971-8.
[PMID: 7478515]
[13]
Leroy D, Alghist GC, Roberts E, Filhol-Cochet O, Gasser SM. Mutations in the C-terminal domain of topoisomerase II affect meiotic function and interaction with the casein kinase 2 beta subunit. Mol Cell Biochem 1999; 191(1/2): 85-95.
[http://dx.doi.org/10.1023/A:1006858210835] [PMID: 10094396]
[14]
Bonnet H, Filhol O, Truchet I, et al. Fibroblast growth factor-2 binds to the regulatory beta subunit of CK2 and directly stimulates CK2 activity toward nucleolin. J Biol Chem 1996; 271(40): 24781-7.
[http://dx.doi.org/10.1074/jbc.271.40.24781] [PMID: 8798749]
[15]
Bibby AC, Litchfield DW. The multiple personalities of the regulatory subunit of protein kinase CK2: CK2 dependent and CK2 independent roles reveal a secret identity for CK2beta. Int J Biol Sci 2005; 1(2): 67-79.
[http://dx.doi.org/10.7150/ijbs.1.67] [PMID: 15951851]
[16]
Blanquet PR. Casein kinase 2 as a potentially important enzyme in the nervous system. Prog Neurobiol 2000; 60(3): 211-46.
[http://dx.doi.org/10.1016/S0301-0082(99)00026-X] [PMID: 10658642]
[17]
Roffey SE, Litchfield DW. CK2 regulation: Perspectives in 2021. Biomedicines 2021; 9(10): 1361.
[http://dx.doi.org/10.3390/biomedicines9101361] [PMID: 34680478]
[18]
Montenarh M. Protein kinase CK2 and angiogenesis. Adv Clin Exp Med 2014; 23(2): 153-8.
[http://dx.doi.org/10.17219/acem/37040] [PMID: 24913104]
[19]
Götz C, Montenarh M. Protein kinase CK2 in development and differentiation. Biomed Rep 2017; 6(2): 127-33.
[http://dx.doi.org/10.3892/br.2016.829] [PMID: 28357063]
[20]
Hong H, Benveniste EN. The immune regulatory role of protein kinase CK2 and its implications for treatment of cancer. Biomedicines 2021; 9(12): 1932.
[http://dx.doi.org/10.3390/biomedicines9121932] [PMID: 34944749]
[21]
Yu S, Hu Q, Fan K, Yang C, Gao Y. CSNK2B contributes to colorectal cancer cell proliferation by activating the mTOR signaling. J Cell Commun Signal 2021; 15(3): 383-92.
[http://dx.doi.org/10.1007/s12079-021-00619-1] [PMID: 33928514]
[22]
Shevchenko V, Arnotskaya N, Zaitsev S, et al. Proteins of Wnt signaling pathway in cancer stem cells of human glioblastoma. Int Rev Neurobiol 2020; 151: 185-200.
[http://dx.doi.org/10.1016/bs.irn.2020.03.006] [PMID: 32448607]
[23]
Lou DY, Dominguez I, Toselli P, Landesman-Bollag E, O’Brien C, Seldin DC. The alpha catalytic subunit of protein kinase CK2 is required for mouse embryonic development. Mol Cell Biol 2008; 28(1): 131-9.
[http://dx.doi.org/10.1128/MCB.01119-07] [PMID: 17954558]
[24]
Yu D, Zarate N, White A, et al. CK2 alpha prime and alpha-synuclein pathogenic functional interaction mediates synaptic dysregulation in Huntington’s disease. Acta Neuropathol Commun 2022; 10(1): 83.
[http://dx.doi.org/10.1186/s40478-022-01379-8] [PMID: 35659303]
[25]
Huillard E, Ziercher L, Blond O, et al. Disruption of CK2beta in embryonic neural stem cells compromises proliferation and oligodendrogenesis in the mouse telencephalon. Mol Cell Biol 2010; 30(11): 2737-49.
[http://dx.doi.org/10.1128/MCB.01566-09] [PMID: 20368359]
[26]
Yang CP, Li X, Wu Y, et al. Comprehensive integrative analyses identify GLT8D1 and CSNK2B as schizophrenia risk genes. Nat Commun 2018; 9(1): 838.
[http://dx.doi.org/10.1038/s41467-018-03247-3] [PMID: 29483533]
[27]
Liu Z, Zhong Y, Meng S, Liao Q, Chen W. Identification of a seven-gene prognostic signature using the gene expression profile of osteosarcoma. Ann Transl Med 2022; 10(2): 53.
[http://dx.doi.org/10.21037/atm-21-6276] [PMID: 35282067]
[28]
Kim JM, Yang YS, Xie J, et al. Regulation of sclerostin by the SIRT1 stabilization pathway in osteocytes. Cell Death Differ 2022; 29(8): 1625-38.
[http://dx.doi.org/10.1038/s41418-022-00952-x] [PMID: 35169297]
[29]
Bouhaddou M, Memon D, Meyer B, et al. The global phosphorylation landscape of SARS-CoV-2 infection. Cell 2020; 182(3): 685-712.e19.
[http://dx.doi.org/10.1016/j.cell.2020.06.034] [PMID: 32645325]
[30]
Wei J, Alfajaro MM, DeWeirdt PC, et al. Genome-wide CRISPR screens reveal host factors critical for SARS-CoV-2 infection. Cell 2021; 184(1): 76-91.e13.
[http://dx.doi.org/10.1016/j.cell.2020.10.028] [PMID: 33147444]
[31]
Daniloski Z, Jordan TX, Wessels HH, et al. Identification of required host factors for SARS-CoV-2 infection in human cells. Cell 2021; 184(1): 92-105.e16.
[http://dx.doi.org/10.1016/j.cell.2020.10.030] [PMID: 33147445]
[32]
Wang R, Simoneau CR, Kulsuptrakul J, et al. Genetic screens identify host factors for SARS-CoV-2 and common cold coronaviruses. Cell 2021; 184(1): 106-119.e14.
[http://dx.doi.org/10.1016/j.cell.2020.12.004] [PMID: 33333024]
[33]
Schneider WM, Luna JM, Hoffmann HH, et al. Genome-scale identification of SARS-CoV-2 and pan-coronavirus host factor networks. Cell 2021; 184(1): 120-132.e14.
[http://dx.doi.org/10.1016/j.cell.2020.12.006] [PMID: 33382968]
[34]
Glover KKM, Gao A, Zahedi-Amiri A, Coombs KM. Vero cell proteomic changes induced by zika virus infection. Proteomics 2019; 19(4): 1800309.
[http://dx.doi.org/10.1002/pmic.201800309] [PMID: 30578658]
[35]
Chasapis CT, Georgiopoulou AK, Perlepes SP, Bjørklund G, Peana MA. SARS-CoV-2 –human metalloproteome interaction map. J Inorg Biochem 2021; 219: 111423.
[http://dx.doi.org/10.1016/j.jinorgbio.2021.111423] [PMID: 33813307]
[36]
St-Denis N, Gupta GD, Lin ZY, et al. Phenotypic and interaction profiling of the human phosphatases identifies diverse mitotic regulators. Cell Rep 2016; 17(9): 2488-501.
[http://dx.doi.org/10.1016/j.celrep.2016.10.078] [PMID: 27880917]
[37]
Bostrom SL, Dore J, Griffith LC. CaMKII uses GTP as a phosphate donor for both substrate and autophosphorylation. Biochem Biophys Res Commun 2009; 390(4): 1154-9.
[http://dx.doi.org/10.1016/j.bbrc.2009.10.107] [PMID: 19857459]
[38]
Sanz-Clemente A, Gray JA, Ogilvie KA, Nicoll RA, Roche KW. Activated CaMKII couples GluN2B and casein kinase 2 to control synaptic NMDA receptors. Cell Rep 2013; 3(3): 607-14.
[http://dx.doi.org/10.1016/j.celrep.2013.02.011] [PMID: 23478024]
[39]
Marshall CA, McBride JD, Changolkar L, Riddle DM, Trojanowski JQ, Lee VMY. Inhibition of CK2 mitigates Alzheimer’s tau pathology by preventing NR2B synaptic mislocalization. Acta Neuropathol Commun 2022; 10(1): 30.
[http://dx.doi.org/10.1186/s40478-022-01331-w] [PMID: 35246269]
[40]
Kim JE, Lee DS, Park H, Kang TC. Src/CK2/PTEN-Mediated GluN2B and CREB dephosphorylations regulate the responsiveness to AMPA receptor antagonists in chronic epilepsy rats. Int J Mol Sci 2020; 21(24): 9633.
[http://dx.doi.org/10.3390/ijms21249633] [PMID: 33348808]
[41]
Brown MS, Diallo OT, Hu M, et al. CK2 modulation of NF-kappaB, TP53, and the malignant phenotype in head and neck cancer by anti-CK2 oligonucleotides in vitro or in vivo via sub-50-nm nanocapsules. Clin Cancer Res 2010; 16(8): 2295-307.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-3200] [PMID: 20371694]
[42]
Parhar K, Morse J, Salh B. The role of protein kinase CK2 in intestinal epithelial cell inflammatory signaling. Int J Colorectal Dis 2007; 22(6): 601-9.
[http://dx.doi.org/10.1007/s00384-006-0193-7] [PMID: 17009010]
[43]
Chen SR, Zhou HY, Byun HS, Chen H, Pan HL. Casein kinase II regulates N-methyl-D-aspartate receptor activity in spinal cords and pain hypersensitivity induced by nerve injury. J Pharmacol Exp Ther 2014; 350(2): 301-12.
[http://dx.doi.org/10.1124/jpet.114.215855] [PMID: 24898266]
[44]
Zhang W, Ye F, Chen S, Peng J, Pang N, Yin F. Splicing interruption by intron variants in CSNK2B causes poirier–bienvenu neurodevelopmental syndrome: A focus on genotype–phenotype correlations. Front Neurosci 2022; 16: 892768.
[http://dx.doi.org/10.3389/fnins.2022.892768] [PMID: 35774559]
[45]
Zhang J, Li Y, Luo H, et al. [De novo variant of CSNK2B causes Poirier-Bienvenu neurodevelopmental syndrome: two case report]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2022; 39(5): 484-7.
[PMID: 35598262]
[46]
Yang Q, Zhang Q, Yi S, et al. De Novo CSNK2B mutations in five cases of poirier–bienvenu neurodevelopmental syndrome. Front Neurol 2022; 13: 811092.
[http://dx.doi.org/10.3389/fneur.2022.811092] [PMID: 35370893]
[47]
Ernst ME, Baugh EH, Thomas A, et al. CSNK2B: A broad spectrum of neurodevelopmental disability and epilepsy severity. Epilepsia 2021; 62(7): e103-9.
[http://dx.doi.org/10.1111/epi.16931] [PMID: 34041744]
[48]
Montenarh M, Götz C. Protein kinase CK2 and ion channels . [Review]. Biomed Rep 2020; 13(6): 1.
[http://dx.doi.org/10.3892/br.2020.1362] [PMID: 33082952]
[49]
Litchfield DW. Protein kinase CK2: Structure, regulation and role in cellular decisions of life and death. Biochem J 2003; 369(1): 1-15.
[http://dx.doi.org/10.1042/bj20021469] [PMID: 12396231]
[50]
Perez DI, Gil C, Martinez A. Protein kinases CK1 and CK2 as new targets for neurodegenerative diseases. Med Res Rev 2011; 31(6): 924-54.
[http://dx.doi.org/10.1002/med.20207] [PMID: 20577972]
[51]
Castello J, Ragnauth A, Friedman E, Rebholz H. CK2—An emerging target for neurological and psychiatric disorders. Pharmaceuticals 2017; 10(4): 7.
[http://dx.doi.org/10.3390/ph10010007] [PMID: 28067771]
[52]
Borgo C, D’Amore C, Sarno S, Salvi M, Ruzzene M. Protein kinase CK2: A potential therapeutic target for diverse human diseases. Signal Transduct Target Ther 2021; 6(1): 183.
[http://dx.doi.org/10.1038/s41392-021-00567-7] [PMID: 33994545]
[53]
Iimoto DS, Masliah E, DeTeresa R, Terry RD, Saitoh T. Aberrant casein kinase II in Alzheimer’s disease. Brain Res 1990; 507(2): 273-80.
[http://dx.doi.org/10.1016/0006-8993(90)90282-G] [PMID: 2337767]
[54]
Zhang Q, Xia Y, Wang Y, et al. CK2 Phosphorylating I2PP2A/SET mediates tau pathology and cognitive impairment. Front Mol Neurosci 2018; 11: 146.
[http://dx.doi.org/10.3389/fnmol.2018.00146] [PMID: 29760653]
[55]
Rosenberger AFN, Morrema THJ, Gerritsen WH, et al. Increased occurrence of protein kinase CK2 in astrocytes in Alzheimer’s disease pathology. J Neuroinflammation 2016; 13(1): 4.
[http://dx.doi.org/10.1186/s12974-015-0470-x] [PMID: 26732432]
[56]
Cortés M, Malave L, Castello J, et al. CK2 oppositely modulates l-DOPA-induced dyskinesia via striatal projection neurons expressing D1 or D2 receptors. J Neurosci 2017; 37(49): 11930-46.
[http://dx.doi.org/10.1523/JNEUROSCI.0443-17.2017] [PMID: 29097596]
[57]
Kim JE, Kang TC. CDDO-Me attenuates astroglial autophagy via Nrf2-, ERK1/2-SP1- and Src-CK2-PTEN-PI3K/AKT-mediated signaling pathways in the hippocampus of chronic epilepsy rats. Antioxidants 2021; 10(5): 655.
[http://dx.doi.org/10.3390/antiox10050655].]
[58]
Wirkner U, Voss H, Lichter P, Ansorge W, Pyerin W. The human gene (CSNK2A1) coding for the casein kinase II subunit alpha is located on chromosome 20 and contains tandemly arranged Alu repeats. Genomics 1994; 19(2): 257-65.
[http://dx.doi.org/10.1006/geno.1994.1056] [PMID: 8188256]
[59]
Ackermann K, Neidhart T, Gerber J, Waxmann A, Pyerin W. The catalytic subunit α′ gene of human protein kinase CK2 (CSNK2A2): Genomic organization, promoter identification and determination of Ets1 as a key regulator. Mol Cell Biochem 2005; 274(1-2): 91-101.
[http://dx.doi.org/10.1007/s11010-005-3076-2] [PMID: 16335532]
[60]
Lozeman FJ, Litchfield DW, Piening C, Takio K, Walsh KA, Krebs EG. Isolation and characterization of human cDNA clones encoding the. alpha. and the. alpha.' subunits of casein kinase II. Biochemistry 1990; 29(36): 8436-47.
[http://dx.doi.org/10.1021/bi00488a034] [PMID: 2174700]
[61]
Lettieri A, Borgo C, Zanieri L, et al. Protein kinase CK2 subunits differentially perturb the adhesion and migration of GN11 cells: A model of immature migrating neurons. Int J Mol Sci 2019; 20(23): 5951.
[http://dx.doi.org/10.3390/ijms20235951] [PMID: 31779225]
[62]
Trembley JH, Wang G, Unger G, Slaton J, Ahmed K. Protein kinase CK2 in health and disease: CK2: A key player in cancer biology. Cell Mol Life Sci 2009; 66(11-12): 1858-67.
[http://dx.doi.org/10.1007/s00018-009-9154-y] [PMID: 19387548]
[63]
Okur V, Cho MT, Henderson L, et al. De novo mutations in CSNK2A1 are associated with neurodevelopmental abnormalities and dysmorphic features. Hum Genet 2016; 135(7): 699-705.
[http://dx.doi.org/10.1007/s00439-016-1661-y] [PMID: 27048600]
[64]
Trinh J, Hüning I, Budler N, Hingst V, Lohmann K, Gillessen-Kaesbach G. A novel de novo mutation in CSNK2A1: Reinforcing the link to neurodevelopmental abnormalities and dysmorphic features. J Hum Genet 2017; 62(11): 1005-6.
[http://dx.doi.org/10.1038/jhg.2017.73] [PMID: 28725024]
[65]
Owen CI, Bowden R, Parker MJ, et al. Extending the phenotype associated with the CSNK2A1‐ related Okur–Chung syndrome—A clinical study of 11 individuals. Am J Med Genet A 2018; 176(5): 1108-14.
[http://dx.doi.org/10.1002/ajmg.a.38610] [PMID: 29383814]
[66]
Nakashima M, Tohyama J, Nakagawa E, et al. Identification of de novo CSNK2A1 and CSNK2B variants in cases of global developmental delay with seizures. J Hum Genet 2019; 64(4): 313-22.
[http://dx.doi.org/10.1038/s10038-018-0559-z] [PMID: 30655572]
[67]
Asif M, Kaygusuz E, Shinawi M, et al. De novo variants of CSNK2B cause a new intellectual disability-craniodigital syndrome by disrupting the canonical Wnt signaling pathway. Human Genetics and Genomics Advances 2022; 3(3): 100111.
[http://dx.doi.org/10.1016/j.xhgg.2022.100111] [PMID: 35571680]
[68]
Buchou T, Vernet M, Blond O, et al. Disruption of the regulatory beta subunit of protein kinase CK2 in mice leads to a cell-autonomous defect and early embryonic lethality. Mol Cell Biol 2003; 23(3): 908-15.
[http://dx.doi.org/10.1128/MCB.23.3.908-915.2003] [PMID: 12529396]
[69]
Poirier K, Hubert L, Viot G, et al. CSNK2B splice site mutations in patients cause intellectual disability with or without myoclonic epilepsy. Hum Mutat 2017; 38(8): 932-41.
[http://dx.doi.org/10.1002/humu.23270] [PMID: 28585349]
[70]
Yang S, Wu L, Liao H, et al. Clinical and genetic analysis of six Chinese children with Poirier-Bienvenu neurodevelopmental syndrome caused by CSNK2B mutation. Neurogenetics 2021; 22(4): 323-32.
[http://dx.doi.org/10.1007/s10048-021-00649-2] [PMID: 34370157]
[71]
Orsini A, Santangelo A, Bravin F, et al. Expanding phenotype of poirier–bienvenu syndrome: New evidence from an italian multicentrical cohort of patients. Genes 2022; 13(2): 276.
[http://dx.doi.org/10.3390/genes13020276] [PMID: 35205321]
[72]
Ecco G, Imbeault M, Trono D. KRAB zinc finger proteins. Development 2017; 144(15): 2719-29.
[http://dx.doi.org/10.1242/dev.132605] [PMID: 28765213]
[73]
Canton DA, Zhang C, Litchfield DW. Assembly of protein kinase CK2: Investigation of complex formation between catalytic and regulatory subunits using a zinc-finger-deficient mutant of CK2. Biochem J 2001; 358(1): 87-94.
[http://dx.doi.org/10.1042/bj3580087] [PMID: 11485555]
[74]
Reed JC, Bidwai AP, Glover CV. Cloning and disruption of CKB2, the gene encoding the 32-kDa regulatory beta’-subunit of Saccharomyces cerevisiae casein kinase II. J Biol Chem 1994; 269(27): 18192-200.
[http://dx.doi.org/10.1016/S0021-9258(17)32434-1] [PMID: 8027080]
[75]
Hu C, Liu D, Luo T, Wang Y, Liu Z. Phenotypic spectrum and long-term outcome of children with genetic early-infantile-onset developmental and epileptic encephalopathy. Epileptic Disord 2022; 24(2): 343-52.
[http://dx.doi.org/10.1684/epd.2021.1394] [PMID: 34859793]
[76]
Wilke MVMB, Oliveira BM, Pereira A, Doriqui MJR, Kok F, Souza CFM. Two different presentations of de novo variants of CSNK2B: two case reports. J Med Case Reports 2022; 16(1): 4.
[http://dx.doi.org/10.1186/s13256-021-03184-8] [PMID: 34983633]
[77]
Bonanni P, Baggio M, Duma GM, Negrin S, Danieli A, Giorda R. Developmental and epilepsy spectrum of Poirier–Bienvenu neurodevelopmental syndrome: Description of a new case study and review of the available literature. Seizure 2021; 93: 133-9.
[http://dx.doi.org/10.1016/j.seizure.2021.10.019] [PMID: 34740143]
[78]
Hussain MS, Battaglia A, Szczepanski S, et al. Mutations in CKAP2L, the human homolog of the mouse Radmis gene, cause Filippi syndrome. Am J Hum Genet 2014; 95(5): 622-32.
[http://dx.doi.org/10.1016/j.ajhg.2014.10.008] [PMID: 25439729]
[79]
Balasubramanian M, Lord H, Levesque S, et al. Chitayat syndrome: Hyperphalangism, characteristic facies, hallux valgus and bronchomalacia results from a recurrent c.266AG p.(Tyr89Cys) variant in the ERF gene. J Med Genet 2017; 54(3): 157-65.
[http://dx.doi.org/10.1136/jmedgenet-2016-104143] [PMID: 27738187]
[80]
Kaygusuz E, Khayyat AIA, Abdullah U, et al. A 24‐generation‐old founder mutation impairs splicing ofRBBP8 in Pakistani families affected with Jawad syndrome. Clin Genet 2021; 100(4): 486-8.
[http://dx.doi.org/10.1111/cge.14028] [PMID: 34270086]
[81]
Woods CG, Crouchman M, Huson SM. Three sibs with phalangeal anomalies, microcephaly, severe mental retardation, and neurological abnormalities. J Med Genet 1992; 29(7): 500-2.
[PMID: 1640433]
[82]
Faust M, Jung M, Günther J, Zimmermann R, Montenarh M. Localization of individual subunits of protein kinase CK2 to the endoplasmic reticulum and to the Golgi apparatus. Mol Cell Biochem 2001; 227(1/2): 73-80.
[http://dx.doi.org/10.1023/A:1013129410551] [PMID: 11827177]
[83]
Faust M, Montenarh M. Subcellular localization of protein kinase CK2. Cell Tissue Res 2000; 301(3): 329-40.
[http://dx.doi.org/10.1007/s004410000256] [PMID: 10994779]
[84]
Montenarh M, Götz C. Ecto-protein kinase CK2, the neglected form of CK2. Biomed Rep 2018; 8(4): 307-13.
[http://dx.doi.org/10.3892/br.2018.1069] [PMID: 29556379]
[85]
Gil C, Falqués A, Sarró E, et al. Protein kinase CK2 associates to lipid rafts and its pharmacological inhibition enhances neurotransmitter release. FEBS Lett 2011; 585(2): 414-20.
[http://dx.doi.org/10.1016/j.febslet.2010.12.029] [PMID: 21187092]
[86]
Hernandez CM, Richards JR. Physiology, Sodium Channels.StatPearls. Treasure Island, FL: StatPearls Publishing 2022.
[87]
Huang W, Liu M, Yan SF, Yan N. Structure-based assessment of disease-related mutations in human voltage-gated sodium channels. Protein Cell 2017; 8(6): 401-38.
[http://dx.doi.org/10.1007/s13238-017-0372-z] [PMID: 28150151]
[88]
Oliva M, Berkovic SF, Petrou S. Sodium channels and the neurobiology of epilepsy. Epilepsia 2012; 53(11): 1849-59.
[http://dx.doi.org/10.1111/j.1528-1167.2012.03631.x] [PMID: 22905747]
[89]
Meisler MH, Kearney JA. Sodium channel mutations in epilepsy and other neurological disorders. J Clin Invest 2005; 115(8): 2010-7.
[http://dx.doi.org/10.1172/JCI25466] [PMID: 16075041]
[90]
Brachet A, Leterrier C, Irondelle M, et al. Ankyrin G restricts ion channel diffusion at the axonal initial segment before the establishment of the diffusion barrier. J Cell Biol 2010; 191(2): 383-95.
[http://dx.doi.org/10.1083/jcb.201003042] [PMID: 20956383]
[91]
Savio-Galimberti E, Gollob MH, Darbar D. Voltage-gated sodium channels: Biophysics, pharmacology, and related channelopathies. Front Pharmacol 2012; 3: 124.
[http://dx.doi.org/10.3389/fphar.2012.00124] [PMID: 22798951]
[92]
Catterall WA. Sodium channels, inherited epilepsy, and antiepileptic drugs. Annu Rev Pharmacol Toxicol 2014; 54(1): 317-38.
[http://dx.doi.org/10.1146/annurev-pharmtox-011112-140232] [PMID: 24392695]
[93]
Kaplan DI, Isom LL, Petrou S. Role of sodium channels in epilepsy. Cold Spring Harb Perspect Med 2016; 6(6): a022814.
[http://dx.doi.org/10.1101/cshperspect.a022814] [PMID: 27143702]
[94]
Adler EM, Yaari Y, David G, Selzer ME. Frequency-dependent action of phenytoin on lamprey spinal axons. Brain Res 1986; 362(2): 271-80.
[http://dx.doi.org/10.1016/0006-8993(86)90451-8] [PMID: 3942876]
[95]
McLean MJ, Macdonald RL. Carbamazepine and 10,11-epoxycarbamazepine produce use- and voltage-dependent limitation of rapidly firing action potentials of mouse central neurons in cell culture. J Pharmacol Exp Ther 1986; 238(2): 727-38.
[PMID: 2874218]
[96]
Ragsdale DS, Scheuer T, Catterall WA. Frequency and voltage-dependent inhibition of type IIA Na+ channels, expressed in a mammalian cell line, by local anesthetic, antiarrhythmic, and anticonvulsant drugs. Mol Pharmacol 1991; 40(5): 756-65.
[PMID: 1658608]
[97]
McNamara JO. Cellular and molecular basis of epilepsy. J Neurosci 1994; 14(6): 3413-25.
[http://dx.doi.org/10.1523/JNEUROSCI.14-06-03413.1994] [PMID: 8207463]
[98]
Grubb MS, Burrone J. Building and maintaining the axon initial segment. Curr Opin Neurobiol 2010; 20(4): 481-8.
[http://dx.doi.org/10.1016/j.conb.2010.04.012] [PMID: 20537529]
[99]
Xu M, Cooper EC. An Ankyrin-G N-terminal gate and protein kinase CK2 dually regulate binding of voltage-gated sodium and KCNQ2/3 potassium channels. J Biol Chem 2015; 290(27): 16619-32.
[http://dx.doi.org/10.1074/jbc.M115.638932] [PMID: 25998125]
[100]
Bréchet A, Fache MP, Brachet A, et al. Protein kinase CK2 contributes to the organization of sodium channels in axonal membranes by regulating their interactions with ankyrin G. J Cell Biol 2008; 183(6): 1101-14.
[http://dx.doi.org/10.1083/jcb.200805169] [PMID: 19064667]
[101]
Giraldez T, Rojas P, Jou J, Flores C, Alvarez de la Rosa D. The epithelial sodium channel δ-subunit: New notes for an old song. Am J Physiol Renal Physiol 2012; 303(3): F328-38.
[http://dx.doi.org/10.1152/ajprenal.00116.2012] [PMID: 22573384]
[102]
Baines D. Kinases as targets for ENaC regulation. Curr Mol Pharmacol 2013; 6(1): 50-64.
[http://dx.doi.org/10.2174/18744672112059990028] [PMID: 23547935]
[103]
Shi H, Asher C, Yung Y, et al. Casein kinase 2 specifically binds to and phosphorylates the carboxy termini of ENaC subunits. Eur J Biochem 2002; 269(18): 4551-8.
[http://dx.doi.org/10.1046/j.1432-1033.2002.03154.x] [PMID: 12230567]
[104]
Berman JM, Mironova E, Stockand JD. Physiological regulation of the epithelial Na + channel by casein kinase II. Am J Physiol Renal Physiol 2018; 314(3): F367-72.
[http://dx.doi.org/10.1152/ajprenal.00469.2017] [PMID: 29021227]
[105]
Benarroch EE. Potassium channels: Brief overview and implications in epilepsy. Neurology 2009; 72(7): 664-9.
[http://dx.doi.org/10.1212/01.wnl.0000343739.72081.4e] [PMID: 19221301]
[106]
Wulff H, Castle NA, Pardo LA. Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov 2009; 8(12): 982-1001.
[http://dx.doi.org/10.1038/nrd2983] [PMID: 19949402]
[107]
Misonou H. Precise localizations of voltage-gated sodium and potassium channels in neurons. Dev Neurobiol 2018; 78(3): 271-82.
[http://dx.doi.org/10.1002/dneu.22565] [PMID: 29218789]
[108]
Lezmy J, Lipinsky M, Khrapunsky Y, et al. M-current inhibition rapidly induces a unique CK2-dependent plasticity of the axon initial segment. Proc Natl Acad Sci 2017; 114(47): E10234-43.
[http://dx.doi.org/10.1073/pnas.1708700114] [PMID: 29109270]
[109]
Kang S, Xu M, Cooper EC, Hoshi N. Channel-anchored protein kinase CK2 and protein phosphatase 1 reciprocally regulate KCNQ2-containing M-channels via phosphorylation of calmodulin. J Biol Chem 2014; 289(16): 11536-44.
[http://dx.doi.org/10.1074/jbc.M113.528497] [PMID: 24627475]
[110]
Greene DL, Hoshi N. Modulation of Kv7 channels and excitability in the brain. Cell Mol Life Sci 2017; 74(3): 495-508.
[http://dx.doi.org/10.1007/s00018-016-2359-y] [PMID: 27645822]
[111]
Kshatri AS, Gonzalez-Hernandez A, Giraldez T. Physiological roles and therapeutic potential of ca2+ activated potassium channels in the nervous system. Front Mol Neurosci 2018; 11: 258.
[http://dx.doi.org/10.3389/fnmol.2018.00258] [PMID: 30104956]
[112]
Meggio F, Boldyreff B, Marin O, et al. The effect of polylysine on casein-kinase-2 activity is influenced by both the structure of the protein/peptide substrates and the subunit composition of the enzyme. Eur J Biochem 1992; 205(3): 939-45.
[http://dx.doi.org/10.1111/j.1432-1033.1992.tb16860.x] [PMID: 1577011]
[113]
Maingret F, Coste B, Hao J, et al. Neurotransmitter modulation of small-conductance Ca2+-activated K+ channels by regulation of Ca2+ gating. Neuron 2008; 59(3): 439-49.
[http://dx.doi.org/10.1016/j.neuron.2008.05.026] [PMID: 18701069]
[114]
Allen D, Fakler B, Maylie J, Adelman JP. Organization and regulation of small conductance Ca2+-activated K+ channel multiprotein complexes. J Neurosci 2007; 27(9): 2369-76.
[http://dx.doi.org/10.1523/JNEUROSCI.3565-06.2007] [PMID: 17329434]
[115]
Zhang M, Meng XY, Cui M, Pascal JM, Logothetis DE, Zhang JF. Selective phosphorylation modulates the PIP2 sensitivity of the CaM–SK channel complex. Nat Chem Biol 2014; 10(9): 753-9.
[http://dx.doi.org/10.1038/nchembio.1592] [PMID: 25108821]
[116]
Stocker M, Pedarzani P. Differential distribution of three Ca(2+)-activated K(+) channel subunits, SK1, SK2, and SK3, in the adult rat central nervous system. Mol Cell Neurosci 2000; 15(5): 476-93.
[http://dx.doi.org/10.1006/mcne.2000.0842] [PMID: 10833304]
[117]
Xia XM, Fakler B, Rivard A, et al. Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 1998; 395(6701): 503-7.
[http://dx.doi.org/10.1038/26758] [PMID: 9774106]
[118]
Bildl W, Strassmaier T, Thurm H, et al. Protein kinase CK2 is coassembled with small conductance Ca(2+)-activated K+ channels and regulates channel gating. Neuron 2004; 43(6): 847-58.
[http://dx.doi.org/10.1016/j.neuron.2004.08.033] [PMID: 15363395]
[119]
Brehme H, Kirschstein T, Schulz R, Köhling R. In vivo treatment with the casein kinase 2 inhibitor 4,5,6,7-tetrabromotriazole augments the slow afterhyperpolarizing potential and prevents acute epileptiform activity. Epilepsia 2014; 55(1): 175-83.
[http://dx.doi.org/10.1111/epi.12474] [PMID: 24596964]
[120]
Bajorat R, Porath K, Kuhn J, et al. Oral administration of the casein kinase 2 inhibitor TBB leads to persistent KCa2.2 channel up-regulation in the epileptic CA1 area and cortex, but lacks anti-seizure efficacy in the pilocarpine epilepsy model. Epilepsy Res 2018; 147: 42-50.
[http://dx.doi.org/10.1016/j.eplepsyres.2018.08.012] [PMID: 30219695]
[121]
Pankratov Y, Lalo U. Calcium permeability of ligand-gated Ca2+ channels. Eur J Pharmacol 2014; 739: 60-73.
[http://dx.doi.org/10.1016/j.ejphar.2013.11.017] [PMID: 24291105]
[122]
Zamponi GW, Striessnig J, Koschak A, Dolphin AC. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev 2015; 67(4): 821-70.
[http://dx.doi.org/10.1124/pr.114.009654] [PMID: 26362469]
[123]
Rajakulendran S, Hanna MG. The role of calcium channels in epilepsy. Cold Spring Harb Perspect Med 2016; 6(1): a022723.
[http://dx.doi.org/10.1101/cshperspect.a022723] [PMID: 26729757]
[124]
Christel C, Lee A. Ca2+-dependent modulation of voltage-gated Ca2+ channels. Biochim Biophys Acta, Gen Subj 2012; 1820(8): 1243-52.
[http://dx.doi.org/10.1016/j.bbagen.2011.12.012] [PMID: 22223119]
[125]
Weiss S, Oz S, Benmocha A, Dascal N. Regulation of cardiac L-type Ca2+ channel CaV1.2 via the β-adrenergic-cAMP-protein kinase A pathway: Old dogmas, advances, and new uncertainties. Circ Res 2013; 113(5): 617-31.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.301781] [PMID: 23948586]
[126]
Xu L, Sun L, Xie L, et al. Advances in L-Type calcium channel structures, functions and molecular modeling. Curr Med Chem 2021; 28(3): 514-24.
[http://dx.doi.org/10.2174/0929867327666200714154059] [PMID: 32664834]
[127]
Afzal M, Kren BT, Naveed AK, Trembley JH, Ahmed K. Protein kinase CK2 impact on intracellular calcium homeostasis in prostate cancer. Mol Cell Biochem 2020; 470(1-2): 131-43.
[http://dx.doi.org/10.1007/s11010-020-03752-4] [PMID: 32436081]
[128]
Suhas KS, Parida S, Gokul C, et al. Casein kinase 2 inhibition impairs spontaneous and oxytocin-induced contractions in late pregnant mouse uterus. Exp Physiol 2018; 103(5): 621-8.
[http://dx.doi.org/10.1113/EP086826] [PMID: 29708304]
[129]
Rettig J, Sheng ZH, Kim DK, Hodson CD, Snutch TP, Catterall WA. Isoform-specific interaction of the alpha1A subunits of brain Ca2+ channels with the presynaptic proteins syntaxin and SNAP-25. Proc Natl Acad Sci 1996; 93(14): 7363-8.
[http://dx.doi.org/10.1073/pnas.93.14.7363] [PMID: 8692999]
[130]
Castillo MA, Ghose S, Tamminga CA, Ulery-Reynolds PG. Deficits in syntaxin 1 phosphorylation in schizophrenia prefrontal cortex. Biol Psychiatry 2010; 67(3): 208-16.
[http://dx.doi.org/10.1016/j.biopsych.2009.07.029] [PMID: 19748077]
[131]
Hwang TC, Yeh JT, Zhang J, Yu YC, Yeh HI, Destefano S. Structural mechanisms of CFTR function and dysfunction. J Gen Physiol 2018; 150(4): 539-70.
[http://dx.doi.org/10.1085/jgp.201711946] [PMID: 29581173]
[132]
Stölting G, Fischer M, Fahlke C. CLC channel function and dysfunction in health and disease. Front Physiol 2014; 5: 378.
[PMID: 25339907]
[133]
Nilius B, Droogmans G. Amazing chloride channels: An overview. Acta Physiol Scand 2003; 177(2): 119-47.
[http://dx.doi.org/10.1046/j.1365-201X.2003.01060.x] [PMID: 12558550]
[134]
Brooks-Kayal AR, Russek SJ. Regulation of GABA(A) Receptor Gene Expression and Epilepsy. In: Jasper’s Basic Mechanisms of the Epilepsies Noebels JL, Avoli M, Rogawski MA Bethesda (MD):. National Center for Biotechnology Information (US) 2012.
[135]
Zhao Y, Jiang WJ, Ma L, Lin Y, Wang XB. Voltage-dependent anion channels mediated apoptosis in refractory epilepsy. Open Med 2020; 15(1): 745-53.
[http://dx.doi.org/10.1515/med-2020-0113] [PMID: 33336032]
[136]
Pinto MC, Schreiber R, Lerias J, et al. Regulation of TMEM16A by CK2 and its role in cellular proliferation. Cells 2020; 9(5): 1138.
[http://dx.doi.org/10.3390/cells9051138] [PMID: 32380794]
[137]
Ibrahim SH, Turner MJ, Saint-Criq V, et al. CK2 is a key regulator of SLC4A2-mediated Cl−/HCO3− exchange in human airway epithelia. Pflugers Arch 2017; 469(9): 1073-91.
[http://dx.doi.org/10.1007/s00424-017-1981-3] [PMID: 28455748]
[138]
Cesaro L, Marin O, Venerando A, Donella-Deana A, Pinna LA. Phosphorylation of cystic fibrosis transmembrane conductance regulator (CFTR) serine-511 by the combined action of tyrosine kinases and CK2: the implication of tyrosine-512 and phenylalanine-508. Amino Acids 2013; 45(6): 1423-9.
[http://dx.doi.org/10.1007/s00726-013-1613-y] [PMID: 24178769]
[139]
Csanády L, Vergani P, Gadsby DC. Structure, gating, and regulation of the cftr anion channel. Physiol Rev 2019; 99(1): 707-38.
[http://dx.doi.org/10.1152/physrev.00007.2018] [PMID: 30516439]
[140]
Roosbeek S, Peelman F, Verhee A, et al. Phosphorylation by protein kinase CK2 modulates the activity of the ATP binding cassette A1 transporter. J Biol Chem 2004; 279(36): 37779-88.
[http://dx.doi.org/10.1074/jbc.M401821200] [PMID: 15218032]
[141]
Jha NK, Kar R, Niranjan R. ABC transporters in neurological disorders: An important gateway for botanical compounds mediated neuro-therapeutics. Curr Top Med Chem 2019; 19(10): 795-811.
[http://dx.doi.org/10.2174/1568026619666190412121811] [PMID: 30977450]
[142]
Shen KF, Yang XL, Liu GL, et al. The role of voltage-gated chloride channels in the epileptogenesis of temporal lobe epilepsy. EBioMedicine 2021; 70: 103537.
[http://dx.doi.org/10.1016/j.ebiom.2021.103537] [PMID: 34391093]
[143]
Dickerson LW, Bonthius DJ, Schutte BC, et al. Altered GABAergic function accompanies hippocampal degeneration in mice lacking ClC-3 voltage-gated chloride channels. Brain Res 2002; 958(2): 227-50.
[http://dx.doi.org/10.1016/S0006-8993(02)03519-9] [PMID: 12470859]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy