Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Research Article

5‑ Sulphosalicylic Acid: An Expeditious Organocatalyst for One‑pot Synthesis of Indenopyrazolones and its Derivatives

Author(s): Smriti Kushwaha, Swastika Singh, Jyoti Baranwal and Archana Jyoti*

Volume 11, Issue 3, 2024

Published on: 20 September, 2023

Page: [175 - 184] Pages: 10

DOI: 10.2174/2213337210666230609150318

Price: $65

Abstract

An efficient, 5‑Sulphosalicylic acid (5-SSA) catalysed green protocol for the synthesis of Indenopyrazolones and its derivatives is reported under metal-free conditions in an ethyl lactate system. The main advantages of this procedure include the use of an organocatalyst, ethyl lactate as a recyclable promoting media, practical simplicity, high yields, shorter reaction times, atom economy, and ease of isolation of the product. These results showed that aromatic aldehydes with electron- withdrawing groups reacted faster than aldehydes with electron-releasing groups as expected. According to these observations, aromatic aldehydes with electron-withdrawing groups reacted more quickly than aldehydes with electron-releasing groups.

Keywords: Ethyl lactate, green solvent, indenopyrazolones, organocatalyst, pyrazolones, 5-sulphosalicylic acid.

Next »
Graphical Abstract
[1]
(a) de Marco, B.A.; Rechelo, B.S.; Tótoli, E.G.; Kogawa, A.C.; Salgado, H.R.N. Evolution of green chemistry and its multidimensional impacts: A review. Saudi Pharm. J., 2019, 27(1), 1-8.
[http://dx.doi.org/10.1016/j.jsps.2018.07.011] [PMID: 30627046];
(b) Ivanković, A.; Dronjic, A.; Bevanda, A.M.; Talic, S. Review of 12 principles of green chemistry in practice. Int. J. Sustain. Green Energy, 2017, 6(3), 39-48.
[http://dx.doi.org/10.11648/j.ijrse.20170603.12];
(c) Ahire, S.S.; Ahire, S.I.; Chaudhari, S. Green chemistry. World J. Pharm. Pharm. Sci., 2021, 10(4), 622-628.;
(d) Singh, R.M.; Pramanik, R.; Hazra, S. Role of green chemistry in pharmaceutical industry: a review. Univ. Shanghai Sci. Technol., 2021, 23(12), 291-299.
[http://dx.doi.org/10.51201/JUSST/21/121018];
(e) Kaur, M.; Singh, J.; Notiyal, D. Green chemistry: Challenges and opportunities. Int. J. Sci. Res. Sci. Technol., 2020, 7(4), 314-320.
[http://dx.doi.org/10.32628/IJSRST207465];
(f) Asokan, A.; Abdulla Murshid, M.B.; Francis, A.; Mirza, A. A review on green chemistry and green engineering on environmental sustainability. Asian J. Appl. Sci. Technol, 2019, 3(3), 194-201.;
(g) Sri, R.M.; Ravichandran, S.; Suneetha, T.B. Benefits of green chemistry. Int. J. Clin. Biochem. Res, 2021, 8(1), 70-72.
[http://dx.doi.org/10.18231/j.ijcbr.2021.015]
[2]
(a) Radwan, M.A.A.; Abbas, E.M.H. Synthesis of some pyridine, thiopyrimidine, and isoxazoline derivatives based on the pyrrole moiety. Monatsh. Chem., 2009, 140(2), 229-233.
[http://dx.doi.org/10.1007/s00706-008-0061-y];
(b) Safaei-Ghomi, J.; Ghasemzadeh, A. Synthesis of some 3,5-diarylisoxazoline derivatives in ionic liquids media. J. Serb. Chem. Soc., 2012, 77(6), 733-739.
[http://dx.doi.org/10.2298/JSC110831001S];
(c) Gautam, N.; Chourasia, O.P. Synthesis, characterization, antimicrobial, insecticidal and anthelmintic screening of some new s-triazine derivatives of pyrazoline, pyrimidine, isoxazoline and isothiazoline moiety. Indian J. Chem., 2012, 51(9), 1400-1410.;
(d) Nazari, S.; Shabanian, M. Novel heterocyclic semi-aromatic polyamides: Synthesis and characterization. Des. Monomers Polym., 2014, 17(1), 33-39.
[http://dx.doi.org/10.1080/15685551.2013.771316];
(e) Zangade, S.; Patil, P. A review on solvent-free methods in organic synthesis. Curr. Org. Chem., 2020, 23(21), 2295-2318.
[http://dx.doi.org/10.2174/1385272823666191016165532];
(f) Vidal, C.; García-Álvarez, J. Glycerol: A biorenewable solvent for base-free Cu(i)-catalyzed 1,3-dipolar cycloaddition of azides with terminal and 1-iodoalkynes. Highly efficient transformations and catalyst recycling. Green Chem., 2014, 16(7), 3515-3521.
[http://dx.doi.org/10.1039/c4gc00451e];
(g) Gu, Y.; Jérôme, F. Bio-based solvents: An emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry. Chem. Soc. Rev., 2013, 42(24), 9550-9570.
[http://dx.doi.org/10.1039/c3cs60241a] [PMID: 24056753];
(h) Laird, T. Green chemistry is good process chemistry. Org. Process Res. Dev., 2012, 16(1), 1-2.
[http://dx.doi.org/10.1021/op200366y];
(i) Dunn, P.J. The importance of green chemistry in process research and development. Chem. Soc. Rev, 2012, 41(4), 1452-1461.
[http://dx.doi.org/10.1039/C1CS15041C] [PMID: 21562677];
(j) Jessop, P.G. Searching for green solvents. Green Chem, 2011, 13(6), 1391-1398.
[http://dx.doi.org/10.1039/c0gc00797h]
[3]
(a) Kiyani, H.; Bamdad, M. Sodium ascorbate as an expedient catalyst for green synthesis of polysubstituted 5-aminopyrazole-4-carbonitriles and 6-amino-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles. Res. Chem. Intermed., 2018, 44(4), 2761-2778.
[http://dx.doi.org/10.1007/s11164-018-3260-0];
(b) Olyaei, A.; Shahsavari, M.S.; Sadeghpour, M. Organocatalytic approach toward the green one-pot synthesis of novel benzo[f]chromenes and 12H-benzo[5,6]chromeno[2,3-b]pyridines. Res. Chem. Intermed., 2018, 44(2), 943-956.
[http://dx.doi.org/10.1007/s11164-017-3145-7];
(c) Karhale, S.; Survase, D.; Bhat, R.; Ubale, P.; Helavi, V. A practical and green protocol for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones using oxalic acid as organocatalyst. Res. Chem. Intermed., 2017, 43(7), 3915-3924.
[http://dx.doi.org/10.1007/s11164-016-2855-6];
(d) Manzoor, S.; Trukhanov, S.V.; Ansari, M.N.; Abdullah, M.; Alruwaili, A.; Trukhanov, A.V.; Khandaker, M.U.; Idris, A.M.; El-Nasser, K.S.; Taha, T.A. Flowery ln2MnSe4 novel electrocatalyst developed via anion exchange strategy for efficient water splitting. Nanomaterials, 2022, 12(13), 2209.
[http://dx.doi.org/10.3390/nano12132209] [PMID: 35808045];
(e) Hassan, M.; Slimani, Y.; Gondal, M.A.; Mohamed, M.J.S.; Güner, S.; Almessiere, M.A.; Surrati, A.M.; Baykal, A.; Trukhanov, S.; Trukhanov, A. Structural parameters, energy states and magnetic properties of the novel Se-doped NiFe2O4 ferrites as highly efficient electrocatalysts for HER. Ceram. Int., 2022, 48(17), 24866-24876.
[http://dx.doi.org/10.1016/j.ceramint.2022.05.140]
[4]
(a) Shaabani, A.; Shaabani, S.; Seyyedhamzeh, M.; Sangachin, M.H.; Hajishaabanha, F. Guanidinium-based sulfonic acid: An efficient Brønsted acid organocatalyst for the synthesis of fused polycyclic dihydropyridines in water. Res. Chem. Intermed., 2016, 42(10), 7247-7256.
[http://dx.doi.org/10.1007/s11164-016-2533-8];
(b) Maltsev, O.V.; Chizhov, A.O.; Zlotin, S.G. Chiral ionic liquid/ESI-MS methodology as an efficient tool for the study of transformations of supported organocatalysts: Deactivation pathways of Jorgensen–hayashi-type catalysts in asymmetric michael reactions. Chemistry, 2011, 17(22), 6109-6117.
[http://dx.doi.org/10.1002/chem.201100388]
[5]
(a) Khaksar, S.; Vahdat, S.M.; Moghaddamnejad, R.N. Pentafluorophenylammonium triflate: an efficient, practical, and cost-effective organocatalyst for the Biginelli reaction. Monatsh. Chem., 2012, 143(12), 1671-1674.
[http://dx.doi.org/10.1007/s00706-012-0752-2];
(b) Pair, E.; Cadart, T.; Levacher, V.; Brière, J.F. Meldrum’s acid: A useful platform in asymmetric organocatalysis. ChemCatChem, 2016, 8(11), 1882-1890.
[http://dx.doi.org/10.1002/cctc.201600247]
[6]
(a) Khorrami, A.R.; Kiani, P.; Bazgir, A. l-Proline: An efficient catalyst for the synthesis of new spirooxindoles. Monatsh. Chem., 2011, 142(3), 287-295.
[http://dx.doi.org/10.1007/s00706-011-0446-1];
(b) Tiwari, J.; Singh, S.; Saquib, M.; Tufail, F.; Sharma, A.K.; Singh, S.; Singh, J.; Singh, J. Organocatalytic mediated green approach: A versatile new L -valine promoted synthesis of diverse and densely functionalized 2-amino-3-cyano-4H-pyrans. Synth. Commun., 2018, 48(2), 188-196.
[http://dx.doi.org/10.1080/00397911.2017.1393087];
(c) Tiwari, J.; Singh, S.; Jaiswal, D.; Sharma, A.K.; Singh, S.; Singh, J.; Singh, J. An efficient, convenient and one-pot synthesis of diversified benzochromenes using L-valine as an organocatalyst: A green protocol. Curr. Catal., 2018, 7(3), 202-208.
[http://dx.doi.org/10.2174/2211544707666180924102729];
(d) He, X.L.; Zhao, H.R.; Song, X.; Jiang, B.; Du, W.; Chen, Y.C. Asymmetric barton–zard reaction to access 3-pyrrole-containing axially chiral skeletons. ACS Catal., 2019, 9(5), 4374-4381.
[http://dx.doi.org/10.1021/acscatal.9b00767];
(e) Zhou, L.; An, X.D.; Yang, S.; Li, X.J.; Shao, C.L.; Liu, Q.; Xiao, J. Organocatalytic cascade β-functionalization/aromatization of pyrrolidines via double hydride transfer. Org. Lett., 2020, 22(3), 776-780.
[http://dx.doi.org/10.1021/acs.orglett.9b03918] [PMID: 31965804]
[7]
Meulemans, O. Determination of total protein in spinal fluid with sulphosalicylic acid and trichloroacetic acid. Clin. Chim. Acta, 1960, 5(5), 757-761.
[http://dx.doi.org/10.1016/0009-8981(60)90020-6] [PMID: 13769924]
[8]
Ray, B.; Ghosal, P.K.; Thakur, S.; Majumdar, S.G. Sulphosalicylic acid as spray reagent for the detection of sugars on thin-layer chromatograms. J. Chromatogr. A, 1984, 315, 401-403.
[http://dx.doi.org/10.1016/S0021-9673(01)90759-9]
[9]
Rao, V.P.R.; Satyanarayana, D. The use of vanadiumV-sulphosalicylic acid complex as a redox indicator. Talanta, 1961, 8, 907-908.
[http://dx.doi.org/10.1016/0039-9140(61)80217-8]
[10]
Kishore, K.; Mukherjee, T. A pulse radiolysis study of salicylic acid and 5-sulpho-salicylic acid in aqueous solutions. Radiat. Phys. Chem., 2006, 75(1), 14-19.
[http://dx.doi.org/10.1016/j.radphyschem.2005.06.003]
[11]
Xie, H.; Du, K.; Hu, G.; Duan, J.; Peng, Z.; Zhang, Z.; Cao, Y. Synthesis of LiNi0.8 Co0.15 Al0.05 O2 with 5-sulfosalicylic acid as a chelating agent and its electrochemical properties. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(40), 20236-20243.
[http://dx.doi.org/10.1039/C5TA05266A]
[12]
(a) Kiyani, H.; Darbandi, H.; Mosallanezhad, A.; Ghorbani, F. 2-Hydroxy-5-sulfobenzoic acid: an efficient organocatalyst for the three-component synthesis of 1-amidoalkyl-2-naphthols and 3,4-disubstituted isoxazol-5(4H)-ones. Res. Chem. Intermed., 2015, 41(10), 7561-7579.
[http://dx.doi.org/10.1007/s11164-014-1844-x];
(b) Mohammed, N.N.G.; Pandharpatte, M.S. Microwave assisted one pot synthesis of substituted dihydropyrimidine-2(1H) ones using 5-sulphosalicyclic acid as a catalyst. Der Chem Sinica., 2010, 1, 15-20.;
c) Chen, C.; Zhu, X.; Wu, Y.; Sun, H.; Zhang, G.; Zhang, W.; Gao, Z. 5-Sulfosalicylic acid catalyzed direct Mannich reaction in pure water. J. Mol. Catal. Chem., 2014, 395, 124-127.
[http://dx.doi.org/10.1016/j.molcata.2014.08.017];
(d) Wang, W.; Tang, B.; Wu, S.; Gao, Z.; Ju, B.; Teng, X.; Zhang, S. Controllable 5-sulfosalicylic acid assisted solvothermal synthesis of monodispersed superparamagnetic Fe3O4 nanoclusters with tunable size. J. Magn. Magn. Mater., 2017, 423, 111-117.
[http://dx.doi.org/10.1016/j.jmmm.2016.09.089]
[13]
a) Gupta, V.K.; Srinivasulu, K. Uncatalyzed and catalyzed bromate driven oscillations in salicylic and 5-sulfosalicylic acid. React. Kinet. Catal. Lett., 1982, 19(1-2), 193-196.
[http://dx.doi.org/10.1007/BF02065083];
(b) Karhale, S.; Helavi, V. Appl. Sci., 2020, 2(7), 1-9.;
c) Bhenki, C.D.; Karhale, S.S.; Patil, K.N.; Helavi, V.B. Sulfonic acid@ pericarp-pomegranate: A natural supported catalyst for synthesis of bis (indolyl) alkanes. Res. J. Pharm. Biol. Chem. Sci., 2020, 6(2), 52-61.;
(d) Bhenki, C.D.; Karhale, S.S.; Patil, K.N.; Helavi, V.B. 5-sulfosalicylic acid (5-SSA): An efficient organocatalyst for the synthesis of 4-methylcoumarins via pechmann condensation. Rasayan J. Chem., 2020, 13(4), 2466-2473.
[http://dx.doi.org/10.31788/RJC.2020.1345950]
[14]
(a) Warner, J.C.; Cannon, A.S.; Dye, K.M. Green chemistry. Environ. Impact Assess. Rev., 2004, 24(7-8), 775-799.
[http://dx.doi.org/10.1016/j.eiar.2004.06.006];
(b) Clary, J.J.; Feron, V.J.; van Velthuijsen, J.A. Safety assessment of lactate esters. Regul. Toxicol. Pharmacol., 1998, 27(2), 88-97.
[http://dx.doi.org/10.1006/rtph.1997.1175] [PMID: 9671563];
(c) Kua, Y.L.; Gan, S.; Morris, A.; Ng, H.K. Ethyl lactate as a potential green solvent to extract hydrophilic (polar) and lipophilic (non-polar) phytonutrients simultaneously from fruit and vegetable by-products. Sustain. Chem. Pharm., 2016, 4, 21-31.
[http://dx.doi.org/10.1016/j.scp.2016.07.003]
[15]
(a) García, G.; Atilhan, M.; Aparicio, S. Insights into alkyl lactate+water mixed fluids. J. Mol. Liq., 2014, 199, 215-223.
[http://dx.doi.org/10.1016/j.molliq.2014.09.016];
(b) Yap, C.L.; Gan, S.; Ng, H.K. Evaluation of solubility of polycyclic aromatic hydrocarbons in ethyl lactate/water versus ethanol/water mixtures for contaminated soil remediation applications. J. Environ. Sci., 2012, 24(6), 1064-1075.
[http://dx.doi.org/10.1016/S1001-0742(11)60873-5 ] [PMID: 23505874]
[16]
(a) Planer, S.; Jana, A.; Grela, K. Ethyl Lactate: A green solvent for olefin metathesis. ChemSusChem, 2019, 12(20), 4655-4661.
[http://dx.doi.org/10.1002/cssc.201901735] [PMID: 31412165];
(b) Strati, I.F.; Oreopoulou, V. Effect of extraction parameters on the carotenoid recovery from tomato waste. Int. J. Food Sci. Technol., 2011, 46(1), 23-29.
[http://dx.doi.org/10.1111/j.1365-2621.2010.02496.x];
(c) Wang, Y.; Tashiro, Y.; Sonomoto, K. Fermentative production of lactic acid from renewable materials: Recent achievements, prospects, and limits. J. Biosci. Bioeng., 2015, 119(1), 10-18.
[http://dx.doi.org/10.1016/j.jbiosc.2014.06.003 ] [PMID: 25077706]
[17]
(a) Chen, M.N.; Di, J.Q.; Li, J.M.; Mo, L.P.; Zhang, Z.H. Eosin Y-catalyzed one-pot synthesis of spiro[4H-pyran-oxindole] under visible light irradiation. Tetrahedron, 2020, 76(14), 131059.
[http://dx.doi.org/10.1016/j.tet.2020.131059];
(b) Wan, J.P.; Cao, S.; Hu, C.; Wen, C. Iodine-catalyzed, ethyl-lactate-mediated synthesis of 1,4-benzothiazines via metal-free cascade enaminone transamination and C−H sulfenylation. Asian J. Org. Chem., 2018, 7(2), 328-331.
[http://dx.doi.org/10.1002/ajoc.201700680];
(c) Yang, L.; Wan, J.P. Ethyl lactate-involved three-component dehydrogenative reactions: Biomass feedstock in diversity-oriented quinoline synthesis. Green Chem., 2020, 22(10), 3074-3078.
[http://dx.doi.org/10.1039/D0GC00738B];
(d) Rego, Y.F.; da Silva, C.M.; da Silva, D.L.; da Silva, J.G.; Ruiz, A.L.T.G.; de Carvalho, J.E.; Fernandes, S.A.; de Fátima, Â. Phthalazine-triones: Calix[4]arene-assisted synthesis using green solvents and their anticancer activities against human cancer cells. Arab. J. Chem., 2019, 12(8), 4065-4073.
[http://dx.doi.org/10.1016/j.arabjc.2016.04.007]
[18]
(a) Brogden, R.N. Pyrazolone derivatives. Drugs, 1986, 32(Suppl. 4), 60-70.
[http://dx.doi.org/10.2165/00003495-198600324-00006 ] [PMID: 3552586];
(b) Brune, K. The early history of non-opioid analgesics. Acute Pain, 1997, 1(1), 33-40.
[http://dx.doi.org/10.1016/S1366-0071(97)80033-2]
[19]
a) Akondi, A.M.; Kantam, M.L.; Trivedi, R.; Bharatam, J.; Vemulapalli, S.P.B.; Bhargava, S.K.; Buddana, S.K.; Prakasham, R.S. Ce/SiO2 composite as an efficient catalyst for the multicomponent one-pot synthesis of substituted pyrazolones in aqueous media and their antimicrobial activities. J. Mol. Catal. Chem., 2016, 411, 325-336.
[http://dx.doi.org/10.1016/j.molcata.2015.11.004];
(b) Parmar, N.; Teraiya, S.; Patel, R.; Barad, H.; Jajda, H.; Thakkar, V. Synthesis, antimicrobial and antioxidant activities of some 5-pyrazolone based Schiff bases. J. Saudi Chem. Soc., 2015, 19(1), 36-41.
[http://dx.doi.org/10.1016/j.jscs.2011.12.014]
[20]
Gouda, M.A.; Eldien, H.F.; Girges, M.M.; Berghot, M.A. Synthesis and antitumor evaluation of thiophene based azo dyes incorporating pyrazolone moiety. J. Saudi Chem. Soc., 2016, 20(2), 151-157.
[http://dx.doi.org/10.1016/j.jscs.2012.06.004]
[21]
Mariappan, G.; Saha, B.P.; Sutharson, L.; Singh, A.; Garg, S.; Pandey, L.; Kumar, D. Analgesic, anti-inflammatory, antipyretic and toxicological evaluation of some newer 3-methyl pyrazolone derivatives. Saudi Pharm. J., 2011, 19(2), 115-122.
[http://dx.doi.org/10.1016/j.jsps.2011.01.003 ] [PMID: 23960749]
[22]
Narayana Rao, D.V.; Raghavendra Guru Prasad, A.; Spoorthy, Y.N.; Raghunatha Rao, D.; Ravindranath, L.K. In vitro microbiological evaluation of novel bis pyrazolones. Ann. Pharmacol. Franç., 2014, 72, 101-106.
[23]
Ahsan, M.J.; Samy, J.G.; Jain, C.B.; Dutt, K.R.; Khalilullah, H.; Nomani, M.S. Discovery of novel antitubercular 1,5-dimethyl-2-phenyl-4-([5-(arylamino)-1,3,4-oxadiazol-2-yl]methylamino)-1,2-dihydro-3H-pyrazol-3-one analogues. Bioorg. Med. Chem. Lett., 2012, 22(2), 969-972.
[http://dx.doi.org/10.1016/j.bmcl.2011.12.014] [PMID: 22197387]
[24]
Tok, F.; Koçyiğit-Kaymakçıoğlu, B.; Sağlık, B.N.; Levent, S.; Özkay, Y.; Kaplancıklı, Z.A. Synthesis and biological evaluation of new pyrazolone Schiff bases as monoamine oxidase and cholinesterase inhibitors. Bioorg. Chem., 2019, 84, 41-50.
[http://dx.doi.org/10.1016/j.bioorg.2018.11.016] [PMID: 30481645]
[25]
Sivakumar, K.K.; Rajasekaran, A.; Senthilkumar, P.; Wattamwar, P.P. Conventional and microwave assisted synthesis of pyrazolone Mannich bases possessing anti-inflammatory, analgesic, ulcerogenic effect and antimicrobial properties. Bioorg. Med. Chem. Lett., 2014, 24(13), 2940-2944.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.067] [PMID: 24835630]
[26]
Yousuf, S.; Khan, K.M.; Salar, U.; Chigurupati, S.; Muhammad, M.T.; Wadood, A.; Aldubayan, M.; Vijayan, V.; Riaz, M.; Perveen, S. 2′-Aryl and 4′-arylidene substituted pyrazolones: As potential α-amylase inhibitors. Eur. J. Med. Chem., 2018, 159, 47-58.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.052] [PMID: 30268823]
[27]
Akcha, S.; Gómez-Ruiz, S.; Kellou-Tairi, S.; Lezama, L.; Pérez, F.B.; Benali-Baitich, O. Synthesis, characterization, solution equilibria, DFT study, DNA binding affinity and cytotoxic properties of a cobalt(II) complex with a 5-pyrazolone ligand. Inorg. Chim. Acta, 2018, 482, 738-748.
[http://dx.doi.org/10.1016/j.ica.2018.06.051]
[28]
Rizk, H.F.; Ibrahim, S.A.; El-Borai, M.A. Synthesis, dyeing performance on polyester fiber and antimicrobial studies of some novel pyrazolotriazine and pyrazolyl pyrazolone azo dyes. Arab. J. Chem., 2017, 10, S3303-S3309.
[http://dx.doi.org/10.1016/j.arabjc.2014.01.008]
[29]
(a) Bayat, M.; Nasri, S. A simple and environmentally benign synthetic protocol of indeno-fused pyrido[2,3-d]pyrimidines. J. Heterocycl. Chem., 2017, 54(6), 3389-3394.;
(b) Singh, K. Applications of indan-1,3-dione in heterocyclic synthesis. Curr. Org. Synth., 2016, 13(3), 385-407.;
(c) Kaur, N.; Kumar, A.; Singh, K. Synthesis of novel indenopyrimidine sulfonamides from indenopyrimidine-2-amines via S–N bond formation. Polycycl. Aromat. Compd., 2020, •••, 1-14.
[http://dx.doi.org/10.1002/jhet.2959]
[30]
Hosseini Nasab, N.; Han, Y.; Hassan Shah, F.; Vanjare, B.D.; Ja Kim, S. Synthesis, biological evaluation, migratory inhibition and docking study of indenopyrazolones as potential anticancer agents. Chem. Biodivers., 2022, 19(9), e202200399.
[http://dx.doi.org/10.1002/cbdv.202200399] [PMID: 35977918]
[31]
(a) Khalil, N.A.; Ahmed, E.M.; Mohamed, K.O.; Nissan, Y.M.; Zaitone, S.A.B. Synthesis and biological evaluation of new pyrazolone–pyridazine conjugates as anti-inflammatory and analgesic agents. Bioorg. Med. Chem., 2014, 22(7), 2080-2089.
[http://dx.doi.org/10.1016/j.bmc.2014.02.042] [PMID: 24631365];
(b) Kulkarni, R.C.; Madar, J.M.; Shastri, S.L.; Shaikh, F.; Naik, N.S.; Chougale, R.B.; Shastri, L.A.; Joshi, S.D.; Dixit, S.R.; Sunagar, V.A. Green synthesis of coumarin-pyrazolone hybrids: in vitro anticancer and anti-inflammatory activities and their computational study on COX-2 enzyme. Chem. Data Collec., 2018, 17-18, 497-506.
[http://dx.doi.org/10.1016/j.cdc.2018.11.004];
(c) Indrasena, A.; Riyaz, S.; Mallipeddi, P.L.; Padmaja, P.; Sridhar, B.; Dubey, P.K. Design, synthesis, and biological evaluation of indolylidinepyrazolones as potential anti-bacterial agents. Tetrahedron Lett., 2014, 55(36), 5014-5018.
[http://dx.doi.org/10.1016/j.tetlet.2014.05.131];
(d) Viveka, S.; Dinesha, D.; Shama, P.; Naveen, S.; Lokanath, N.K.; Nagaraja, G.K. Design, synthesis, anticonvulsant and analgesic studies of new pyrazole analogues: A Knoevenagel reaction approach. RSC Advances, 2015, 5(115), 94786-94795.
[http://dx.doi.org/10.1039/C5RA17391D];
(e) Fan, X.; Zhang, X.; Zhou, L.; Keith, K.A.; Kern, E.R.; Torrence, P.F. A pyrimidine–pyrazolone nucleoside chimera with potent in vitro anti-orthopoxvirus activity. Bioorg. Med. Chem. Lett., 2006, 16(12), 3224-3228.
[http://dx.doi.org/10.1016/j.bmcl.2006.03.043] [PMID: 16603351];
(f) Ochiai, K.; Takita, S.; Kojima, A.; Eiraku, T.; Ando, N.; Iwase, K.; Kishi, T.; Ohinata, A.; Yageta, Y.; Yasue, T.; Adams, D.R.; Kohno, Y. Phosphodiesterase inhibitors. Part 4: Design, synthesis and structure-activity relationships of dual PDE3/4-inhibitory fused bicyclic heteroaromatic-4,4-dimethylpyrazolones. Bioorg. Med. Chem. Lett., 2012, 22(18), 5833-5838.
[http://dx.doi.org/10.1016/j.bmcl.2012.07.088] [PMID: 22884989]
[32]
(a) Zang, H.; Su, Q.; Mo, Y.; Cheng, B. Ionic liquid under ultrasonic irradiation towards a facile synthesis of pyrazolone derivatives. Ultrason. Sonochem., 2011, 18(1), 68-72.
[http://dx.doi.org/10.1016/j.ultsonch.2010.08.001] [PMID: 20797895];
(b) Niknam, K.; Saberi, D.; Sadegheyan, M.; Deris, A. Silica-bonded S-sulfonic acid: An efficient and recyclable solid acid catalyst for the synthesis of 4,4′-(arylmethylene)bis(1H-pyrazol-5-ols). Tetrahedron Lett., 2010, 51(4), 692-694.
[http://dx.doi.org/10.1016/j.tetlet.2009.11.114];
(c) Sobhani, S.; Hasaninejad, A.R.; Maleki, M.F.; Parizi, Z.P. Tandem Knoevenagel–Michael reaction of 1-phenyl-3-methyl-5-pyrazolone with aldehydes using 3-aminopropylated silica gel as an efficient and reusable heterogeneous catalyst. Synth. Commun., 2012, 42(15), 2245-2255.
[http://dx.doi.org/10.1080/00397911.2011.555589];
(d) Mor, S.; Sindhu, S.; Nagoria, S.; Khatri, M.; Garg, P.; Sandhu, H.; Kumar, A. Synthesis, biological evaluation, and molecular docking studies of some N -thiazolyl Hydrazones and Indenopyrazolones. J. Heterocycl. Chem., 2019, 56(5), 1622-1633.
[http://dx.doi.org/10.1002/jhet.3548];
(e) Wang, W.; Wang, S.X.; Qin, X.Y.; Li, J.T. Reaction of aldehydes and pyrazolones in the presence of sodium dodecyl sulfate in Aqueous Media. Synth. Commun., 2005, 35(9), 1263-1269.
[http://dx.doi.org/10.1081/SCC-200054854];
(f) Akondi, A.M.; Kantam, M.L.; Trivedi, R.; Bharatam, J.; Vemulapalli, S.P.B.; Bhargava, S.K.; Buddana, S.K.; Prakasham, R.S. Ce/SiO2 composite as an efficient catalyst for the multicomponent one-pot synthesis of substituted pyrazolones in aqueous media and their antimicrobial activities. J. Mol. Catal. A. Chem., 2016, 411, 325-336.
[33]
(a) Safaei-Ghomi, J.; Ebrahimi, S.M. Nano-Fe3O4 –cysteine as a superior catalyst for the synthesis of indeno[1,2-c]pyrazol-4(1H)-ones. Polycycl. Aromat. Compd., 2022, 42(5), 2693-2703.
[http://dx.doi.org/10.1080/10406638.2020.1852276];
(b) Hosseini Nasab, N.; Safari, J. The novel synthesis of functionalized indenopyrazolones using Fe3O4 nanoparticles stabilized on MMT: An efficient magnetically recoverable heterogeneous nanocomposite catalyst. J. Heterocycl. Chem., 2019, 56(3), 915-921.
[http://dx.doi.org/10.1002/jhet.3469];
(c) Shahbazi-Alavi, H.; Bakhtiari, A.; Safaei-Ghomi, J.; Khojasteh-Khosro, S. Synthesis of indenopyrazolones using functionalized SBA-15. Nanochem. Res., 2021, 6(1), 53-64.;
d) Mirheidari, M.; Safaei-Ghomi, J. Design, synthesis, and catalytic evaluation of aluminum-incorporated magnetic core–shell mesoporous microsphere catalyst NiFe2O4 @SiO2 @Al-MS for the synthesis of functionalized indenopyrazolones. Appl. Organomet. Chem., 2021, 35(8), 6274.
[http://dx.doi.org/10.1002/aoc.6274];
(e) Mirheidari, M. Safaei‐Ghom, Decoration of graphene oxide with cobalt (II) coordinated silica and its catalytic activity for the synthesis of functionalized indenopyrazolones. J. Res. Sq., 2020.;
f) Ebrahimi, S.M.; Safaei-Ghomi, J.; Mutashar, M.A. HPA-ZSM-5 nanocomposite as high-performance catalyst for the synthesis of indenopyrazolones. Main Group Met. Chem., 2022, 45(1), 57-73.
[http://dx.doi.org/10.1515/mgmc-2022-0003];
(g) Safari, J.; Nasab, N.H. Ultrasonic activated efficient synthesis of indenopyrazolones via a one-pot multicomponent reaction. Polycycl. Aromat. Compd., 2021, 41(7), 1383-1391.
[http://dx.doi.org/10.1080/10406638.2019.1678183]
[34]
(a) Kushwaha, S.; Baranwal, J.; Singh, S.; Jyoti, A. Synergistic effect of Ethyl lactate/GVL: A new route for the synthesis of Spirooxindole-Indazolones and its derivative. Heterocyclic Lett., 2023, 13(2), 319-329.;
(b) Baranwal, J.; Kushwaha, S.; Singh, S.; Jyoti, A. Synergistic effect of Ethyl lactate/Glycerol: A new route for the synthesis of Hexahydro-4H-Indazol-4-one and its derivative. Heterocyclic Lett., 2022, 12(3), 621-630.;
(c) Baranwal, J.; Singh, S.; Kushwaha, S.; Jyoti, A. Acemannan from aloe vera extract: a catalyst-free, approach for the access of imidazole-fused nitrogen-bridgehead. heterocycles. Lett. Org. Chem., 2023, 20.;
(d) Baranwal, J.; Kushwaha, S.; Singh, S.; Jyoti, A. A review on the synthesis and pharmacological activity of heterocyclic compounds. Curr. Phys. Chem., 2023, 13(1), 2-19.;
(e) Kushwaha, S.; Baranwal, J.; Singh, S.; Jyoti, A. A review on green synthesis of biologically active compounds. Curr. Green Chem., 2022, 9(3), 174-195.
[http://dx.doi.org/10.2174/2213346110666221213092734];
(f) Tiwari, J.; Singh, S.; Jaiswal, D.; Sharma, A.K.; Singh, S.; Singh, J.; Singh, J. Supramolecular catalysis: An efficient and sustainable multicomponent approach to the synthesis of novel hexahydro-4h-indazol-4-one derivatives. Curr. Catal., 2021, 9(2), 92-101.
[http://dx.doi.org/10.2174/2211544709999200614165508];
(g) Singh, S.; Saquib, M.; Singh, S.B.; Singh, M.; Singh, J. Catalyst free, multicomponent-tandem synthesis of spirooxindole-indazolones and spirooxindole-pyrazolines: A glycerol mediated green approach. RSC Advances, 2015, 5(56), 45152-45157.
[http://dx.doi.org/10.1039/C5RA02794B];
(h) Tiwari, J.; Saquib, M.; Singh, S.; Tufail, F.; Singh, J.; Singh, J. Catalyst-free glycerol-mediated green synthesis of 5′-thioxospiro[indoline-3,3′-[1,2,4]triazolidin]-2-ones/spiro[indoline-3,3′-[1,2,4]triazolidine]-2,5′-diones. Synth. Commun., 2017, 47(21), 1999-2006.
[http://dx.doi.org/10.1080/00397911.2017.1359844];
(i) Tufail, F.; Singh, S.; Saquib, M.; Tiwari, J.; Singh, J.; Singh, J. Catalyst-free, glycerol-assisted facile approach to imidazole-fused nitrogen-bridgehead heterocycles. Chem. Select, 2017, 2(21), 6082-6089.;
(j) Tiwari, J.; Saquib, M.; Singh, S.; Tufail, F.; Singh, M.; Singh, J.; Singh, J. Visible light promoted synthesis of dihydropyrano[2,3-c]chromenes via a multicomponent-tandem strategy under solvent and catalyst free conditions. Green Chem., 2016, 18(11), 3221-3231.
[http://dx.doi.org/10.1039/C5GC02855H];
(k) Tiwari, J.; Saquib, M.; Singh, S.; Tufail, F.; Singh, M.; Singh, J.; Singh, J. visible light promoted synthesis of dihydropyrano[2,3-c]chromenes via a multicomponent-tandem strategy under solvent and catalyst free conditions. Green Chem., 2016, 18(11), 3221-3231.;
(l) Singh, M.; Saquib, M.; Singh, S.B.; Singh, S.; Ankit, P.; Fatma, S.; Singh, J. Organocatalysis in aqueous micellar medium: A new protocol for the synthesis of [1,2,4]-triazolyl-thiazolidinones. Tetrahedron Lett., 2014, 55(45), 6175-6179.
[http://dx.doi.org/10.1016/j.tetlet.2014.09.030]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy