Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Structure of the Blood Brain Barrier and its Role in the Transporters for the Movement of Substrates across the Barriers

Author(s): Ankul Singh S and Chitra Vellapandian*

Volume 24, Issue 4, 2023

Published on: 22 June, 2023

Page: [250 - 269] Pages: 20

DOI: 10.2174/1389200224666230608110349

Price: $65

Abstract

For the brain to operate normally and to develop with structural integrity in addition to neuronal function, blood-brain barrier present in brain capillaries serves as a vital barrier mechanism. In addition to the transport barrier created by membranes, transporters, and vesicular processes, the structure and function of the BBB are summarised. The physical barrier is created by endothelial tight junctions. The permeability and transport of molecules between extracellular fluid and plasma are constrained by the presence of tight junctions between neighbouring endothelial cells. Each solute must pass through both membranes in the luminal and abluminal divisions. The functions of the neurovascular unit are described, with special emphasis on the pericytes, microglia, and astrocyte endfeet. The luminal membrane contains five separate facilitative transport mechanisms, each of which is exclusive to a few substrates. Nevertheless, the import of big-branched and aromatic neutral amino acids is facilitated by two key carriers (System L and y+) in the plasma membrane. It is asymmetrically present in both membranes. The sodium pump Na+/K+-ATPase is highly expressed in the abluminal membrane, where many Na+ dependent transport mechanisms move amino acids against its concentration gradient. The trojan horse strategy, which uses molecular tools to bind the medication and its formulations, is also preferred in drug delivery. The BBB's cellular structure, the transport systems unique to each substrate, and the necessity to identify transporters with changes that assist the transfer of various medications have all been changed in the current work. Nevertheless, to rule out the BBB passage for the new class of neuroactive medications, the mixing of traditional pharmacology and nanotechnology needs to be focused on outcomes that show promise.

Keywords: Barrier, molecules, astrocytes, carriers, membrane, transporters.

Graphical Abstract
[1]
Cipolla, M.J. Chapter 6 Barriers of the CNS. In: The Cerebral Circulation; San; R. Morgan & Claypool Life Sciences, 2009.
[2]
Abbott, N.J.; Patabendige, A.A.K.; Dolman, D.E.M.; Yusof, S.R.; Begley, D.J. Structure and function of the blood-brain barrier. Neurobiol. Dis., 2010, 37(1), 13-25.
[http://dx.doi.org/10.1016/j.nbd.2009.07.030] [PMID: 19664713]
[3]
Nag, S.; David, J.B. Blood Brain Barrier, Exchange of metabolites and gases. In: Pathol. Genet. Cerebrovasc. Dis; Basel, H.K., Ed.; Neuropath Press, 2005; pp. 22-29.
[4]
Janzer, R.C. The blood‐brain barrier: Cellular basis. J. Inherit. Metab. Dis., 1993, 16(4), 639-647.
[http://dx.doi.org/10.1007/BF00711897] [PMID: 8412011]
[5]
Lossinsky, A.S.; Shivers, R.R. Structural pathways for macromolecular and cellular transport across the blood-brain barrier during inflammatory conditions. Review. Histol. Histopathol., 2004, 19(2), 535-564.
[http://dx.doi.org/10.14670/HH-19.535] [PMID: 15024715]
[6]
Ribatti, D.; Nico, B.; Crivellato, E.; Artico, M. Development of the blood-brain barrier: A historical point of view. Anat. Rec. B New Anat., 2006, 289B(1), 3-8.
[http://dx.doi.org/10.1002/ar.b.20087] [PMID: 16437552]
[7]
Keaney, J.; Walsh, D.M.; O’Malley, T.; Hudson, N.; Crosbie, D.E.; Loftus, T.; Sheehan, F.; McDaid, J.; Humphries, M.M.; Callanan, J.J.; Brett, F.M.; Farrell, M.A.; Humphries, P.; Campbell, M. Autoregulated paracellular clearance of amyloid-β across the blood-brain barrier. Sci. Adv., 2015, 1(8), e1500472.
[http://dx.doi.org/10.1126/sciadv.1500472] [PMID: 26491725]
[8]
Clark, A.J.; Davis, M.E. Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core. Proc. Natl. Acad. Sci., 2015, 112(40), 12486-12491.
[http://dx.doi.org/10.1073/pnas.1517048112] [PMID: 26392563]
[9]
Chen, Y.; Liu, L. Modern methods for delivery of drugs across the blood-brain barrier. Adv. Drug Deliv. Rev., 2012, 64(7), 640-665.
[http://dx.doi.org/10.1016/j.addr.2011.11.010] [PMID: 22154620]
[10]
Schulzke, J.D.; Fromm, M. Tight junctions. Ann. N. Y. Acad. Sci., 2009, 1165(1), 1-6.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04925.x] [PMID: 19538280]
[11]
Pardridge, W.M. CNS drug design based on principles of blood-brain barrier transport. J. Neurochem., 1998, 70(5), 1781-1792.
[http://dx.doi.org/10.1046/j.1471-4159.1998.70051781.x] [PMID: 9572261]
[12]
Juillerat-Jeanneret, L. The targeted delivery of cancer drugs across the blood-brain barrier: Chemical modifications of drugs or drug-nanoparticles? Drug Discov. Today, 2008, 13(23-24), 1099-1106.
[http://dx.doi.org/10.1016/j.drudis.2008.09.005] [PMID: 18848640]
[13]
Aryal, M.; Fischer, K.; Gentile, C.; Gitto, S.; Zhang, Y.Z.; McDannold, N. Effects on P-glycoprotein expression after blood-brain barrier disruption using focused ultrasound and microbubbles. PLoS One, 2017, 12(1), e0166061.
[http://dx.doi.org/10.1371/journal.pone.0166061] [PMID: 28045902]
[14]
Marques, F.; Sousa, J.C.; Sousa, N.; Palha, J.A. Blood-brain-barriers in aging and in Alzheimer’s disease. Mol. Neurodegener., 2013, 8(1), 38.
[http://dx.doi.org/10.1186/1750-1326-8-38] [PMID: 24148264]
[15]
Daneman, R.; Prat, A. The blood-brain barrier. Cold Spring Harb. Perspect. Biol., 2015, 7(1), a020412.
[http://dx.doi.org/10.1101/cshperspect.a020412] [PMID: 25561720]
[16]
Wisniewski, T.; Goñi, F. Immunotherapeutic approaches for Alzheimer’s disease. Neuron, 2015, 85(6), 1162-1176.
[http://dx.doi.org/10.1016/j.neuron.2014.12.064] [PMID: 25789753]
[17]
Freund Levi, Y.; Vedin, I.; Cederholm, T.; Basun, H.; Faxén, I.G.; Eriksdotter, M.; Hjorth, E.; Schultzberg, M.; Vessby, B.; Wahlund, L.O.; Salem, N., Jr; Palmblad, J. Transfer of omega-3 fatty acids across the blood-brain barrier after dietary supplementation with a docosahexaenoic acid-rich omega-3 fatty acid preparation in patients with Alzheimer’s disease: The OmegAD study. J. Intern. Med., 2014, 275(4), 428-436.
[http://dx.doi.org/10.1111/joim.12166] [PMID: 24410954]
[18]
Selkoe, D.J. Alzheimer’s disease: Genes, proteins, and therapy. Physiol. Rev., 2001, 81(2), 741-766.
[http://dx.doi.org/10.1152/physrev.2001.81.2.741] [PMID: 11274343]
[19]
Minogue, A.M.; Jones, R.S.; Kelly, R.J.; McDonald, C.L.; Connor, T.J.; Lynch, M.A. Age-associated dysregulation of microglial activation is coupled with enhanced blood-brain barrier permeability and pathology in APP/PS1 mice. Neurobiol. Aging, 2014, 35(6), 1442-1452.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.12.026] [PMID: 24439957]
[20]
Farrall, A.J.; Wardlaw, J.M. Blood-brain barrier: Ageing and microvascular disease - systematic review and meta-analysis. Neurobiol. Aging, 2009, 30(3), 337-352.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.07.015] [PMID: 17869382]
[21]
2016 Alzheimer’s disease facts and figures. Alzheimer’s Dement., 2016, 12(4), 459-509.
[http://dx.doi.org/10.1016/j.jalz.2016.03.001] [PMID: 27570871]
[22]
Abbott, N.J. Comparative Physiology of the Blood-Brain Barrier; Bradbury, M.W.B., Ed.; ;
Physiology and Pharmacology of the Blood-Brain Barrier.Handbook of Experimental Pharmacology; Bradbury, M.W.B., Ed.; Springer: Berlin, Heidelberg, 1992, pp. 371-396.
[http://dx.doi.org/10.1007/978-3-642-76894-1_15]
[23]
Brown, P.D.; Davies, S.L.; Speake, T.; Millar, I.D. Molecular mechanisms of cerebrospinal fluid production. Neuroscience, 2004, 129(4), 955-968.
[http://dx.doi.org/10.1016/j.neuroscience.2004.07.003] [PMID: 15561411]
[24]
Abbott, N.J.; Rönnbäck, L.; Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci., 2006, 7(1), 41-53.
[http://dx.doi.org/10.1038/nrn1824] [PMID: 16371949]
[25]
Kadry, H.; Noorani, B.; Cucullo, L. A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS, 2020, 17(1), 69.
[http://dx.doi.org/10.1186/s12987-020-00230-3] [PMID: 33208141]
[26]
Zaghmi, A.; Greschner, A.A.; Gauthier, M.A. 17 - In vivo properties of therapeutic bioconjugates composed of proteins and architecturally/functionally complex polymers. In: Polymer-Protein Conjugates; Elsevier, 2020; pp. 389-406.
[http://dx.doi.org/10.1016/B978-0-444-64081-9.00017-6]
[27]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3-25. 1. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[28]
Zheng, K.; Trivedi, M.; Siahaan, T. Structure and function of the intercellular junctions: Barrier of paracellular drug delivery. Curr. Pharm. Des., 2006, 12(22), 2813-2824.
[http://dx.doi.org/10.2174/138161206777947722] [PMID: 16918412]
[29]
Van Itallie, C.M.; Anderson, J.M. Measuring size-dependent permeability of the tight junction using PEG profiling; Turksen, K. Humana Press: Totowa, NJ, 2011, pp. 1-11.
[http://dx.doi.org/10.1007/978-1-61779-185-7_1]
[30]
Strazielle, N.; Ghersi-Egea, J.F. Physiology of blood-brain interfaces in relation to brain disposition of small compounds and macromolecules. Mol. Pharm., 2013, 10(5), 1473-1491.
[http://dx.doi.org/10.1021/mp300518e] [PMID: 23298398]
[31]
Wolburg, H.; Lippoldt, A. Tight junctions of the blood-brain barrier. Vascul. Pharmacol., 2002, 38(6), 323-337.
[http://dx.doi.org/10.1016/S1537-1891(02)00200-8] [PMID: 12529927]
[32]
Bauer, H.; Traweger, A. Tight junctions of the blood-brain barrier - a molecular gatekeeper. CNS Neurol. Disord. Drug Targets, 2016, 15(9), 1016-1029.
[http://dx.doi.org/10.2174/1871527315666160915142244] [PMID: 27633783]
[33]
Redzic, Z. Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences. Fluids Barriers CNS, 2011, 8(1), 3.
[http://dx.doi.org/10.1186/2045-8118-8-3] [PMID: 21349151]
[34]
Redzic, Z.; Segal, M. The structure of the choroid plexus and the physiology of the choroid plexus epithelium. Adv. Drug Deliv. Rev., 2004, 56(12), 1695-1716.
[http://dx.doi.org/10.1016/j.addr.2004.07.005] [PMID: 15381330]
[35]
Pardridge, W.M. CSF, blood-brain barrier, and brain drug delivery. Expert Opin. Drug Deliv., 2016, 13(7), 963-975.
[http://dx.doi.org/10.1517/17425247.2016.1171315] [PMID: 27020469]
[36]
Harik, S.I.; Kalaria, R.N.; Whitney, P.M.; Andersson, L.; Lundahl, P.; Ledbetter, S.R.; Perry, G. Glucose transporters are abundant in cells with “occluding” junctions at the blood-eye barriers. Proc. Natl. Acad. Sci., 1990, 87(11), 4261-4264.
[http://dx.doi.org/10.1073/pnas.87.11.4261] [PMID: 2190218]
[37]
Rahner-Welsch, S.; Vogel, J.; Kuschinsky, W. Regional congruence and divergence of glucose transporters (GLUT1) and capillaries in rat brains. J. Cereb. Blood Flow Metab., 1995, 15(4), 681-686.
[http://dx.doi.org/10.1038/jcbfm.1995.84] [PMID: 7790418]
[38]
Young, J.K.; Chung, W. Glucose transporter immunoreactivity in the hypothalamus and area postrema. Brain Res. Bull., 1990, 24(3), 525-528.
[http://dx.doi.org/10.1016/0361-9230(90)90106-A] [PMID: 2337827]
[39]
Wolburg, H.; Wolburg-Buchholz, K.; Liebner, S.; Engelhardt, B. Claudin-1, claudin-2 and claudin-11 are present in tight junctions of choroid plexus epithelium of the mouse. Neurosci. Lett., 2001, 307(2), 77-80.
[http://dx.doi.org/10.1016/S0304-3940(01)01927-9] [PMID: 11427304]
[40]
Mensch, J.; Melis, A.; Mackie, C.; Verreck, G.; Brewster, M.E.; Augustijns, P. Evaluation of various PAMPA models to identify the most discriminating method for the prediction of BBB permeability. Eur. J. Pharm. Biopharm., 2010, 74(3), 495-502.
[http://dx.doi.org/10.1016/j.ejpb.2010.01.003] [PMID: 20067834]
[41]
Zhang, L.; Zhu, H.; Oprea, T.I.; Golbraikh, A.; Tropsha, A. QSAR modeling of the blood-brain barrier permeability for diverse organic compounds. Pharm. Res., 2008, 25(8), 1902-1914.
[http://dx.doi.org/10.1007/s11095-008-9609-0] [PMID: 18553217]
[42]
Wong, A.D.; Ye, M.; Levy, A.F.; Rothstein, J.D.; Bergles, D.E.; Searson, P.C. The blood-brain barrier: An engineering perspective. Front. Neuroeng., 2013, 6, 7.
[http://dx.doi.org/10.3389/fneng.2013.00007] [PMID: 24009582]
[43]
Liu, L.; Liu, J.; Bao, J.; Bai, Q.; Wang, G. Interaction of microglia and astrocytes in the neurovascular unit. Front. Immunol., 2020, 11, 1024.
[http://dx.doi.org/10.3389/fimmu.2020.01024] [PMID: 32733433]
[44]
Stamatovic, S.; Keep, R.; Andjelkovic, A. Brain endothelial cell-cell junctions: How to “open” the blood brain barrier. Curr. Neuropharmacol., 2008, 6(3), 179-192.
[http://dx.doi.org/10.2174/157015908785777210] [PMID: 19506719]
[45]
Upadhyay, R.K. Transendothelial transport and its role in therapeutics. Int. Sch. Res. Notices, 2014, 2014, 1-39.
[http://dx.doi.org/10.1155/2014/309404] [PMID: 27355037]
[46]
Oldendorf, W.H.; Cornford, M.E.; Brown, W.J. The large apparent work capability of the blood-brain barrier: A study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann. Neurol., 1977, 1(5), 409-417.
[http://dx.doi.org/10.1002/ana.410010502] [PMID: 617259]
[47]
Zhang, W.; Zhu, L.; An, C.; Wang, R.; Yang, L.; Yu, W.; Li, P.; Gao, Y. The blood brain barrier in cerebral ischemic injury - Disruption and repair. Brain Hemorrhages, 2020, 1(1), 34-53.
[http://dx.doi.org/10.1016/j.hest.2019.12.004]
[48]
Löscher, W.; Potschka, H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx, 2005, 2(1), 86-98.
[http://dx.doi.org/10.1602/neurorx.2.1.86] [PMID: 15717060]
[49]
Boyle, J. Molecular biology of the cell 5th edition by B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Garland Science: New York, NY, 2008.
[http://dx.doi.org/10.1002/bmb.20192]
[50]
Kelleher, R.J.; Soiza, R.L. Evidence of endothelial dysfunction in the development of Alzheimer’s disease: Is Alzheimer’s a vascular disorder? Am. J. Cardiovasc. Dis., 2013, 3(4), 197-226.
[PMID: 24224133]
[51]
Paris, D.; Townsend, K.; Quadros, A.; Humphrey, J.; Sun, J.; Brem, S.; Wotoczek-Obadia, M.; DelleDonne, A.; Patel, N.; Obregon, D.F.; Crescentini, R.; Abdullah, L.; Coppola, D.; Rojiani, A.M.; Crawford, F.; Sebti, S.M.; Mullan, M. Inhibition of angiogenesis by Abeta peptides. Angiogenesis, 2004, 7(1), 75-85.
[http://dx.doi.org/10.1023/B:AGEN.0000037335.17717.bf] [PMID: 15302999]
[52]
ElAli, A.; Thériault, P.; Rivest, S. The role of pericytes in neurovascular unit remodeling in brain disorders. Int. J. Mol. Sci., 2014, 15(4), 6453-6474.
[http://dx.doi.org/10.3390/ijms15046453] [PMID: 24743889]
[53]
Bergers, G.; Song, S. The role of pericytes in blood-vessel formation and maintenance. Neuro-oncol., 2005, 7(4), 452-464.
[http://dx.doi.org/10.1215/S1152851705000232] [PMID: 16212810]
[54]
Ferland-McCollough, D.; Slater, S.; Richard, J.; Reni, C.; Mangialardi, G. Pericytes, an overlooked player in vascular pathobiology. Pharmacol. Ther., 2017, 171, 30-42.
[http://dx.doi.org/10.1016/j.pharmthera.2016.11.008] [PMID: 27916653]
[55]
Armulik, A.; Genové, G.; Mäe, M.; Nisancioglu, M.H.; Wallgard, E.; Niaudet, C.; He, L.; Norlin, J.; Lindblom, P.; Strittmatter, K.; Johansson, B.R.; Betsholtz, C. Pericytes regulate the blood-brain barrier. Nature, 2010, 468(7323), 557-561.
[http://dx.doi.org/10.1038/nature09522] [PMID: 20944627]
[56]
Wilhelmus, M.M.M.; Otte-Höller, I.; van Triel, J.J.J.; Veerhuis, R.; Maat-Schieman, M.L.C.; Bu, G.; de Waal, R.M.W.; Verbeek, M.M. Lipoprotein receptor-related protein-1 mediates amyloid-β-mediated cell death of cerebrovascular cells. Am. J. Pathol., 2007, 171(6), 1989-1999.
[http://dx.doi.org/10.2353/ajpath.2007.070050] [PMID: 18055545]
[57]
Zenaro, E.; Piacentino, G.; Constantin, G. The blood-brain barrier in Alzheimer’s disease. Neurobiol. Dis., 2017, 107, 41-56.
[http://dx.doi.org/10.1016/j.nbd.2016.07.007] [PMID: 27425887]
[58]
Navarro, R.; Compte, M.; Álvarez-Vallina, L.; Sanz, L. Immune regulation by pericytes: Modulating innate and adaptive immunity. Front. Immunol., 2016, 7, 480.
[http://dx.doi.org/10.3389/fimmu.2016.00480] [PMID: 27867386]
[59]
Sofroniew, M.V.; Vinters, H.V. Astrocytes: Biology and pathology. Acta Neuropathol., 2010, 119(1), 7-35.
[http://dx.doi.org/10.1007/s00401-009-0619-8] [PMID: 20012068]
[60]
Montes de, O.B.P.; Montes de, O.B.H. Synaptic neuron-astrocyte communication is supported by an order of magnitude analysis of inositol tris-phosphate diffusion at the nanoscale in a model of perisynaptic astrocyte projection. BMC Biophys., 2018, 11(1), 3.
[http://dx.doi.org/10.1186/s13628-018-0043-3] [PMID: 29456837]
[61]
Song, K.; Li, Y.; Zhang, H.; An, N.; Wei, Y.; Wang, L.; Tian, C.; Yuan, M.; Sun, Y.; Xing, Y.; Gao, Y. Oxidative stress-mediated blood-brain barrier (BBB) disruption in neurological diseases. Oxid. Med. Cell. Longev., 2020, 2020, 1-27.
[http://dx.doi.org/10.1155/2020/4356386]
[62]
Baeten, K.M.; Akassoglou, K. Extracellular matrix and matrix receptors in blood-brain barrier formation and stroke. Dev. Neurobiol., 2011, 71(11), 1018-1039.
[http://dx.doi.org/10.1002/dneu.20954] [PMID: 21780303]
[63]
Kim, Y.; Park, J.; Choi, Y.K. The role of astrocytes in the central nervous system focused on bk channel and heme oxygenase metabolites: A review. Antioxidants, 2019, 8(5), 121.
[http://dx.doi.org/10.3390/antiox8050121] [PMID: 31060341]
[64]
Mader, S.; Brimberg, L. Aquaporin-4 water channel in the brain and its implication for health and disease. Cells, 2019, 8(2), 90.
[http://dx.doi.org/10.3390/cells8020090] [PMID: 30691235]
[65]
Kubotera, H.; Ikeshima-Kataoka, H.; Hatashita, Y.; Allegra, M.A.L.; Pavone, F.S.; Inoue, T. Astrocytic endfeet re-cover blood vessels after removal by laser ablation. Sci. Rep., 2019, 9(1), 1263.
[http://dx.doi.org/10.1038/s41598-018-37419-4] [PMID: 30718555]
[66]
Thomsen, M.S.; Routhe, L.J.; Moos, T. The vascular basement membrane in the healthy and pathological brain. J. Cereb. Blood Flow Metab., 2017, 37(10), 3300-3317.
[http://dx.doi.org/10.1177/0271678X17722436] [PMID: 28753105]
[67]
Jäkel, S.; Dimou, L. Glial cells and their function in the adult brain: A journey through the history of their ablation. Front. Cell. Neurosci., 2017, 11, 24.
[http://dx.doi.org/10.3389/fncel.2017.00024] [PMID: 28243193]
[68]
Norris, G.T.; Kipnis, J. Immune cells and CNS physiology: Microglia and beyond. J. Exp. Med., 2019, 216(1), 60-70.
[http://dx.doi.org/10.1084/jem.20180199] [PMID: 30504438]
[69]
da Fonseca, A.C.C.; Matias, D.; Garcia, C.; Amaral, R.; Geraldo, L.H.; Freitas, C.; Lima, F.R.S. The impact of microglial activation on blood-brain barrier in brain diseases. Front. Cell. Neurosci., 2014, 8, 362.
[http://dx.doi.org/10.3389/fncel.2014.00362] [PMID: 25404894]
[70]
Howe, M.D.; McCullough, L.D.; Urayama, A. The role of basement membranes in cerebral amyloid angiopathy. Front. Physiol., 2020, 11, 601320.
[http://dx.doi.org/10.3389/fphys.2020.601320] [PMID: 33329053]
[71]
Hoshiba, T.; Yamaoka, T. Extracellular matrix scaffolds for tissue engineering and biological research. In: Biomaterials Science Series; , 2019; pp. 1-14.
[http://dx.doi.org/10.1039/9781788015998-00001]
[72]
Greene, C.; Hanley, N.; Campbell, M. Claudin-5: Gatekeeper of neurological function. Fluids Barriers CNS, 2019, 16(1), 3.
[http://dx.doi.org/10.1186/s12987-019-0123-z] [PMID: 30691500]
[73]
Itoh, M.; Furuse, M.; Morita, K.; Kubota, K.; Saitou, M.; Tsukita, S. Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J. Cell Biol., 1999, 147(6), 1351-1363.
[http://dx.doi.org/10.1083/jcb.147.6.1351] [PMID: 10601346]
[74]
Bauer, H.C.; Krizbai, I.A.; Bauer, H.; Traweger, A. â€oeYou Shall Not Pass†—tight junctions of the blood brain barrier. Front. Neurosci., 2014, 8, 392.
[http://dx.doi.org/10.3389/fnins.2014.00392] [PMID: 25520612]
[75]
Romanitan, MO; Popescu, BO Spulber, Å Altered expression of claudin family proteins in Alzheimer’s disease and vascular dementia brains. J Cell Mol Med, 2009, 14(5), 1088-1100.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00999.x]
[76]
Förster, C. Tight junctions and the modulation of barrier function in disease. Histochem. Cell Biol., 2008, 130(1), 55-70.
[http://dx.doi.org/10.1007/s00418-008-0424-9] [PMID: 18415116]
[77]
Hirase, T.; Staddon, J.M.; Saitou, M.; Ando-Akatsuka, Y.; Itoh, M.; Furuse, M.; Fujimoto, K.; Tsukita, S.; Rubin, L.L. Occludin as a possible determinant of tight junction permeability in endothelial cells. J. Cell Sci., 1997, 110(14), 1603-1613.
[http://dx.doi.org/10.1242/jcs.110.14.1603] [PMID: 9247194]
[78]
Furuse, M.; Sasaki, H.; Tsukita, S. Manner of interaction of heterogeneous claudin species within and between tight junction strands. J. Cell Biol., 1999, 147(4), 891-903.
[http://dx.doi.org/10.1083/jcb.147.4.891] [PMID: 10562289]
[79]
Davies, D.C. Blood-brain barrier breakdown in septic encephalopathy and brain tumours. J. Anat., 2002, 200(6), 639-646.
[http://dx.doi.org/10.1046/j.1469-7580.2002.00065.x] [PMID: 12162731]
[80]
Rodgers, L.S.; Beam, M.T.; Anderson, J.M.; Fanning, A.S. Epithelial barrier assembly requires coordinated activity of multiple domains of the tight junction protein ZO-1. J. Cell Sci., 2013, 126(Pt 7), jcs.113399.
[http://dx.doi.org/10.1242/jcs.113399] [PMID: 23418357]
[81]
Itoh, M.; Morita, K.; Tsukita, S. Characterization of ZO-2 as a MAGUK family member associated with tight as well as adherens junctions with a binding affinity to occludin and α catenin. J. Biol. Chem., 1999, 274(9), 5981-5986.
[http://dx.doi.org/10.1074/jbc.274.9.5981] [PMID: 10026224]
[82]
Ebnet, K.; Schulz, C.U.; Meyer zu Brickwedde, M.K.; Pendl, G.G.; Vestweber, D. Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. J. Biol. Chem., 2000, 275(36), 27979-27988.
[http://dx.doi.org/10.1074/jbc.M002363200] [PMID: 10856295]
[83]
Fanning, A.S.; Anderson, J.M. Zonula occludens-1 and -2 are cytosolic scaffolds that regulate the assembly of cellular junctions. Ann. N. Y. Acad. Sci., 2009, 1165(1), 113-120.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04440.x] [PMID: 19538295]
[84]
Stamatovic, S.M.; Johnson, A.M.; Keep, R.F.; Andjelkovic, A.V. Junctional proteins of the blood-brain barrier: New insights into function and dysfunction. Tissue Barriers, 2016, 4(1), e1154641.
[http://dx.doi.org/10.1080/21688370.2016.1154641] [PMID: 27141427]
[85]
Ebnet, K.; Suzuki, A.; Ohno, S.; Vestweber, D. Junctional adhesion molecules (JAMs): More molecules with dual functions? J. Cell Sci., 2004, 117(1), 19-29.
[http://dx.doi.org/10.1242/jcs.00930] [PMID: 14657270]
[86]
Luissint, A.C.; Lutz, P.G.; Calderwood, D.A.; Couraud, P.O.; Bourdoulous, S. JAM-L-mediated leukocyte adhesion to endothelial cells is regulated in cis by α4β1 integrin activation. J. Cell Biol., 2008, 183(6), 1159-1173.
[http://dx.doi.org/10.1083/jcb.200805061] [PMID: 19064666]
[87]
Kummer, D.; Ebnet, K. Junctional Adhesion Molecules (JAMs): The JAM-Integrin Connection. Cells, 2018, 7(4), 25.
[http://dx.doi.org/10.3390/cells7040025] [PMID: 29587442]
[88]
Chiba, H.; Osanai, M.; Murata, M.; Kojima, T.; Sawada, N. Transmembrane proteins of tight junctions. Biochim. Biophys. Acta Biomembr., 2008, 1778(3), 588-600.
[http://dx.doi.org/10.1016/j.bbamem.2007.08.017] [PMID: 17916321]
[89]
Martin, T.A.; Jiang, W.G. Loss of tight junction barrier function and its role in cancer metastasis. Biochim. Biophys. Acta Biomembr., 2009, 1788(4), 872-891.
[http://dx.doi.org/10.1016/j.bbamem.2008.11.005] [PMID: 19059202]
[90]
Paris, L.; Tonutti, L.; Vannini, C.; Bazzoni, G. Structural organization of the tight junctions. Biochim. Biophys. Acta Biomembr., 2008, 1778(3), 646-659.
[http://dx.doi.org/10.1016/j.bbamem.2007.08.004] [PMID: 17945185]
[91]
Hartsock, A.; Nelson, W.J. Adherens and tight junctions: Structure, function and connections to the actin cytoskeleton. Biochim. Biophys. Acta Biomembr., 2008, 1778(3), 660-669.
[http://dx.doi.org/10.1016/j.bbamem.2007.07.012] [PMID: 17854762]
[92]
Martìn-Padura, I.; Lostaglio, S.; Schneemann, M.; Williams, L.; Romano, M.; Fruscella, P.; Panzeri, C.; Stoppacciaro, A.; Ruco, L.; Villa, A.; Simmons, D.; Dejana, E. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J. Cell Biol., 1998, 142(1), 117-127.
[http://dx.doi.org/10.1083/jcb.142.1.117] [PMID: 9660867]
[93]
Pachter, J.S.; de Vries, H.E.; Fabry, Z. The blood-brain barrier and its role in immune privilege in the central nervous system. J. Neuropathol. Exp. Neurol., 2003, 62(6), 593-604.
[http://dx.doi.org/10.1093/jnen/62.6.593] [PMID: 12834104]
[94]
Kaur, C.; Ling, E-A. The circumventricular organs. Histol. Histopathol., 2017, 32(9), 879-892.
[http://dx.doi.org/10.14670/HH-11-881] [PMID: 28177105]
[95]
Navarro, P.; Ruco, L.; Dejana, E. Differential localization of VE- and N-cadherins in human endothelial cells: VE-cadherin competes with N-cadherin for junctional localization. J. Cell Biol., 1998, 140(6), 1475-1484.
[http://dx.doi.org/10.1083/jcb.140.6.1475] [PMID: 9508779]
[96]
Abu Taha, A.; Schnittler, H.J. Dynamics between actin and the VE-cadherin/catenin complex. Cell Adhes. Migr., 2014, 8(2), 125-135.
[http://dx.doi.org/10.4161/cam.28243] [PMID: 24621569]
[97]
Kobielak, A.; Fuchs, E. α-catenin: At the junction of intercellular adhesion and actin dynamics. Nat. Rev. Mol. Cell Biol., 2004, 5(8), 614-625.
[http://dx.doi.org/10.1038/nrm1433] [PMID: 15366705]
[98]
Komarova, Y.A.; Kruse, K.; Mehta, D.; Malik, A.B. Protein interactions at endothelial junctions and signaling mechanisms regulating endothelial permeability. Circ. Res., 2017, 120(1), 179-206.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.306534] [PMID: 28057793]
[99]
Matter, K.; Balda, M.S. Signalling to and from tight junctions. Nat. Rev. Mol. Cell Biol., 2003, 4(3), 225-237.
[http://dx.doi.org/10.1038/nrm1055] [PMID: 12612641]
[100]
Beyer, E.C.; Berthoud, V.M. Gap junction gene and protein families: Connexins, innexins, and pannexins. Biochim. Biophys. Acta Biomembr., 2018, 1860(1), 5-8.
[http://dx.doi.org/10.1016/j.bbamem.2017.05.016] [PMID: 28559187]
[101]
Zhao, Y.; Xin, Y.; He, Z.; Hu, W. Function of connexins in the interaction between glial and vascular cells in the central nervous system and related neurological diseases. Neural Plast., 2018, 2018, 1-13.
[http://dx.doi.org/10.1155/2018/6323901] [PMID: 29983707]
[102]
Aasen, T.; Johnstone, S.; Vidal-Brime, L.; Lynn, K.; Koval, M. Connexins: Synthesis, post-translational modifications, and trafficking in health and disease. Int. J. Mol. Sci., 2018, 19(5), 1296.
[http://dx.doi.org/10.3390/ijms19051296] [PMID: 29701678]
[103]
Wilhelm, I.; Molnár, J.; Fazakas, C.; Haskó, J.; Krizbai, I. Role of the blood-brain barrier in the formation of brain metastases. Int. J. Mol. Sci., 2013, 14(1), 1383-1411.
[http://dx.doi.org/10.3390/ijms14011383] [PMID: 23344048]
[104]
Minn, A.; Leclerc, S.; Heydel, J.M.; Minn, A.L.; Denizot, C.; Cattarelli, M.; Netter, P.; Gradinaru, D. Drug transport into the mammalian brain: The nasal pathway and its specific metabolic barrier. J. Drug Target., 2002, 10(4), 285-296.
[http://dx.doi.org/10.1080/713714452] [PMID: 12164377]
[105]
Upadhyay, R.K. Drug delivery systems, CNS protection, and the blood brain barrier. BioMed Res. Int., 2014, 2014, 1-37.
[http://dx.doi.org/10.1155/2014/869269] [PMID: 25136634]
[106]
Pulgar, V.M. Transcytosis to cross the blood brain barrier, new advancements and challenges. Front. Neurosci., 2019, 12, 1019.
[http://dx.doi.org/10.3389/fnins.2018.01019] [PMID: 30686985]
[107]
Qosa, H.; Miller, D.S.; Pasinelli, P.; Trotti, D. Regulation of ABC efflux transporters at blood-brain barrier in health and neurological disorders. Brain Res., 2015, 1628(Pt B), 298-316.
[http://dx.doi.org/10.1016/j.brainres.2015.07.005] [PMID: 26187753]
[108]
Ueno, M.; Nakagawa, T.; Wu, B.; Onodera, M.; Huang, C.; Kusaka, T.; Araki, N.; Sakamoto, H. Transporters in the brain endothelial barrier. Curr. Med. Chem., 2010, 17(12), 1125-1138.
[http://dx.doi.org/10.2174/092986710790827816] [PMID: 20175745]
[109]
Patel, M.M.; Patel, B.M. Crossing the blood-brain barrier: Recent advances in drug delivery to the brain. CNS Drugs, 2017, 31(2), 109-133.
[http://dx.doi.org/10.1007/s40263-016-0405-9] [PMID: 28101766]
[110]
Miller, D.S. Regulation of ABC transporters blood-brain barrier: The good, the bad, and the ugly. Adv. Cancer Res, 2015, 125, 43-70.
[http://dx.doi.org/10.1016/bs.acr.2014.10.002]
[111]
Silva-Adaya, D.; Garza-Lombó, C.; Gonsebatt, M.E. Xenobiotic transport and metabolism in the human brain. Neurotoxicology, 2021, 86, 125-138.
[http://dx.doi.org/10.1016/j.neuro.2021.08.004] [PMID: 34371026]
[112]
O’Keeffe, E.; Campbell, M. Modulating the paracellular pathway at the blood-brain barrier: Current and future approaches for drug delivery to the CNS. Drug Discov. Today Technol., 2016, 20, 35-39.
[http://dx.doi.org/10.1016/j.ddtec.2016.07.008] [PMID: 27986221]
[113]
Abdullahi, W.; Davis, T.P.; Ronaldson, P.T. Functional expression of p-glycoprotein and organic anion transporting polypeptides at the blood-brain barrier: Understanding transport mechanisms for improved CNS drug delivery? AAPS J., 2017, 19(4), 931-939.
[http://dx.doi.org/10.1208/s12248-017-0081-9] [PMID: 28447295]
[114]
Zhu, Y.; Liu, C.; Pang, Z. Dendrimer-based drug delivery systems for brain targeting. Biomolecules, 2019, 9(12), 790.
[http://dx.doi.org/10.3390/biom9120790] [PMID: 31783573]
[115]
Hervé, F.; Ghinea, N.; Scherrmann, J.M. CNS delivery via adsorptive transcytosis. AAPS J., 2008, 10(3), 455-472.
[http://dx.doi.org/10.1208/s12248-008-9055-2] [PMID: 18726697]
[116]
Pardridge, W.M. The role of blood-brain barrier transport of tryptophan and other neutral amino acids in the regulation of substratelimited pathways of brain amino acid metabolism. J. Neural. Transm. Suppl., 1979, 1979(15), 43-54.
[http://dx.doi.org/10.1007/978-3-7091-2243-3_4]
[117]
Hersh, D.S.; Wadajkar, A.S.; Roberts, N.; Perez, J.G.; Connolly, N.P.; Frenkel, V.; Winkles, J.A.; Woodworth, G.F.; Kim, A.J. Evolving drug delivery strategies to overcome the blood brain barrier. Curr. Pharm. Des., 2016, 22(9), 1177-1193.
[http://dx.doi.org/10.2174/1381612822666151221150733] [PMID: 26685681]
[118]
Harilal, S.; Jose, J.; Parambi, D.G.T.; Kumar, R.; Unnikrishnan, M.K.; Uddin, M.S.; Mathew, G.E.; Pratap, R.; Marathakam, A.; Mathew, B. Revisiting the blood-brain barrier: A hard nut to crack in the transportation of drug molecules. Brain Res. Bull., 2020, 160, 121-140.
[http://dx.doi.org/10.1016/j.brainresbull.2020.03.018] [PMID: 32315731]
[119]
Banks, W. Blood-brain barrier transport of cytokines: A mechanism for neuropathology. Curr. Pharm. Des., 2005, 11(8), 973-984.
[http://dx.doi.org/10.2174/1381612053381684] [PMID: 15777248]
[120]
Zhao, F.Q.; Keating, A. Functional properties and genomics of glucose transporters. Curr. Genom., 2007, 8(2), 113-128.
[http://dx.doi.org/10.2174/138920207780368187] [PMID: 18660845]
[121]
Vijay, N.; Morris, M. Role of monocarboxylate transporters in drug delivery to the brain. Curr. Pharm. Des., 2014, 20(10), 1487-1498.
[http://dx.doi.org/10.2174/13816128113199990462] [PMID: 23789956]
[122]
Banks, W.A.; Kastin, A.J.; Komaki, G.; Arimura, A. Passage of pituitary adenylate cyclase activating polypeptide1-27 and pituitary ade-nylate cyclase activating polypeptide1-38 across the blood-brain barrier. J. Pharmacol. Exp. Ther., 1993, 267(2), 690-696.
[PMID: 8246142]
[123]
Biology of the Prokaryotes; Lengeler, J.W.; Drews, G.; Schlegel, H.G., Eds.; Blackwell Science Ltd: Oxford, UK, 1998.
[http://dx.doi.org/10.1002/9781444313314]
[124]
Banks, W.A. Peptides and the blood-brain barrier. Peptides, 2015, 72, 16-19.
[http://dx.doi.org/10.1016/j.peptides.2015.03.010] [PMID: 25805003]
[125]
Banks, W.A.; Kastin, A.J. Peptide transport systems for opiates across the blood-brain barrier. Am. J. Physiol. Endocrinol. Metab., 1990, 259(1), E1-E10.
[http://dx.doi.org/10.1152/ajpendo.1990.259.1.E1] [PMID: 2196819]
[126]
Banks, W.A. Characteristics of compounds that cross the blood-brain barrier. BMC Neurol., 2009, 9(S1), S3.
[http://dx.doi.org/10.1186/1471-2377-9-S1-S3] [PMID: 19534732]
[127]
Balakrishnan, L.; Venter, H.; Shilling, R.A.; van Veen, H.W. Reversible transport by the ATP-binding cassette multidrug export pump LmrA: ATP synthesis at the expense of downhill ethidium uptake. J. Biol. Chem., 2004, 279(12), 11273-11280.
[http://dx.doi.org/10.1074/jbc.M308494200] [PMID: 14660649]
[128]
Wilkens, S. Structure and mechanism of ABC transporters. F1000Prime Rep., 2015, 7, 14.
[http://dx.doi.org/10.12703/P7-14] [PMID: 25750732]
[129]
Evers, R.; Zaman, G.J.; van Deemter, L.; Jansen, H.; Calafat, J.; Oomen, L.C.; Oude Elferink, R.P.; Borst, P.; Schinkel, A.H. Basolateral localization and export activity of the human multidrug resistance-associated protein in polarized pig kidney cells. J. Clin. Invest., 1996, 97(5), 1211-1218.
[http://dx.doi.org/10.1172/JCI118535] [PMID: 8636432]
[130]
Roelofsen, H.; Vos, T.A.; Schippers, I.J.; Kuipers, F.; Koning, H.; Moshage, H.; Jansen, P.L.; Müller, M. Increased levels of the multidrug resistance protein in lateral membranes of proliferating hepatocyte-derived cells. Gastroenterology, 1997, 112(2), 511-521.
[http://dx.doi.org/10.1053/gast.1997.v112.pm9024305] [PMID: 9024305]
[131]
Nies, A.T.; Keppler, D. The apical conjugate efflux pump ABCC2 (MRP2). Pflugers Arch., 2007, 453(5), 643-659.
[http://dx.doi.org/10.1007/s00424-006-0109-y] [PMID: 16847695]
[132]
Ballatori, N. Biology of a novel organic solute and steroid transporter, OSTalpha-OSTbeta. Exp. Biol. Med., 2005, 230(10), 689-698.
[http://dx.doi.org/10.1177/153537020523001001] [PMID: 16246895]
[133]
Lang, T.; Hitzl, M.; Burk, O.; Mornhinweg, E.; Keil, A.; Kerb, R.; Klein, K.; Zanger, U.M.; Eichelbaum, M.; Fromm, M.F. Genetic polymorphisms in the multidrug resistance-associated protein 3 (ABCC3, MRP3) gene and relationship to its mRNA and protein expression in human liver. Pharmacogenetics, 2004, 14(3), 155-164.
[http://dx.doi.org/10.1097/00008571-200403000-00003] [PMID: 15167703]
[134]
Oevermann, L.; Scheitz, J.; Starke, K.; Köck, K.; Kiefer, T.; Dölken, G.; Nießen, J.; Greinacher, A.; Siegmund, W.; Zygmunt, M.; Kroemer, H.K.; Jedlitschky, G.; Ritter, C.A. Hematopoietic stem cell differentiation affects expression and function of MRP4 (ABCC4), a transport protein for signaling molecules and drugs. Int. J. Cancer, 2009, 124(10), 2303-2311.
[http://dx.doi.org/10.1002/ijc.24207] [PMID: 19142964]
[135]
Rasmuson, A.; Kock, A.; Fuskevåg, O.M.; Kruspig, B.; Simón-Santamaría, J.; Gogvadze, V.; Johnsen, J.I.; Kogner, P.; Sveinbjörnsson, B. Autocrine prostaglandin E2 signaling promotes tumor cell survival and proliferation in childhood neuroblastoma. PLoS One, 2012, 7(1), e29331.
[http://dx.doi.org/10.1371/journal.pone.0029331] [PMID: 22276108]
[136]
Huynh, T.; Norris, M.D.; Haber, M.; Henderson, M.J. ABCC4/MRP4: A MYCN-regulated transporter and potential therapeutic target in neuroblastoma. Front. Oncol., 2012, 2, 178.
[http://dx.doi.org/10.3389/fonc.2012.00178] [PMID: 23267433]
[137]
Meyer zu Schwabedissen, H.E.U.; Grube, M.; Heydrich, B.; Linnemann, K.; Fusch, C.; Kroemer, H.K.; Jedlitschky, G. Expression, localization, and function of MRP5 (ABCC5), a transporter for cyclic nucleotides, in human placenta and cultured human trophoblasts: effects of gestational age and cellular differentiation. Am. J. Pathol., 2005, 166(1), 39-48.
[http://dx.doi.org/10.1016/S0002-9440(10)62230-4] [PMID: 15631998]
[138]
Arányi, T.; Bacquet, C.; Boussac, H.; Ratajewski, M.; Pomozi, V.; Fülöp, K.; Brampton, C.N.; Pulaski, L.; Saux, O.L.; Váradi, A. Transcriptional regulation of the ABCC6 gene and the background of impaired function of missense disease-causing mutations. Front. Genet., 2013, 4, 27.
[http://dx.doi.org/10.3389/fgene.2013.00027] [PMID: 23483032]
[139]
Mao, Q.; Unadkat, J.D. Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport--an update. AAPS J., 2015, 17(1), 65-82.
[http://dx.doi.org/10.1208/s12248-014-9668-6] [PMID: 25236865]
[140]
Hedtke, V.; Bakovic, M. Choline transport for phospholipid synthesis: An emerging role of choline transporter-like protein 1. Exp. Biol. Med., 2019, 244(8), 655-662.
[http://dx.doi.org/10.1177/1535370219830997] [PMID: 30776907]
[141]
Nigam, S.K.; Bush, K.T.; Martovetsky, G.; Ahn, S.Y.; Liu, H.C.; Richard, E.; Bhatnagar, V.; Wu, W. The organic anion transporter (OAT) family: A systems biology perspective. Physiol. Rev., 2015, 95(1), 83-123.
[http://dx.doi.org/10.1152/physrev.00025.2013] [PMID: 25540139]
[142]
Sekhar, G.N.; Georgian, A.R.; Sanderson, L.; Vizcay-Barrena, G.; Brown, R.C.; Muresan, P.; Fleck, R.A.; Thomas, S.A. Organic cation transporter 1 (OCT1) is involved in pentamidine transport at the human and mouse blood-brain barrier (BBB). PLoS One, 2017, 12(3), e0173474.
[http://dx.doi.org/10.1371/journal.pone.0173474] [PMID: 28362799]
[143]
Yaguchi, Y.; Tachikawa, M.; Zhang, Z.; Terasaki, T. Organic anion-transporting polypeptide 1a4 (Oatp1a4/Slco1a4) at the blood-arachnoid barrier is the major pathway of sulforhodamine-101 clearance from cerebrospinal fluid of rats. Mol. Pharm., 2019, 16(5), 2021-2027.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00005] [PMID: 30977661]
[144]
Tsuji, A. Influx transporters and drug targeting: Application of peptide and cation transporters. Int. Congr. Ser., 2005, 1277, 75-84.
[http://dx.doi.org/10.1016/j.ics.2005.02.013]
[145]
Neyen, C.; Plüddemann, A.; Roversi, P.; Thomas, B.; Cai, L.; van der Westhuyzen, D.R.; Sim, R.B.; Gordon, S. Macrophage scavenger receptor A mediates adhesion to apolipoproteins A-I and E. Biochemistry, 2009, 48(50), 11858-11871.
[http://dx.doi.org/10.1021/bi9013769] [PMID: 19911804]
[146]
Goti, D.; Hrzenjak, A.; Levak-Frank, S.; Frank, S.; van der Westhuyzen, D.R.; Malle, E.; Sattler, W. Scavenger receptor class B, type I is expressed in porcine brain capillary endothelial cells and contributes to selective uptake of HDL-associated vitamin E. J. Neurochem., 2001, 76(2), 498-508.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00100.x] [PMID: 11208913]
[147]
Fung, K.Y.; Wang, C.; Nyegaard, S.; Heit, B.; Fairn, G.D.; Lee, W.L. SR-BI mediated transcytosis of hdl in brain microvascular endothelial cells is independent of caveolin, clathrin, and PDZK1. Front. Physiol., 2017, 8, 841.
[http://dx.doi.org/10.3389/fphys.2017.00841] [PMID: 29163190]
[148]
Cho, S. CD36 as a therapeutic target for endothelial dysfunction in stroke. Curr. Pharm. Des., 2012, 18(25), 3721-3730.
[http://dx.doi.org/10.2174/138161212802002760] [PMID: 22574985]
[149]
Campos-Bedolla, P.; Walter, F.R.; Veszelka, S.; Deli, M.A. Role of the blood-brain barrier in the nutrition of the central nervous system. Arch. Med. Res., 2014, 45(8), 610-638.
[http://dx.doi.org/10.1016/j.arcmed.2014.11.018] [PMID: 25481827]
[150]
Smith, Q.R. Transport of glutamate and other amino acids at the blood-brain barrier. J. Nutr., 2000, 130(S4), 1016S-1022S.
[http://dx.doi.org/10.1093/jn/130.4.1016S] [PMID: 10736373]
[151]
O’Kane, R.L.; Viña, J.R.; Simpson, I.; Zaragozá, R.; Mokashi, A.; Hawkins, R.A. Cationic amino acid transport across the blood-brain barrier is mediated exclusively by system y +. Am. J. Physiol. Endocrinol. Metab., 2006, 291(2), E412-E419.
[http://dx.doi.org/10.1152/ajpendo.00007.2006] [PMID: 16569760]
[152]
O’Kane, R.L.; Martínez-López, I.; DeJoseph, M.R.; Viña, J.R.; Hawkins, R.A. Na+-dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) of the blood-brain barrier. J. Biol. Chem., 1999, 274(45), 31891-31895.
[http://dx.doi.org/10.1074/jbc.274.45.31891] [PMID: 10542215]
[153]
Hawkins, R.A. The blood-brain barrier and glutamate. Am. J. Clin. Nutr., 2009, 90(3), 867S-874S.
[http://dx.doi.org/10.3945/ajcn.2009.27462BB] [PMID: 19571220]
[154]
Sakai, K.; Shimizu, H.; Koike, T.; Furuya, S.; Watanabe, M. Neutral amino acid transporter ASCT1 is preferentially expressed in L-Ser-synthetic/storing glial cells in the mouse brain with transient expression in developing capillaries. J. Neurosci., 2003, 23(2), 550-560.
[http://dx.doi.org/10.1523/JNEUROSCI.23-02-00550.2003] [PMID: 12533615]
[155]
Tetsuka, K.; Takanaga, H.; Ohtsuki, S.; Hosoya, K.; Terasaki, T. The l-isomer-selective transport of aspartic acid is mediated by ASCT2 at the blood-brain barrier. J. Neurochem., 2003, 87(4), 891-901.
[http://dx.doi.org/10.1046/j.1471-4159.2003.02063.x] [PMID: 14622120]
[156]
Gliddon, C.M.; Shao, Z.; LeMaistre, J.L.; Anderson, C.M. Cellular distribution of the neutral amino acid transporter subtype ASCT2 in mouse brain. J. Neurochem., 2009, 108(2), 372-383.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05767.x] [PMID: 19012749]
[157]
Cubelos, B.; Leite, C.; Giménez, C.; Zafra, F. Localization of the glycine transporter GLYT1 in glutamatergic synaptic vesicles. Neurochem. Int., 2014, 73, 204-210.
[http://dx.doi.org/10.1016/j.neuint.2013.09.002] [PMID: 24036061]
[158]
Nguyen, L.N.; Ma, D.; Shui, G.; Wong, P.; Cazenave-Gassiot, A.; Zhang, X.; Wenk, M.R.; Goh, E.L.K.; Silver, D.L. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature, 2014, 509(7501), 503-506.
[http://dx.doi.org/10.1038/nature13241] [PMID: 24828044]
[159]
Yang, Y.R.; Xiong, X.Y.; Liu, J.; Wu, L.R.; Zhong, Q.; Zhou, K.; Meng, Z.Y.; Liu, L.; Wang, F.X.; Gong, Q.W.; Liao, M.F.; Duan, C.M.; Li, J.; Yang, M.H.; Zhang, Q.; Gong, C.X.; Yang, Q.W. Mfsd2a (Major Facilitator Superfamily Domain Containing 2a) attenuates intracerebral hemorrhage-induced blood-brain barrier disruption by inhibiting vesicular transcytosis. J. Am. Heart Assoc., 2017, 6(7), e005811.
[http://dx.doi.org/10.1161/JAHA.117.005811] [PMID: 28724654]
[160]
Buccafusca, R.; Venditti, C.P.; Kenyon, L.C.; Johanson, R.A.; Van Bockstaele, E.; Ren, J.; Pagliardini, S.; Minarcik, J.; Golden, J.A.; Coady, M.J.; Greer, J.J.; Berry, G.T. Characterization of the null murine sodium/myo-inositol cotransporter 1 (Smit1 or Slc5a3) phenotype: Myo-inositol rescue is independent of expression of its cognate mitochondrial ribosomal protein subunit 6 (Mrps6) gene and of phosphatidylinositol levels in neonatal brain. Mol. Genet. Metab., 2008, 95(1-2), 81-95.
[http://dx.doi.org/10.1016/j.ymgme.2008.05.008] [PMID: 18675571]
[161]
Di Daniel, E.; Mok, M.H.S.; Mead, E.; Mutinelli, C.; Zambello, E.; Caberlotto, L.L.; Pell, T.J.; Langmead, C.J.; Shah, A.J.; Duddy, G.; Kew, J.N.C.; Maycox, P.R. Evaluation of expression and function of the H+/myo-inositol transporter HMIT. BMC Cell Biol., 2009, 10(1), 54.
[http://dx.doi.org/10.1186/1471-2121-10-54] [PMID: 19607714]
[162]
Guillén-Gómez, E.; Calbet, M.; Casado, J.; de Lecea, L.; Soriano, E.; Pastor-Anglada, M.; Burgaya, F. Distribution of CNT2 and ENT1 transcripts in rat brain: selective decrease of CNT2 mRNA in the cerebral cortex of sleep-deprived rats. J. Neurochem., 2004, 90(4), 883-893.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02545.x] [PMID: 15287894]
[163]
Nishimura, T.; Chishu, T.; Tomi, M.; Nakamura, R.; Sato, K.; Kose, N.; Sai, Y.; Nakashima, E. Mechanism of nucleoside uptake in rat placenta and induction of placental CNT2 in experimental diabetes. Drug Metab. Pharmacokinet., 2012, 27(4), 439-446.
[http://dx.doi.org/10.2133/dmpk.DMPK-11-RG-103] [PMID: 22354287]
[164]
Matsuda, T.; Koyama, Y.; Baba, A. Functional proteins involved in regulation of intracellular Ca2+ for drug development: pharmacology of SEA0400, a specific inhibitor of the Na+-Ca2+ exchanger. J. Pharmacol. Sci., 2005, 97(3), 339-343.
[http://dx.doi.org/10.1254/jphs.FMJ04007X2] [PMID: 15764845]
[165]
Teisseyre, A.; Palko-Labuz, A.; Sroda-Pomianek, K.; Michalak, K. Voltage-gated potassium channel Kv1.3 as a target in therapy of cancer. Front. Oncol., 2019, 9, 933.
[http://dx.doi.org/10.3389/fonc.2019.00933] [PMID: 31612103]
[166]
Harik, S.I. Blood--brain barrier sodium/potassium pump: Modulation by central noradrenergic innervation. Proc. Natl. Acad. Sci., 1986, 83(11), 4067-4070.
[http://dx.doi.org/10.1073/pnas.83.11.4067] [PMID: 3012548]
[167]
Zhang, J.; Pu, H.; Zhang, H.; Wei, Z.; Jiang, X.; Xu, M.; Zhang, L.; Zhang, W.; Liu, J.; Meng, H.; Stetler, R.A.; Sun, D.; Chen, J.; Gao, Y.; Chen, L. Inhibition of Na + -K + -2Cl − cotransporter attenuates blood-brain-barrier disruption in a mouse model of traumatic brain injury. Neurochem. Int., 2017, 111, 23-31.
[http://dx.doi.org/10.1016/j.neuint.2017.05.020] [PMID: 28577991]
[168]
Huang, Q.; Wang, X.; Lin, X.; Zhang, J.; You, X.; Shao, A. The role of transient receptor potential channels in blood-brain barrier dysfunction after ischemic stroke. Biomed. Pharmacother., 2020, 131, 110647.
[http://dx.doi.org/10.1016/j.biopha.2020.110647] [PMID: 32858500]
[169]
Miyake, T.; Shirakawa, H.; Nakagawa, T.; Kaneko, S. Activation of mitochondrial transient receptor potential vanilloid 1 channel contributes to microglial migration. Glia, 2015, 63(10), 1870-1882.
[http://dx.doi.org/10.1002/glia.22854] [PMID: 26010461]
[170]
Gees, M.; Colsoul, B.; Nilius, B. The role of transient receptor potential cation channels in Ca2+ signaling. Cold Spring Harb. Perspect. Biol., 2010, 2(10), a003962-a003962.
[http://dx.doi.org/10.1101/cshperspect.a003962] [PMID: 20861159]
[171]
Gerzanich, V.; Woo, S.K.; Vennekens, R.; Tsymbalyuk, O.; Ivanova, S.; Ivanov, A.; Geng, Z.; Chen, Z.; Nilius, B.; Flockerzi, V.; Freichel, M.; Simard, J.M. De novo expression of Trpm4 initiates secondary hemorrhage in spinal cord injury. Nat. Med., 2009, 15(2), 185-191.
[http://dx.doi.org/10.1038/nm.1899] [PMID: 19169264]
[172]
Huang, Y.; Fliegert, R.; Guse, A.H.; Lü, W.; Du, J. A structural overview of the ion channels of the TRPM family. Cell Calcium, 2020, 85, 102111.
[http://dx.doi.org/10.1016/j.ceca.2019.102111] [PMID: 31812825]
[173]
Kanekiyo, T.; Bu, G. The low-density lipoprotein receptor-related protein 1 and amyloid-Î2 clearance in Alzheimer’s disease. Front. Aging Neurosci., 2014, 6, 93.
[http://dx.doi.org/10.3389/fnagi.2014.00093] [PMID: 24904407]
[174]
Deane, R.J. Is RAGE still a therapeutic target for Alzheimer’s disease? Future Med. Chem., 2012, 4(7), 915-925.
[http://dx.doi.org/10.4155/fmc.12.51] [PMID: 22571615]
[175]
Stocki, P.; Szary, J.; Rasmussen, C.L.M.; Demydchuk, M.; Northall, L.; Logan, D.B.; Gauhar, A.; Thei, L.; Moos, T.; Walsh, F.S.; Rutkowski, J.L. Blood‐brain barrier transport using a high affinity, brain‐selective VNAR antibody targeting transferrin receptor 1. FASEB J., 2021, 35(2), e21172.
[http://dx.doi.org/10.1096/fj.202001787R] [PMID: 33241587]
[176]
Hayashi, K.; Longenecker, K.L.; Liu, Y.L.; Faust, B.; Prashar, A.; Hampl, J.; Stoll, V.; Vivona, S. Complex of human Melanotransferrin and SC57.32 Fab fragment reveals novel interdomain arrangement with ferric N-lobe and open C-lobe. Sci. Rep., 2021, 11(1), 566.
[http://dx.doi.org/10.1038/s41598-020-79090-8] [PMID: 33436675]
[177]
Takahashi, K.; Foster, J.B.; Lin, C.L.G. Glutamate transporter EAAT2: Regulation, function, and potential as a therapeutic target for neurological and psychiatric disease. Cell. Mol. Life Sci., 2015, 72(18), 3489-3506.
[http://dx.doi.org/10.1007/s00018-015-1937-8] [PMID: 26033496]
[178]
Abdullahi, W.; Tripathi, D.; Ronaldson, P.T. Blood-brain barrier dysfunction in ischemic stroke: Targeting tight junctions and transporters for vascular protection. Am. J. Physiol. Cell Physiol., 2018, 315(3), C343-C356.
[http://dx.doi.org/10.1152/ajpcell.00095.2018] [PMID: 29949404]
[179]
Ojiakor, O.A.; Rylett, R.J. Modulation of sodium-coupled choline transporter CHT function in health and disease. Neurochem. Int., 2020, 140, 104810.
[http://dx.doi.org/10.1016/j.neuint.2020.104810] [PMID: 32768485]
[180]
McHugh, P.C.; Buckley, D.A. The structure and function of the dopamine transporter and its role in CNS diseases. Vitam Horm, 2015, 98, 339-369.
[http://dx.doi.org/10.1016/bs.vh.2014.12.009]
[181]
Bianchi, M.G.; Bardelli, D.; Chiu, M.; Bussolati, O. Changes in the expression of the glutamate transporter EAAT3/EAAC1 in health and disease. Cell. Mol. Life Sci., 2014, 71(11), 2001-2015.
[http://dx.doi.org/10.1007/s00018-013-1484-0] [PMID: 24162932]
[182]
Kim, W.S.; Weickert, C.S.; Garner, B. Role of ATP-binding cassette transporters in brain lipid transport and neurological disease. J. Neurochem., 2008, 104(5), 1145-1166.
[http://dx.doi.org/10.1111/j.1471-4159.2007.05099.x] [PMID: 17973979]
[183]
Li, X.; DiFiglia, M. The recycling endosome and its role in neurological disorders. Prog. Neurobiol., 2012, 97(2), 127-141.
[http://dx.doi.org/10.1016/j.pneurobio.2011.10.002] [PMID: 22037413]
[184]
Hubbard, J.A.; Binder, D.K. Targeting glutamate transporter-1 in neurological diseases. Oncotarget, 2017, 8(14), 22311-22312.
[http://dx.doi.org/10.18632/oncotarget.16374] [PMID: 28423610]
[185]
Pajarillo, E.; Rizor, A.; Lee, J.; Aschner, M.; Lee, E. The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: Potential targets for neurotherapeutics. Neuropharmacology, 2019, 161, 107559.
[http://dx.doi.org/10.1016/j.neuropharm.2019.03.002] [PMID: 30851309]
[186]
Sleigh, J.N.; Rossor, A.M.; Fellows, A.D.; Tosolini, A.P.; Schiavo, G. Axonal transport and neurological disease. Nat. Rev. Neurol., 2019, 15(12), 691-703.
[http://dx.doi.org/10.1038/s41582-019-0257-2] [PMID: 31558780]
[187]
Huttunen, K.M.; Terasaki, T.; Urtti, A.; Montaser, A.B.; Uchida, Y. Pharmacoproteomics of brain barrier transporters and substrate design for the brain targeted drug delivery. Pharm. Res., 2022, 39(7), 1363-1392.
[http://dx.doi.org/10.1007/s11095-022-03193-2] [PMID: 35257288]
[188]
Potschka, H.; Luna-Munguia, H. CNS transporters and drug delivery in epilepsy. Curr. Pharm. Des., 2014, 20(10), 1534-1542.
[http://dx.doi.org/10.2174/13816128113199990461] [PMID: 23789955]
[189]
Su, Y.; Sinko, P.J. Drug delivery across the blood-brain barrier: why is it difficult? How to measure and improve it? Expert Opin. Drug Deliv., 2006, 3(3), 419-435.
[http://dx.doi.org/10.1517/17425247.3.3.419] [PMID: 16640501]
[190]
McCaffrey, G.; Davis, T.P. Physiology and pathophysiology of the blood-brain barrier: P-glycoprotein and occludin trafficking as therapeutic targets to optimize central nervous system drug delivery. J. Investig. Med., 2012, 60(8), 1131-1140.
[http://dx.doi.org/10.2310/JIM.0b013e318276de79] [PMID: 23138008]
[191]
Kisała, J.; Hęclik, K.I.; Pogocki, K.; Pogocki, D. Essentials and perspectives of computational modelling assistance for CNS-oriented nanoparticle-based drug delivery systems. Curr. Med. Chem., 2019, 25(42), 5894-5913.
[http://dx.doi.org/10.2174/0929867325666180517095742] [PMID: 29768999]
[192]
Pavan, B.; Dalpiaz, A.; Ciliberti, N.; Biondi, C.; Manfredini, S.; Vertuani, S. Progress in drug delivery to the central nervous system by the prodrug approach. Molecules, 2008, 13(5), 1035-1065.
[http://dx.doi.org/10.3390/molecules13051035] [PMID: 18560328]
[193]
Bozdağ Pehlivan, S. Nanotechnology-based drug delivery systems for targeting, imaging and diagnosis of neurodegenerative diseases. Pharm. Res., 2013, 30(10), 2499-2511.
[http://dx.doi.org/10.1007/s11095-013-1156-7] [PMID: 23959851]
[194]
Gutierrez-Millan, C.; Calvo Díaz, C.; Lanao, J.M.; Colino, C.I. Advances in exosomes‐based drug delivery systems. Macromol. Biosci., 2021, 21(1), 2000269.
[http://dx.doi.org/10.1002/mabi.202000269] [PMID: 33094544]
[195]
Fan, Z.; Kumon, R.E.; Deng, C.X. Mechanisms of microbubble-facilitated sonoporation for drug and gene delivery. Ther. Deliv., 2014, 5(4), 467-486.
[http://dx.doi.org/10.4155/tde.14.10] [PMID: 24856171]
[196]
Gyimesi, G.; Hediger, M.A. Transporter-mediated drug delivery. Molecules, 2023, 28(3), 1151.
[http://dx.doi.org/10.3390/molecules28031151] [PMID: 36770817]
[197]
Johnsen, K.B.; Burkhart, A.; Thomsen, L.B.; Andresen, T.L.; Moos, T. Targeting the transferrin receptor for brain drug delivery. Prog. Neurobiol., 2019, 181, 101665.
[http://dx.doi.org/10.1016/j.pneurobio.2019.101665] [PMID: 31376426]
[198]
Costantino, L. Drug delivery to the CNS and polymeric nanoparticulate carriers. Future Med. Chem., 2010, 2(11), 1681-1701.
[http://dx.doi.org/10.4155/fmc.10.249] [PMID: 21428839]
[199]
Yang, X.; Zou, L-H.; Ding, W-Y.; Zhang, Z-B.; Chen, J-Q.; Li, JL.; Feng, H.L.; Li, Y.Y.; Tang, L.; Feng, J.F. [Research progress on liposome and nanomicelle targeted drug delivery system across blood-brain barrier]. Zhongguo Zhongyao Zazhi, 2022, 47(22), 5965-5977.
[http://dx.doi.org/10.19540/j.cnki.cjcmm.20220726.602] [PMID: 36471922]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy