Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Letter Article

A Banana-like Ni-MgO Solid Solution Catalyst Derived from Bimetallic Ni-Mg@MOFs for Hydrogenation of Nitroarenes

Author(s): Weizuo Li, Rui Fu, Xue Luo* and Xin Wang*

Volume 27, Issue 6, 2023

Published on: 13 July, 2023

Page: [465 - 470] Pages: 6

DOI: 10.2174/1385272827666230608154543

Price: $65

Abstract

The design and synthesis of an efficient Ni-MgO solid solution catalyst with specific morphology for the hydrogenation of nitroarenes is highly required. In this work, a banana- like Ni-MgO solid solution incorporation of carbon catalyst (termed as Ni/MgO-C) has been synthesized via a MOFs-templating strategy for one-step pyrolysis of bimetallic Ni- Mg@MOFs.

The developed Ni/MgO-C catalyst was applied to the hydrogenation of nitroarenes reaction, which exhibited good performance for the hydrogenation of nitroarenes to the corresponding arylamines.

The Ni-Mg@MOFs served as a precursor for the preparation of a solid solution catalysts that could improve the dispersion of Ni species, reduce the size of metallic Ni, and strengthen the Ni-MgO interaction, enhance the transfer of electron density. All of these are beneficial for improving the performance of the hydrogenation process.

This MOFs-templating strategy may provide a facile method for the synthesis of Ni-MgO solid solution catalyst for other hydrogenation reactions.

Keywords: Metal-organic frameworks, templated strategy, hydrogenation, nitroarenes, Ni-MgO, solid solution.

Graphical Abstract
[1]
Dang, S.; Zhu, Q.L.; Xu, Q. Nanomaterials derived from metal–organic frameworks. Nat. Rev. Mater., 2017, 3(1), 17075-17088.
[http://dx.doi.org/10.1038/natrevmats.2017.75]
[2]
Wang, X.; Chen, W.; Zhang, L.; Yao, T.; Liu, W.; Lin, Y.; Ju, H.; Dong, J.; Zheng, L.; Yan, W.; Zheng, X.; Li, Z.; Wang, X.; Yang, J.; He, D.; Wang, Y.; Deng, Z.; Wu, Y.; Li, Y. Uncoordinated amine groups of metal-organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline. J. Am. Chem. Soc., 2017, 139(28), 9419-9422.
[http://dx.doi.org/10.1021/jacs.7b01686] [PMID: 28661130]
[3]
Pan, Y.; Sun, K.; Liu, S.; Cao, X.; Wu, K.; Cheong, W.C.; Chen, Z.; Wang, Y.; Li, Y.; Liu, Y.; Wang, D.; Peng, Q.; Chen, C.; Li, Y. Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded n-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc., 2018, 140(7), 2610-2618.
[http://dx.doi.org/10.1021/jacs.7b12420] [PMID: 29341596]
[4]
Chen, B.; He, X.; Yin, F.; Wang, H.; Liu, D.J.; Shi, R.; Chen, J.; Yin, H. MO-Co@N-Doped carbon (M = Zn or Co): vital roles of inactive Zn and highly efficient activity toward oxygen reduction/evolution reactions for rechargeable Zn-Air battery. Adv. Funct. Mater., 2017, 27(37), 1700795-1700809.
[http://dx.doi.org/10.1002/adfm.201700795]
[5]
Wu, C.; Zhu, C.; Liu, K.; Yang, S.; Sun, Y.; Zhu, K.; Cao, Y.; Zhang, S.; Zhuo, S.; Zhang, M.; Zhang, Q.; Zhang, H. Nano-pyramid-type Co-ZnO/NC for hydrogen transfer cascade reaction between alcohols and nitrobenzene. Appl. Catal. B, 2022, 300, 120288-120299.
[http://dx.doi.org/10.1016/j.apcatb.2021.120288]
[6]
She, W.; Wang, J.; Li, X.; Li, J.; Mao, G.; Li, W.; Li, G. Highly chemoselective synthesis of imine over Co/Zn bimetallic MOFs derived Co3ZnC-ZnO embed in carbon nanosheet catalyst. J. Catal., 2021, 401, 17-26.
[http://dx.doi.org/10.1016/j.jcat.2021.07.005]
[7]
Hu, A.; Lu, X.; Cai, D.; Pan, H.; Jing, R.; Xia, Q.; Zhou, D.; Xia, Y. Selective hydrogenation of nitroarenes over MOF-derived Co@CN catalysts at mild conditions. Molecul. Catal., 2019, 472, 27-36.
[http://dx.doi.org/10.1016/j.mcat.2019.04.008]
[8]
Liu, D.; Li, M.; Li, X.; Ren, F.; Sun, P.; Zhou, L. Core-shell Zn/Co MOFs derived Co3O4/CNTs as an efficient magnetic heterogeneous catalyst for persulfate activation and oxytetracycline degradation. Chem. Eng. J., 2020, 387, 124008-124013.
[http://dx.doi.org/10.1016/j.cej.2019.124008]
[9]
Bai, Y.; Dong, J.; Hou, Y.; Guo, Y.; Liu, Y.; Li, Y.; Han, X.; Huang, Z. Co3O4@PC derived from ZIF-67 as an efficient catalyst for the selective catalytic reduction of NO with NH3 at low temperature. Chem. Eng. J., 2019, 361, 703-712.
[http://dx.doi.org/10.1016/j.cej.2018.12.109]
[10]
Wang, J.; She, W.; Li, X.; Li, J.; Li, Z.; Mao, G.; Li, W.; Li, G.; Li, G. Efficient tandem catalytic N-alkylation of nitroarenes with alcohols via a Co/CeO2-CN catalyst derived from a tri-metallic Co-Zn-Ce coordination polymer. Appl. Surf. Sci., 2022, 592, 153250-153261.
[http://dx.doi.org/10.1016/j.apsusc.2022.153250]
[11]
Chu, C.; Rao, S.; Ma, Z.; Han, H. Copper and cobalt nanoparticles doped nitrogen-containing carbon frameworks derived from CuO-encapsulated ZIF-67 as high-efficiency catalyst for hydrogenation of 4-nitrophenol. Appl. Catal. B, 2019, 256, 117792-117800.
[http://dx.doi.org/10.1016/j.apcatb.2019.117792]
[12]
Li, X.; She, W.; Wang, J.; Li, W.; Li, G. A highly efficient LaOCl supported Fe–Fe3 C-based catalyst for hydrogenation of nitroarenes fabricated by coordination-assisted pyrolysis. Catal. Sci. Technol., 2021, 11(13), 4627-4635.
[http://dx.doi.org/10.1039/D1CY00350J]
[13]
Chen, H.; Shen, K.; Mao, Q.; Chen, J.; Li, Y. Nanoreactor of MOF-derived yolk-shell Co@C-N: precisely controllable structure and enhanced catalytic activity. ACS Catal., 2018, 8(2), 1417-1426.
[http://dx.doi.org/10.1021/acscatal.7b03270]
[14]
She, W.; Wang, J.; Li, X.; Li, J.; Mao, G.; Li, W.; Li, G. Bimetallic CuZn-MOFs derived Cu-ZnO/C catalyst for reductive amination of nitroarenes with aromatic alde-hydes tandem reaction. Appl. Surf. Sci., 2021, 569, 151033-151042.
[http://dx.doi.org/10.1016/j.apsusc.2021.151033]
[15]
Chen, X.; Wang, N.; Shen, K.; Xie, Y.; Tan, Y.; Li, Y. MOF-derived isolated Fe atoms implanted in N-doped 3D hierarchical carbon as an efficient ORR electrocatalyst in both alkaline and acidic media. ACS Appl. Mater. Interfaces, 2019, 11(29), 25976-25985.
[http://dx.doi.org/10.1021/acsami.9b07436] [PMID: 31245986]
[16]
Li, X.; She, W.; Wang, J.; Li, W.; Li, G. Highly efficient N‐doped carbon supported FeS x ‐Fe 2 O 3 catalyst for hydrogenation of nitroarenes via pyrolysis of sulfurized N,Fe‐containing MOFs. Appl. Organomet. Chem., 2021, 35(8)e6294
[http://dx.doi.org/10.1002/aoc.6294]
[17]
Lv, Z.; Tan, X.; Wang, C.; Alsaedi, A.; Hayat, T.; Chen, C. Metal-organic frameworks-derived 3D yolk shell-like structure Ni@carbon as a recyclable catalyst for Cr(VI) reduction. Chem. Eng. J., 2020, 389, 123428-123437.
[http://dx.doi.org/10.1016/j.cej.2019.123428]
[18]
Pang, Y.; Chen, S.; Xiao, C.; Ma, S.; Ding, S. MOF derived CoO-NCNTs two-dimensional networks for durable lithium and sodium storage. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7(8), 4126-4133.
[http://dx.doi.org/10.1039/C8TA10575H]
[19]
Zhang, X.; Luo, J.; Wan, K.; Plessers, D.; Sels, B.; Song, J.; Chen, L.; Zhang, T.; Tang, P.; Morante, J.R.; Arbiol, J.; Fransaer, J. From rational design of a new bimetallic MOF family with tunable linkers to OER catalysts. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7(4), 1616-1628.
[http://dx.doi.org/10.1039/C8TA08508K]
[20]
Trowse, B.R.; Byrne, F.P.; Sherwood, J.; O’Brien, P.; Murray, J.; Farmer, T.J. 2,2,5,5-tetramethyloxolane (TMO) as a solvent for buchwald-hartwig aminations. ACS Sustain. Chem.& Eng., 2021, 9(51), 17330-17337.
[http://dx.doi.org/10.1021/acssuschemeng.1c06292]
[21]
Tan, Z.; Ci, C.; Yang, J.; Wu, Y.; Cao, L.; Jiang, H.; Zhang, M. Catalytic conversion of N-heteroaromatics to functionalized arylamines by merging hydrogen transfer and selective coupling. ACS Catal., 2020, 10(9), 5243-5249.
[http://dx.doi.org/10.1021/acscatal.0c00394]
[22]
Noto, N.; Saito, S. Arylamines as more strongly reducing organic photoredox catalysts than fac-. ACS Catal., 2022, 12(24), 15400-15415. [Ir(ppy)3
[http://dx.doi.org/10.1021/acscatal.2c05034]
[23]
Zhang, J.C.; Ji, J.X. Highly efficient synthesis of polysubstituted 1,2-dihydroquinolines via tandem reaction of α-ketoesters and arylamines catalyzed by indium triflate. ACS Catal., 2011, 1(10), 1360-1363.
[http://dx.doi.org/10.1021/cs2003005]
[24]
Mendonça, V.G.S.; Freitas, I.C.; Manfro, R.L.; Souza, M.M.V.M. Effect of MgO addition to Cu-Ni/Al2O3 catalysts on glycerol hydrogenolysis in continuous reactor without external hydrogen. Appl. Catal. A Gen., 2022, 645, 118838-118847.
[http://dx.doi.org/10.1016/j.apcata.2022.118838]
[25]
Wang, J.; Qi, T.; Li, G.; Zhang, Y.; Chen, H.; Li, W. Elucidating the promoting mechanism of coordination-driven self-assembly MOFs/SiO2 composite derived catalyst for dry reforming of methane with CO2. Fuel, 2022, 330, 125569-125580.
[http://dx.doi.org/10.1016/j.fuel.2022.125569]
[26]
Muratović, S.; Karadeniz, B.; Stolar, T.; Lukin, S.; Halasz, I.; Herak, M.; Mali, G.; Krupskaya, Y.; Kataev, V.; Žilić, D.; Užarević, K. Impact of dehydration and mechanical amorphization on the magnetic properties of Ni(II)-MOF-74. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2020, 8(21), 7132-7142.
[http://dx.doi.org/10.1039/D0TC00844C]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy