Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

Applications of CRISPR Cas-9 in Ovarian Cancer Research

Author(s): Syed Aoun Mehmood Sherazi, Fareena Rafique, Muhammad Haris, Abida Arshad, Hammad Qaiser, Mohammad Uzair and Muhammad Arshad*

Volume 30, Issue 8, 2023

Published on: 19 July, 2023

Page: [653 - 667] Pages: 15

DOI: 10.2174/0929866530666230607104453

Price: $65

Abstract

Ovarian cancer is a highly prevalent malignancy among women and affects a significant population worldwide. Different forms of hormonal treatments or chemotherapies are used to treat ovarian cancer, but the possible side effects, including menopausal symptoms, can be severe, forcing some patients to prematurely stop the treatment. The emerging genome editing technology, known as clustered regularly interspaced short palindromic repeats (CRISPR)-caspase 9 (Cas9), has the potential to treat ovarian cancer via gene editing strategies. Studies have reported CRISPR knockouts of several oncogenes that are involved in the pathogenesis of ovarian cancer, such as BMI1, CXCR2, MTF1, miR-21, and BIRC5, and demonstrate the potential of the CRISPR-Cas9 genome editing technique to effectively treat ovarian cancer. However, there are limitations that restrict the biomedical applications of CRISPR-Cas9 and limit the implementation of Gene therapy for ovarian cancer. These include offtarget DNA cleavage and the effects of CRISPR-Cas9 in non-target, normal cells. This article aims to review the current state of ovarian cancer research, highlight the significance of CRISPR-Cas9 in ovarian cancer treatment, and establish the groundwork for potential clinical research.

Keywords: CRISPR-Cas9, genome editing, ovarian cancer, gene therapy, targeted therapy, oncogenes.

Graphical Abstract
[1]
Fortner, R.T.; Poole, E.M.; Wentzensen, N.A.; Trabert, B.; White, E.; Arslan, A.A.; Patel, A.V.; Setiawan, V.W.; Visvanathan, K.; Weiderpass, E.; Adami, H.O.; Black, A.; Bernstein, L.; Brinton, L.A.; Buring, J.; Clendenen, T.V.; Fournier, A.; Fraser, G.; Gapstur, S.M.; Gaudet, M.M.; Giles, G.G.; Gram, I.T.; Hartge, P.; Hoffman-Bolton, J.; Idahl, A.; Kaaks, R.; Kirsh, V.A.; Knutsen, S.; Koh, W.P.; Lacey, J.V., Jr; Lee, I.M.; Lundin, E.; Merritt, M.A.; Milne, R.L.; Onland-Moret, N.C.; Peters, U.; Poynter, J.N.; Rinaldi, S.; Robien, K.; Rohan, T.; Sánchez, M.J.; Schairer, C.; Schouten, L.J.; Tjonneland, A.; Townsend, M.K.; Travis, R.C.; Trichopoulou, A.; Brandt, P.A.; Vineis, P.; Wilkens, L.; Wolk, A.; Yang, H.P.; Zeleniuch-Jacquotte, A.; Tworoger, S.S. Ovarian cancer risk factors by tumor aggressiveness: an analysis from the ovarian cancer cohort consortium. Int. J. Cancer, 2019, 145(1), 58-69.
[http://dx.doi.org/10.1002/ijc.32075] [PMID: 30561796]
[2]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Cabasag, C.J.; Butler, J.; Arnold, M.; Rutherford, M.; Bardot, A.; Ferlay, J.; Morgan, E.; Møller, B.; Gavin, A.; Norell, C.H.; Harrison, S.; Saint-Jacques, N.; Eden, M.; Rous, B.; Nordin, A.; Hanna, L.; Kwon, J.; Cohen, P.A.; Altman, A.D.; Shack, L.; Kozie, S.; Engholm, G.; De, P.; Sykes, P.; Porter, G.; Ferguson, S.; Walsh, P.; Trevithick, R.; Tervonen, H.; O’Connell, D.; Bray, F.; Soerjomataram, I. Exploring variations in ovarian cancer survival by age and stage (ICBP SurvMark-2): A population-based study. Gynecol. Oncol., 2020, 157(1), 234-244.
[http://dx.doi.org/10.1016/j.ygyno.2019.12.047] [PMID: 32005583]
[4]
Allemani, C.; Matsuda, T.; Di Carlo, V.; Harewood, R.; Matz, M. Nikšić; M.; Bonaventure, A.; Valkov, M.; Johnson, C.J.; Estève, J.; Ogunbiyi, O.J.; Azevedo e Silva, G.; Chen, W.Q.; Eser, S.; Engholm, G.; Stiller, C.A.; Monnereau, A.; Woods, R.R.; Visser, O.; Lim, G.H.; Aitken, J.; Weir, H.K.; Coleman, M.P.; Bouzbid, S.; Hamdi-Chérif, M.; Zaidi, Z.; Meguenni, K.; Regagba, D.; Bayo, S.; Cheick, B.T.; Manraj, S.S.; Bendahhou, K.; Fabowale, A.; Bradshaw, D.; Somdyala, N.I.M.; Kumcher, I.; Moreno, F.; Calabrano, G.H.; Espinola, S.B.; Carballo, Q.B.; Fita, R.; Diumenjo, M.C.; Laspada, W.D.; Ibañez, S.G.; Lima, C.A.; De Souza, P.C.F.; Del Pino, K.; Laporte, C.; Curado, M.P.; de Oliveira, J.C.; Veneziano, C.L.A.; Veneziano, D.B.; Latorre, M.R.D.O.; Tanaka, L.F.; Rebelo, M.S.; Santos, M.O.; Galaz, J.C.; Aparicio Aravena, M.; Sanhueza Monsalve, J.; Herrmann, D.A.; Vargas, S.; Herrera, V.M.; Uribe, C.J.; Bravo, L.E.; Garcia, L.S.; Arias-Ortiz, N.E.; Morantes, D.; Jurado, D.M.; Yépez Chamorro, M.C.; Delgado, S.; Ramirez, M.; Galán Alvarez, Y.H.; Torres, P.; Martínez-Reyes, F.; Jaramillo, L.; Quinto, R.; Castillo, J.; Mendoza, M.; Cueva, P.; Yépez, J.G.; Bhakkan, B.; Deloumeaux, J.; Joachim, C.; Macni, J.; Carrillo, R.; Shalkow Klincovstein, J.; Rivera Gomez, R.; Poquioma, E.; Tortolero-Luna, G.; Zavala, D.; Alonso, R.; Barrios, E.; Eckstrand, A.; Nikiforuk, C.; Noonan, G.; Turner, D.; Kumar, E.; Zhang, B.; McCrate, F.R.; Ryan, S.; MacIntyre, M.; Saint-Jacques, N.; Nishri, D.E.; McClure, C.A.; Vriends, K.A.; Kozie, S.; Stuart-Panko, H.; Freeman, T.; George, J.T.; Brockhouse, J.T.; O’Brien, D.K.; Holt, A.; Almon, L.; Kwong, S.; Morris, C.; Rycroft, R.; Mueller, L.; Phillips, C.E.; Brown, H.; Cromartie, B.; Schwartz, A.G.; Vigneau, F.; Levin, G.M.; Wohler, B.; Bayakly, R.; Ward, K.C.; Gomez, S.L.; McKinley, M.; Cress, R.; Green, M.D.; Miyagi, K.; Ruppert, L.P.; Lynch, C.F.; Huang, B.; Tucker, T.C.; Deapen, D.; Liu, L.; Hsieh, M.C.; Wu, X.C.; Schwenn, M.; Gershman, S.T.; Knowlton, R.C.; Alverson, G.; Copeland, G.E.; Bushhouse, S.; Rogers, D.B.; Jackson-Thompson, J.; Lemons, D.; Zimmerman, H.J.; Hood, M.; Roberts-Johnson, J.; Rees, J.R.; Riddle, B.; Pawlish, K.S.; Stroup, A.; Key, C.; Wiggins, C.; Kahn, A.R.; Schymura, M.J.; Radhakrishnan, S.; Rao, C.; Giljahn, L.K.; Slocumb, R.M.; Espinoza, R.E.; Khan, F.; Aird, K.G.; Beran, T.; Rubertone, J.J.; Slack, S.J.; Garcia, L.; Rousseau, D.L.; Janes, T.A.; Schwartz, S.M.; Bolick, S.W.; Hurley, D.M.; Whiteside, M.A.; Miller-Gianturco, P.; Williams, M.A.; Herget, K.; Sweeney, C.; Johnson, A.T.; Keitheri Cheteri, M.B.; Migliore Santiago, P.; Blankenship, S.E.; Farley, S.; Borchers, R.; Malicki, R.; Espinoza, J.R.; Grandpre, J.; Wilson, R.; Edwards, B.K.; Mariotto, A.; Lei, Y.; Wang, N.; Chen, J.S.; Zhou, Y.; He, Y.T.; Song, G.H.; Gu, X.P.; Mei, D.; Mu, H.J.; Ge, H.M.; Wu, T.H.; Li, Y.Y.; Zhao, D.L.; Jin, F.; Zhang, J.H.; Zhu, F.D.; Junhua, Q.; Yang, Y.L.; Jiang, C.X.; Biao, W.; Wang, J.; Li, Q.L.; Yi, H.; Zhou, X.; Dong, J.; Li, W.; Fu, F.X.; Liu, S.Z.; Chen, J.G.; Zhu, J.; Li, Y.H.; Lu, Y.Q.; Fan, M.; Huang, S.Q.; Guo, G.P.; Zhaolai, H.; Wei, K.; Zeng, H.; Demetriou, A.V.; Mang, W.K.; Ngan, K.C.; Kataki, A.C.; Krishnatreya, M.; Jayalekshmi, P.A.; Sebastian, P.; Nandakumar, A.; Malekzadeh, R.; Roshandel, G.; Keinan-Boker, L.; Silverman, B.G.; Ito, H.; Nakagawa, H.; Sato, M.; Tobori, F.; Nakata, I.; Teramoto, N.; Hattori, M.; Kaizaki, Y.; Moki, F.; Sugiyama, H.; Utada, M.; Nishimura, M.; Yoshida, K.; Kurosawa, K.; Nemoto, Y.; Narimatsu, H.; Sakaguchi, M.; Kanemura, S.; Naito, M.; Narisawa, R.; Miyashiro, I.; Nakata, K.; Sato, S.; Yoshii, M.; Oki, I.; Fukushima, N.; Shibata, A.; Iwasa, K.; Ono, C.; Nimri, O.; Jung, K.W.; Won, Y.J.; Alawadhi, E.; Elbasmi, A.; Ab Manan, A.; Adam, F.; Sanjaajmats, E.; Tudev, U.; Ochir, C.; Al Khater, A.M.; El Mistiri, M.M.; Teo, Y.Y.; Chiang, C.J.; Lee, W.C.; Buasom, R.; Sangrajrang, S.; Kamsa-ard, S.; Wiangnon, S.; Daoprasert, K.; Pongnikorn, D.; Leklob, A.; Sangkitipaiboon, S.; Geater, S.L.; Sriplung, H.; Ceylan, O.; Kög, I.; Dirican, O.; Köse, T.; Gurbuz, T.; Karaşahin, F.E.; Turhan, D.; Aktaş, U.; Halat, Y.; Yakut, C.I.; Altinisik, M.; Cavusoglu, Y.; Türkköylü, A.; Üçüncü, N.; Hackl, M.; Zborovskaya, A.A.; Aleinikova, O.V.; Henau, K.; Van Eycken, L.; Valerianova, Z.; Yordanova, M.R.; Šekerija, M.; Dušek, L.; Zvolský, M.; Storm, H.; Innos, K.; Mägi, M.; Malila, N.; Seppä, K.; Jégu, J.; Velten, M.; Cornet, E.; Troussard, X.; Bouvier, A.M.; Guizard, A.V.; Bouvier, V.; Launoy, G.; Arveux, P.; Maynadié, M.; Mounier, M.; Woronoff, A.S.; Daoulas, M.; Robaszkiewicz, M.; Clavel, J.; Goujon, S.; Lacour, B.; Baldi, I.; Pouchieu, C.; Amadeo, B.; Coureau, G.; Orazio, S.; Preux, P.M.; Rharbaoui, F.; Marrer, E.; Trétarre, B.; Colonna, M.; Delafosse, P.; Ligier, K.; Plouvier, S.; Cowppli-Bony, A.; Molinié, F.; Bara, S.; Ganry, O.; Lapôtre-Ledoux, B.; Grosclaude, P.; Bossard, N.; Uhry, Z.; Bray, F.; Piñeros, M.; Stabenow, R.; Wilsdorf-Köhler, H.; Eberle, A.; Luttmann, S.; Löhden, I.; Nennecke, A.L.; Kieschke, J.; Sirri, E.; Emrich, K.; Zeissig, S.R.; Holleczek, B.; Eisemann, N.; Katalinic, A.; Asquez, R.A.; Kumar, V.; Petridou, E.; Ólafsdóttir, E.J.; Tryggvadóttir, L.; Clough-Gorr, K.; Walsh, P.M.; Sundseth, H.; Mazzoleni, G.; Vittadello, F.; Coviello, E.; Cuccaro, F.; Galasso, R.; Sampietro, G.; Giacomin, A.; Magoni, M.; Ardizzone, A.; D’Argenzio, A.; Castaing, M.; Grosso, G.; Lavecchia, A.M.; Sutera Sardo, A.; Gola, G.; Gatti, L.; Ricci, P.; Ferretti, S.; Serraino, D.; Zucchetto, A.; Celesia, M.V.; Filiberti, R.A.; Pannozzo, F.; Melcarne, A.; Quarta, F.; Russo, A.G.; Carrozzi, G.; Cirilli, C.; Cavalieri d’Oro, L.; Rognoni, M.; Fusco, M.; Vitale, M.F.; Usala, M.; Cusimano, R.; Mazzucco, W.; Michiara, M.; Sgargi, P.; Boschetti, L.; Borciani, E.; Seghini, P.; Maule, M.M.; Merletti, F.; Tumino, R.; Mancuso, P.; Vicentini, M.; Cassetti, T.; Sassatelli, R.; Falcini, F.; Giorgetti, S.; Caiazzo, A.L.; Cavallo, R.; Cesaraccio, R.; Pirino, D.R.; Contrino, M.L.; Tisano, F.; Fanetti, A.C.; Maspero, S.; Carone, S.; Mincuzzi, A.; Candela, G.; Scuderi, T.; Gentilini, M.A.; Piffer, S.; Rosso, S.; Barchielli, A.; Caldarella, A.; Bianconi, F.; Stracci, F.; Contiero, P.; Tagliabue, G.; Rugge, M.; Zorzi, M.; Beggiato, S.; Brustolin, A.; Berrino, F.; Gatta, G.; Sant, M.; Buzzoni, C.; Mangone, L.; Capocaccia, R.; De Angelis, R.; Zanetti, R.; Maurina, A.; Pildava, S.; Lipunova, N.; Vincerževskiené, I.; Agius, D.; Calleja, N.; Siesling, S.; Larønningen, S.; Møller, B.; Dyzmann-Sroka, A.; Trojanowski, M.; Góźdź, S.; Mężyk, R.; Mierzwa, T.; Molong, L.; Rachtan, J.; Szewczyk, S.; Błaszczyk, J.; Kępska, K.; Kościańska, B.; Tarocińska, K.; Zwierko, M.; Drosik, K.; Maksimowicz, K.M.; Purwin-Porowska, E.; Reca, E.; Wójcik-Tomaszewska, J.; Tukiendorf, A.; Grądalska-Lampart, M.; Radziszewska, A.U.; Gos, A.; Talerczyk, M.; Wyborska, M.; Didkowska, J.A.; Wojciechowska, U.; Bielska-Lasota, M.; Forjaz de Lacerda, G.; Rego, R.A.; Bastos, J.; Silva, M.A.; Antunes, L.; Laranja Pontes, J.; Mayer-da-Silva, A.; Miranda, A.; Blaga, L.M.; Coza, D.; Gusenkova, L.; Lazarevich, O.; Prudnikova, O.; Vjushkov, D.M.; Egorova, A.G.; Orlov, A.E.; Kudyakov, L.A.; Pikalova, L.V.; Adamcik, J.; Safaei, D.C.; Primic-Žakelj, M.; Zadnik, V.; Larrañaga, N.; Lopez de Munain, A.; Herrera, A.A.; Redondas, R.; Marcos-Gragera, R.; Vilardell Gil, M.L.; Molina, E.; Sánchez Perez, M.J.; Franch Sureda, P.; Ramos Montserrat, M.; Chirlaque, M.D.; Navarro, C.; Ardanaz, E.E.; Guevara, M.M.; Fernández-Delgado, R.; Peris-Bonet, R.; Carulla, M.; Galceran, J.; Alberich, C.; Vicente-Raneda, M.; Khan, S.; Pettersson, D.; Dickman, P.; Avelina, I.; Staehelin, K.; Camey, B.; Bouchardy, C.; Schaffar, R.; Frick, H.; Herrmann, C.; Bulliard, J.L.; Maspoli-Conconi, M.; Kuehni, C.E.; Redmond, S.M.; Bordoni, A.; Ortelli, L.; Chiolero, A.; Konzelmann, I.; Matthes, K.L.; Rohrmann, S.; Broggio, J.; Rashbass, J.; Fitzpatrick, D.; Gavin, A.; Clark, D.I.; Deas, A.J.; Huws, D.W.; White, C.; Montel, L.; Rachet, B.; Turculet, A.D.; Stephens, R.; Chalker, E.; Phung, H.; Walton, R.; You, H.; Guthridge, S.; Johnson, F.; Gordon, P.; D’Onise, K.; Priest, K.; Stokes, B.C.; Venn, A.; Farrugia, H.; Thursfield, V.; Dowling, J.; Currow, D.; Hendrix, J.; Lewis, C. Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet, 2018, 391(10125), 1023-1075.
[http://dx.doi.org/10.1016/S0140-6736(17)33326-3] [PMID: 29395269]
[5]
Brennan, A.; Brennan, D.; Rees, M.; Hickey, M. Management of menopausal symptoms and ovarian function preservation in women with gynecological cancer. Int. J. Gynecol. Cancer, 2021, 31(3), 352-359.
[http://dx.doi.org/10.1136/ijgc-2020-002032]
[6]
Reid, F.; Bhatla, N.; Oza, A.M.; Blank, S.V.; Cohen, R.; Adams, T.; Benites, A.; Gardiner, D.; Gregory, S.; Suzuki, M.; Jones, A. The World ovarian cancer coalition every woman study: Identifying challenges and opportunities to improve survival and quality of life. Int. J. Gynecol. Cancer, 2021, 31(2), 238-244.
[http://dx.doi.org/10.1136/ijgc-2019-000983] [PMID: 32540894]
[7]
Yi, M.; Li, T.; Niu, M.; Luo, S.; Chu, Q.; Wu, K. Epidemiological trends of women’s cancers from 1990 to 2019 at the global, regional, and national levels: A population-based study. Biomark. Res., 2021, 9(1), 55.
[http://dx.doi.org/10.1186/s40364-021-00310-y] [PMID: 34233747]
[8]
Rafii, S.; Tashkandi, E.; Bukhari, N.; Al-Shamsi, H.O. Current status of CRISPR/Cas9 application in clinical cancer research: Opportunities and challenges. Cancers, 2022, 14(4), 947.
[http://dx.doi.org/10.3390/cancers14040947] [PMID: 35205694]
[9]
Suzuki, K.; Tsunekawa, Y.; Hernandez-Benitez, R.; Wu, J.; Zhu, J.; Kim, E.J.; Hatanaka, F.; Yamamoto, M.; Araoka, T.; Li, Z.; Kurita, M.; Hishida, T.; Li, M.; Aizawa, E.; Guo, S.; Chen, S.; Goebl, A.; Soligalla, R.D.; Qu, J.; Jiang, T.; Fu, X.; Jafari, M.; Esteban, C.R.; Berggren, W.T.; Lajara, J.; Nuñez-Delicado, E.; Guillen, P.; Campistol, J.M.; Matsuzaki, F.; Liu, G.H.; Magistretti, P.; Zhang, K.; Callaway, E.M.; Zhang, K.; Belmonte, J.C.I. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature, 2016, 540(7631), 144-149.
[http://dx.doi.org/10.1038/nature20565] [PMID: 27851729]
[10]
Slaymaker, I.M.; Gao, L.; Zetsche, B.; Scott, D.A.; Yan, W.X.; Zhang, F. Rationally engineered Cas9 nucleases with improved specificity. Science, 2016, 351(6268), 84-88.
[http://dx.doi.org/10.1126/science.aad5227] [PMID: 26628643]
[11]
Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096), 816-821.
[http://dx.doi.org/10.1126/science.1225829] [PMID: 22745249]
[12]
Jiang, F.; Zhou, K.; Ma, L.; Gressel, S.; Doudna, J.A.A. Cas9–guide RNA complex preorganized for target DNA recognition. Science, 2015, 348(6242), 1477-1481.
[http://dx.doi.org/10.1126/science.aab1452] [PMID: 26113724]
[13]
Cong, L.; Ran, F.A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.; Jiang, W.; Marraffini, L.A.; Zhang, F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121), 819-823.
[http://dx.doi.org/10.1126/science.1231143] [PMID: 23287718]
[14]
Mali, P.; Yang, L.; Esvelt, K.M.; Aach, J.; Guell, M.; DiCarlo, J.E.; Norville, J.E.; Church, G.M. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121), 823-826.
[http://dx.doi.org/10.1126/science.1232033] [PMID: 23287722]
[15]
Sánchez-Rivera, F.J.; Jacks, T. Applications of the CRISPR–Cas9 system in cancer biology. Nat. Rev. Cancer, 2015, 15(7), 387-393.
[http://dx.doi.org/10.1038/nrc3950] [PMID: 26040603]
[16]
Dever, D.P.; Bak, R.O.; Reinisch, A.; Camarena, J.; Washington, G.; Nicolas, C.E.; Pavel-Dinu, M.; Saxena, N.; Wilkens, A.B.; Mantri, S.; Uchida, N.; Hendel, A.; Narla, A.; Majeti, R.; Weinberg, K.I.; Porteus, M.H. CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature, 2016, 539(7629), 384-389.
[http://dx.doi.org/10.1038/nature20134] [PMID: 27820943]
[17]
G/Medhin. T.M.; Chekol, A.E.; Sisay, T.; Berhane, N.; Bekele, T.; Asmamaw, D.T. Current applications and future perspectives of crispr-cas9 for the treatment of lung cancer. Biologics, 2021, 15, 199-204.
[18]
Sabit, H.; Abdel-Ghany, S.; Tombuloglu, H.; Cevik, E.; Alqosaibi, A.; Almulhim, F.; Al-Muhanaa, A. New insights on CRISPR/Cas9-based therapy for breast Cancer. Genes Environ., 2021, 43(1), 15.
[http://dx.doi.org/10.1186/s41021-021-00188-0] [PMID: 33926574]
[19]
Zhao, X.; Liu, L.; Lang, J.; Cheng, K.; Wang, Y.; Li, X.; Shi, J.; Wang, Y.; Nie, G.A. CRISPR-Cas13a system for efficient and specific therapeutic targeting of mutant KRAS for pancreatic cancer treatment. Cancer Lett., 2018, 431, 171-181.
[http://dx.doi.org/10.1016/j.canlet.2018.05.042] [PMID: 29870774]
[20]
Rao, C.V.; Janakiram, N.B.; Madka, V.; Kumar, G.; Scott, E.J.; Pathuri, G.; Bryant, T.; Kutche, H.; Zhang, Y.; Biddick, L.; Gali, H.; Zhao, Y.D.; Lightfoot, S.; Mohammed, A. Small-molecule inhibition of GCNT3 disrupts mucin biosynthesis and malignant cellular behaviors in pancreatic cancer. Cancer Res., 2016, 76(7), 1965-1974.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2820] [PMID: 26880801]
[21]
Yin, J.H.; Elumalai, P.; Kim, S.Y.; Zhang, S.Z.; Shin, S.; Lee, M.; Chung, Y.J. TNNC1 knockout reverses metastatic potential of ovarian cancer cells by inactivating epithelial-mesenchymal transition and suppressing F-actin polymerization. Biochem. Biophys. Res. Commun., 2021, 547, 44-51.
[http://dx.doi.org/10.1016/j.bbrc.2021.02.021] [PMID: 33592378]
[22]
Zhao, G.; Wang, Q.; Gu, Q.; Qiang, W.; Wei, J.J.; Dong, P.; Watari, H.; Li, W.; Yue, J. Lentiviral CRISPR/Cas9 nickase vector mediated BIRC5 editing inhibits epithelial to mesenchymal transition in ovarian cancer cells. Oncotarget, 2017, 8(55), 94666-94680.
[http://dx.doi.org/10.18632/oncotarget.21863] [PMID: 29212257]
[23]
Zhao, Q.; Qian, Q.; Cao, D.; Yang, J.; Gui, T.; Shen, K. Role of BMI1 in epithelial ovarian cancer: investigated via the CRISPR/Cas9 system and RNA sequencing. J. Ovarian Res., 2018, 11(1), 31.
[http://dx.doi.org/10.1186/s13048-018-0406-z] [PMID: 29685168]
[24]
Huo, W.; Zhao, G.; Yin, J.; Ouyang, X.; Wang, Y.; Yang, C.; Wang, B.; Dong, P.; Wang, Z.; Watari, H.; Chaum, E.; Pfeffer, L.M.; Yue, J. Lentiviral CRISPR/Cas9 vector mediated miR-21 gene editing inhibits the epithelial to mesenchymal transition in ovarian cancer cells. J. Cancer, 2017, 8(1), 57-64.
[http://dx.doi.org/10.7150/jca.16723] [PMID: 28123598]
[25]
Ji, L.; Zhao, G.; Zhang, P.; Huo, W.; Dong, P.; Watari, H.; Jia, L.; Pfeffer, L.M.; Yue, J.; Zheng, J. Knockout of MTF1 inhibits the epithelial to mesenchymal transition in ovarian cancer cells. J. Cancer, 2018, 9(24), 4578-4585.
[http://dx.doi.org/10.7150/jca.28040] [PMID: 30588241]
[26]
He, Z.Y.; Zhang, Y.G.; Yang, Y.H.; Ma, C.C.; Wang, P.; Du, W.; Li, L.; Xiang, R.; Song, X.R.; Zhao, X.; Yao, S.H.; Wei, Y.Q. In Vivo ovarian cancer gene therapy using CRISPR-Cas9. Hum. Gene Ther., 2018, 29(2), 223-233.
[http://dx.doi.org/10.1089/hum.2017.209] [PMID: 29338433]
[27]
Tröder, S.E.; Zevnik, B. History of genome editing: From meganucleases to CRISPR. Lab. Anim., 2021, 56(1), 60-68.
[PMID: 33622064]
[28]
Khan, S.H. Genome-editing technologies: Concept, pros, and cons of various genome-editing techniques and bioethical concerns for clinical application. Mol. Ther. Nucleic Acids, 2019, 16, 326-334.
[http://dx.doi.org/10.1016/j.omtn.2019.02.027] [PMID: 30965277]
[29]
Stoddard, B.L. Homing endonuclease structure and function. Q. Rev. Biophys., 2005, 38(1), 49-95.
[http://dx.doi.org/10.1017/S0033583505004063] [PMID: 16336743]
[30]
Hafez, M.; Hausner, G. Homing endonucleases: DNA scissors on a mission. Genome, 2012, 55(8), 553-569.
[http://dx.doi.org/10.1139/g2012-049] [PMID: 22891613]
[31]
Carroll, D. Genome engineering with zinc-finger nucleases. Genetics, 2011, 188(4), 773-782.
[http://dx.doi.org/10.1534/genetics.111.131433] [PMID: 21828278]
[32]
Urnov, F.D.; Rebar, E.J.; Holmes, M.C.; Zhang, H.S.; Gregory, P.D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet., 2010, 11(9), 636-646.
[http://dx.doi.org/10.1038/nrg2842] [PMID: 20717154]
[33]
Gaj, T.; Gersbach, C.A.; Barbas, C.F. III ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol., 2013, 31(7), 397-405.
[http://dx.doi.org/10.1016/j.tibtech.2013.04.004] [PMID: 23664777]
[34]
Becker, S.; Boch, J. Tale and Talen genome editing technologies. Gene and Genome Editing, 2021, 2, 100007.
[http://dx.doi.org/10.1016/j.ggedit.2021.100007]
[35]
Boettcher, M.; McManus, M.T. Choosing the right tool for the job: RNAi, Talen, or Crispr. Mol. Cell, 2015, 58(4), 575-585.
[http://dx.doi.org/10.1016/j.molcel.2015.04.028] [PMID: 26000843]
[36]
Hecker, M.; Wagner, A.H. Transcription factor decoy technology: A therapeutic update. Biochem. Pharmacol., 2017, 144, 29-34.
[http://dx.doi.org/10.1016/j.bcp.2017.06.122] [PMID: 28642036]
[37]
Mann, M.J.; Dzau, V.J. Therapeutic applications of transcription factor decoy oligonucleotides. J. Clin. Invest., 2000, 106(9), 1071-1075.
[http://dx.doi.org/10.1172/JCI11459] [PMID: 11067859]
[38]
Martínez, T.; Wright, N.; López-Fraga, M.; Jiménez, A.I.; Pañeda, C. Silencing human genetic diseases with oligonucleotide-based therapies. Hum. Genet., 2013, 132(5), 481-493.
[http://dx.doi.org/10.1007/s00439-013-1288-1] [PMID: 23494242]
[39]
Dey, S.; Soltani, M.; Singh, A. Enhancement of gene expression noise from transcription factor binding to genomic decoy sites. Sci. Rep., 2020, 10(1), 9126.
[http://dx.doi.org/10.1038/s41598-020-65750-2] [PMID: 32499583]
[40]
Robson, E.; Jeffs, A.; Eccles, M. Off-target response to decoy oligodeoxynucleotide treatment. Nat. Precedings, 2008, 1.
[41]
Agrawal, N.; Dasaradhi, P.V.N.; Mohmmed, A.; Malhotra, P.; Bhatnagar, R.K.; Mukherjee, S.K. RNA interference: Biology, mechanism, and applications. Microbiol. Mol. Biol. Rev., 2003, 67(4), 657-685.
[http://dx.doi.org/10.1128/MMBR.67.4.657-685.2003] [PMID: 14665679]
[42]
Schwarz, D.S.; Hutvágner, G.; Haley, B.; Zamore, P.D. Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Mol. Cell, 2002, 10(3), 537-548.
[http://dx.doi.org/10.1016/S1097-2765(02)00651-2] [PMID: 12408822]
[43]
Bai, Y.; Liu, Y.; Su, Z.; Ma, Y.; Ren, C.; Zhao, R.; Ji, H.L. Gene editing as a promising approach for respiratory diseases. J. Med. Genet., 2018, 55(3), 143-149.
[http://dx.doi.org/10.1136/jmedgenet-2017-104960] [PMID: 29301855]
[44]
Xiang, G.; Zhang, X.; An, C.; Cheng, C.; Wang, H. Temperature effect on CRISPR-Cas9 mediated genome editing. J. Genet. Genomics, 2017, 44(4), 199-205.
[http://dx.doi.org/10.1016/j.jgg.2017.03.004] [PMID: 28412228]
[45]
Shah, S.Z.; Rehman, A.; Nasir, H.; Asif, A.; Tufail, B.; Usama, M.; Jabbar, B. Advances in research on genome editing CRISPR-Cas9 technology. J. Ayub Med. Coll. Abbottabad, 2019, 31(1), 108-122.
[PMID: 30868795]
[46]
Guha, T.; Edgell, D. Applications of alternative nucleases in the age of CRISPR/Cas9. Int. J. Mol. Sci., 2017, 18(12), 2565.
[http://dx.doi.org/10.3390/ijms18122565] [PMID: 29186020]
[47]
Karthikeyan, S.; Russo, A.; Dean, M.; Lantvit, D.D.; Endsley, M.; Burdette, J.E. Prolactin signaling drives tumorigenesis in human high grade serous ovarian cancer cells and in a spontaneous fallopian tube derived model. Cancer Lett., 2018, 433, 221-231.
[http://dx.doi.org/10.1016/j.canlet.2018.07.003] [PMID: 29981811]
[48]
Cui, Y.; Wu, B.O.; Flamini, V.; Evans, B.A.J.; Zhou, D.; Jiang, W.G. Knockdown of EPHA1 using CRISPR/CAS9 suppresses aggressive properties of ovarian cancer cells. Anticancer Res., 2017, 37(8), 4415-4424.
[PMID: 28739735]
[49]
Yung, M.M.H.; Tang, H.W.M.; Cai, P.C.H.; Leung, T.H.Y.; Ngu, S.F.; Chan, K.K.L.; Xu, D.; Yang, H.; Ngan, H.Y.S.; Chan, D.W. GRO-α and IL-8 enhance ovarian cancer metastatic potential via the CXCR2-mediated TAK1/NFκB signaling cascade. Theranostics, 2018, 8(5), 1270-1285.
[http://dx.doi.org/10.7150/thno.22536] [PMID: 29507619]
[50]
Zhu, W.; Liu, C.; Lu, T.; Zhang, Y.; Zhang, S.; Chen, Q.; Deng, N. Knockout of EGFL6 by CRISPR/Cas9 mediated inhibition of tumor angiogenesis in ovarian cancer. Front. Oncol., 2020, 10, 1451.
[http://dx.doi.org/10.3389/fonc.2020.01451] [PMID: 32983976]
[51]
Wen, Y.; Hou, Y.; Yi, X.; Sun, S.; Guo, J.; He, X.; Li, T.; Cai, J.; Wang, Z. EZH2 activates CHK1 signaling to promote ovarian cancer chemoresistance by maintaining the properties of cancer stem cells. Theranostics, 2021, 11(4), 1795-1813.
[http://dx.doi.org/10.7150/thno.48101] [PMID: 33408782]
[52]
Yi, Y.; Tsai, S.H.; Cheng, J.C.; Wang, E.Y.; Anglesio, M.S.; Cochrane, D.R.; Fuller, M.; Gibb, E.A.; Wei, W.; Huntsman, D.G.; Karsan, A.; Hoodless, P.A. APELA promotes tumour growth and cell migration in ovarian cancer in a p53-dependent manner. Gynecol. Oncol., 2017, 147(3), 663-671.
[http://dx.doi.org/10.1016/j.ygyno.2017.10.016] [PMID: 29079036]
[53]
Fang, P.; De Souza, C.; Minn, K.; Chien, J. Genome-scale CRISPR knockout screen identifies TIGAR as a modifier of PARP inhibitor sensitivity. Commun. Biol., 2019, 2(1), 335.
[http://dx.doi.org/10.1038/s42003-019-0580-6] [PMID: 31508509]
[54]
Walton, J.; Blagih, J.; Ennis, D.; Leung, E.; Dowson, S.; Farquharson, M.; Tookman, L.A.; Orange, C.; Athineos, D.; Mason, S.; Stevenson, D.; Blyth, K.; Strathdee, D.; Balkwill, F.R.; Vousden, K.; Lockley, M.; McNeish, I.A. CRISPR/Cas9-mediated Trp53 and Brca2 knockout to generate improved murine models of ovarian high-grade serous carcinoma. Cancer Res., 2016, 76(20), 6118-6129.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1272] [PMID: 27530326]
[55]
Yahata, T.; Mizoguchi, M.; Kimura, A.; Orimo, T.; Toujima, S.; Kuninaka, Y.; Nosaka, M.; Ishida, Y.; Sasaki, I.; Fukuda-Ohta, Y.; Hemmi, H.; Iwahashi, N.; Noguchi, T.; Kaisho, T.; Kondo, T.; Ino, K. Programmed cell death ligand 1 D isruption by clustered regularly interspaced short palindromic repeats/Cas9-genome editing promotes antitumor immunity and suppresses ovarian cancer progression. Cancer Sci., 2019, 110(4), 1279-1292.
[http://dx.doi.org/10.1111/cas.13958] [PMID: 30702189]
[56]
He, Y.J.; Meghani, K.; Caron, M.C.; Yang, C.; Ronato, D.A.; Bian, J.; Sharma, A.; Moore, J.; Niraj, J.; Detappe, A.; Doench, J.G.; Legube, G.; Root, D.E.; D’Andrea, A.D.; Drané, P.; De, S.; Konstantinopoulos, P.A.; Masson, J.Y.; Chowdhury, D. DYNLL1 binds to MRE11 to limit DNA end resection in BRCA1-deficient cells. Nature, 2018, 563(7732), 522-526.
[http://dx.doi.org/10.1038/s41586-018-0670-5] [PMID: 30464262]
[57]
Norouzi-Barough, L.; Sarookhani, M.; Salehi, R.; Sharifi, M.; Moghbelinejad, S. CRISPR/Cas9, a new approach to successful knockdown of ABCB1/P-glycoprotein and reversal of chemosensitivity in human epithelial ovarian cancer cell line. Iran. J. Basic Med. Sci., 2018, 21(2), 181-187.
[PMID: 29456815]
[58]
Hirschhorn, T.; Levi-Hofman, M.; Danziger, O.; Smorodinsky, N.I.; Ehrlich, M. Differential molecular regulation of processing and membrane expression of Type-I BMP receptors: Implications for signaling. Cell. Mol. Life Sci., 2017, 74(14), 2645-2662.
[http://dx.doi.org/10.1007/s00018-017-2488-y] [PMID: 28357470]
[59]
Wang, X.; Wang, H.; Xu, B.; Jiang, D.; Huang, S.; Yu, H.; Wu, Z.; Wu, Q. Depletion of H3K79 methyltransferase Dot1L promotes cell invasion and cancer stem-like cell property in ovarian cancer. Am. J. Transl. Res., 2019, 11(2), 1145-1153.
[PMID: 30899413]
[60]
Faddaoui, A.; Sheta, R.; Bachvarova, M.; Plante, M.; Gregoire, J.; Renaud, M.C.; Sebastianelli, A.; Gobeil, S.; Morin, C.; Ghani, K.; Bachvarov, D. Suppression of the grainyhead transcription factor 2 gene (GRHL2) inhibits the proliferation, migration, invasion and mediates cell cycle arrest of ovarian cancer cells. Cell Cycle, 2017, 16(7), 693-706.
[http://dx.doi.org/10.1080/15384101.2017.1295181] [PMID: 28278050]
[61]
Kodama, M.; Kodama, T.; Newberg, J.Y.; Katayama, H.; Kobayashi, M.; Hanash, S.M.; Yoshihara, K.; Wei, Z.; Tien, J.C.; Rangel, R.; Hashimoto, K.; Mabuchi, S.; Sawada, K.; Kimura, T.; Copeland, N.G.; Jenkins, N.A. In vivo loss-of-function screens identify KPNB1 as a new druggable oncogene in epithelial ovarian cancer. Proc. Natl. Acad. Sci., 2017, 114(35), E7301-E7310.
[http://dx.doi.org/10.1073/pnas.1705441114] [PMID: 28811376]
[62]
Li, X.; Chen, W.; Zeng, W.; Wan, C.; Duan, S.; Jiang, S. microRNA-137 promotes apoptosis in ovarian cancer cells via the regulation of XIAP. Br. J. Cancer, 2017, 116(1), 66-76.
[http://dx.doi.org/10.1038/bjc.2016.379] [PMID: 27875524]
[63]
Chen, X.; Li, X.; Wang, X.; Zhu, Q.; Wu, X.; Wang, X. MUC16 impacts tumor proliferation and migration through cytoplasmic translocation of P120-catenin in epithelial ovarian cancer cells: an original research. BMC Cancer, 2019, 19(1), 171.
[http://dx.doi.org/10.1186/s12885-019-5371-4] [PMID: 30795761]
[64]
Ling, K.; Jiang, L.; Liang, S.; Kwong, J.; Yang, L.; Li, Y. PingYin; Deng, Q.; Liang, Z. Nanog interaction with the androgen receptor signaling axis induce ovarian cancer stem cell regulation: Studies based on the CRISPR/Cas9 system. J. Ovarian Res., 2018, 11(1), 36.
[http://dx.doi.org/10.1186/s13048-018-0403-2] [PMID: 29716628]
[65]
Lu, T.; Zhang, L.; Zhu, W.; Zhang, Y.; Zhang, S.; Wu, B.; Deng, N. CRISPR/Cas9-Mediated OC-2 editing inhibits the tumor growth and angiogenesis of ovarian cancer. Front. Oncol., 2020, 10, 1529.
[http://dx.doi.org/10.3389/fonc.2020.01529] [PMID: 32984003]
[66]
Jiang, Y.; Lim, J.; Wu, K.C.; Xu, W.; Suen, J.Y.; Fairlie, D.P. PAR2 induces ovarian cancer cell motility by merging three signalling pathways to transactivate EGFR. Br. J. Pharmacol., 2021, 178(4), 913-932.
[http://dx.doi.org/10.1111/bph.15332] [PMID: 33226635]
[67]
Qin, W.; Xiong, Y.; Chen, J.; Huang, Y.; Liu, T. DC-CIK cells derived from ovarian cancer patient menstrual blood activate the TNFR1-ASK1-AIP1 pathway to kill autologous ovarian cancer stem cells. J. Cell. Mol. Med., 2018, 22(7), 3364-3376.
[http://dx.doi.org/10.1111/jcmm.13611] [PMID: 29566310]
[68]
Binkhathlan, Z.; Lavasanifar, A. P-glycoprotein inhibition as a therapeutic approach for overcoming multidrug resistance in cancer: Current status and future perspectives. Curr. Cancer Drug Targets, 2013, 13(3), 326-346.
[http://dx.doi.org/10.2174/15680096113139990076] [PMID: 23369096]
[69]
Walton, J.B.; Farquharson, M.; Mason, S.; Port, J.; Kruspig, B.; Dowson, S.; Stevenson, D.; Murphy, D.; Matzuk, M.; Kim, J.; Coffelt, S.; Blyth, K.; McNeish, I.A. CRISPR/Cas9-derived models of ovarian high grade serous carcinoma targeting Brca1, Pten and Nf1, and correlation with platinum sensitivity. Sci. Rep., 2017, 7(1), 16827.
[http://dx.doi.org/10.1038/s41598-017-17119-1] [PMID: 29203787]
[70]
Mittal, R.D.; Jaiswal, P.K.; Goel, A. Survivin: A molecular biomarker in cancer. Indian J. Med. Res., 2015, 141(4), 389-397.
[http://dx.doi.org/10.4103/0971-5916.159250] [PMID: 26112839]
[71]
Frazzi, R. BIRC3 and BIRC5: Multi-faceted inhibitors in cancer. Cell Biosci., 2021, 11(1), 8.
[http://dx.doi.org/10.1186/s13578-020-00521-0] [PMID: 33413657]
[72]
Wheatley, S.P.; Altieri, D.C. Survivin at a glance. J. Cell Sci., 2019, 132(7), jcs223826.
[http://dx.doi.org/10.1242/jcs.223826] [PMID: 30948431]
[73]
Kaubryte, J.; Lai, A.G. Pan-cancer prognostic genetic mutations and clinicopathological factors associated with survival outcomes: a systematic review. NPJ Precision. Oncol., 2022, 6(1), 27.
[74]
Li, F.; Aljahdali, I.; Ling, X. Cancer therapeutics using survivin BIRC5 as a target: what can we do after over two decades of study? J. Exp. Clin. Cancer Res., 2019, 38(1), 368.
[http://dx.doi.org/10.1186/s13046-019-1362-1] [PMID: 31439015]
[75]
Ran, F.A.; Hsu, P.D.; Lin, C.Y.; Gootenberg, J.S.; Konermann, S.; Trevino, A.E.; Scott, D.A.; Inoue, A.; Matoba, S.; Zhang, Y.; Zhang, F. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 2013, 154(6), 1380-1389.
[http://dx.doi.org/10.1016/j.cell.2013.08.021] [PMID: 23992846]
[76]
Cho, S.W.; Kim, S.; Kim, Y.; Kweon, J.; Kim, H.S.; Bae, S.; Kim, J.S. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res., 2014, 24(1), 132-141.
[http://dx.doi.org/10.1101/gr.162339.113] [PMID: 24253446]
[77]
Shen, B.; Zhang, W.; Zhang, J.; Zhou, J.; Wang, J.; Chen, L.; Wang, L.; Hodgkins, A.; Iyer, V.; Huang, X.; Skarnes, W.C. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat. Methods, 2014, 11(4), 399-402.
[http://dx.doi.org/10.1038/nmeth.2857] [PMID: 24584192]
[78]
Qi, Y.; Song, H.; Xiao, H.; Cheng, G.; Yu, B.; Xu, F.J. Fluorinated acid-labile branched hydroxyl-rich nanosystems for flexible and robust delivery of plasmids. Small, 2018, 14(42), 1803061.
[http://dx.doi.org/10.1002/smll.201803061] [PMID: 30238691]
[79]
Qi, Y.; Liu, Y.; Yu, B.; Hu, Y.; Zhang, N.; Zheng, Y.; Yang, M.; Xu, F.J. A lactose-derived CRISPR/Cas9 delivery system for efficient genome editing in vivo to treat orthotopic hepatocellular carcinoma. Adv. Sci., 2020, 7(17), 2001424.
[http://dx.doi.org/10.1002/advs.202001424] [PMID: 32995132]
[80]
Sharma, P.C.; Gupta, A. MicroRNAs: Potential biomarkers for diagnosis and prognosis of different cancers. Transl. Cancer Res., 2020, 9(9), 5798-5818.
[http://dx.doi.org/10.21037/tcr-20-1294] [PMID: 35117940]
[81]
Bartel, D.P. MicroRNAs. Cell, 2004, 116(2), 281-297.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[82]
Hammond, S.M. An overview of microRNAs. Adv. Drug Deliv. Rev., 2015, 87, 3-14.
[http://dx.doi.org/10.1016/j.addr.2015.05.001] [PMID: 25979468]
[83]
O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol., 2018, 9, 402.
[http://dx.doi.org/10.3389/fendo.2018.00402] [PMID: 30123182]
[84]
Dexheimer, P.J.; Cochella, L. MicroRNAs: From mechanism to organism. Front. Cell Dev. Biol., 2020, 8, 409.
[http://dx.doi.org/10.3389/fcell.2020.00409] [PMID: 32582699]
[85]
Xu, J.; Li, L.; Shi, P.; Cui, H.; Yang, L. The crucial roles of Bmi-1 in cancer: Implications in pathogenesis, metastasis, drug resistance, and targeted therapies. Int. J. Mol. Sci., 2022, 23(15), 8231.
[http://dx.doi.org/10.3390/ijms23158231] [PMID: 35897796]
[86]
Yang, G.F.; He, W.P.; Cai, M.Y.; He, L.R.; Luo, J.H.; Deng, H.X.; Guan, X.Y.; Zeng, M.S.; Zeng, Y.X.; Xie, D. Intensive expression of Bmi-1 is a new independent predictor of poor outcome in patients with ovarian carcinoma. BMC Cancer, 2010, 10(1), 133.
[http://dx.doi.org/10.1186/1471-2407-10-133] [PMID: 20377880]
[87]
Abd El hafez, A.; EL-Hadaad, H.A. Immunohistochemical expression and prognostic relevance of Bmi-1, a stem cell factor, in epithelial ovarian cancer. Ann. Diagn. Pathol., 2014, 18(2), 58-62.
[http://dx.doi.org/10.1016/j.anndiagpath.2013.11.004] [PMID: 24342665]
[88]
Ouyang, Q.; Liu, Y.; Tan, J.; Li, J.; Yang, D.; Zeng, F.; Huang, W.; Kong, Y.; Liu, Z.; Zhou, H.; Liu, Y. Loss of ZNF587B and SULF1 contributed to cisplatin resistance in ovarian cancer cell lines based on Genome-scale CRISPR/Cas9 screening. Am. J. Cancer Res., 2019, 9(5), 988-998.
[PMID: 31218106]
[89]
Zhang, H.; Qin, C.; An, C.; Zheng, X.; Wen, S.; Chen, W.; Liu, X.; Lv, Z.; Yang, P.; Xu, W.; Gao, W.; Wu, Y. Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Mol. Cancer, 2021, 20(1), 126.
[http://dx.doi.org/10.1186/s12943-021-01431-6] [PMID: 34598686]
[90]
Guo, T.; Dong, X.; Xie, S.; Zhang, L.; Zeng, P.; Zhang, L. Cellular mechanism of gene mutations and potential therapeutic targets in ovarian cancer. Cancer Manag. Res., 2021, 13, 3081-3100.
[http://dx.doi.org/10.2147/CMAR.S292992] [PMID: 33854378]
[91]
Kim, B.; Kim, Y.; Shin, S.; Lee, S.T.; Cho, J.Y.; Lee, K.A. Application of CRISPR/Cas9-based mutant enrichment technique to improve the clinical sensitivity of plasma EGFR testing in patients with non-small cell lung cancer. Cancer Cell Int., 2022, 22(1), 82.
[http://dx.doi.org/10.1186/s12935-022-02504-2] [PMID: 35168603]
[92]
Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of multidrug resistance in cancer chemotherapy. Int. J. Mol. Sci., 2020, 21(9), 3233.
[http://dx.doi.org/10.3390/ijms21093233] [PMID: 32370233]
[93]
Zhang, X.H.; Tee, L.Y.; Wang, X.G.; Huang, Q.S.; Yang, S.H. Off-target effects in CRISPR/Cas9-mediated Genome Engineering. Mol. Ther. Nucleic Acids, 2015, 4(11), e264.
[http://dx.doi.org/10.1038/mtna.2015.37] [PMID: 26575098]
[94]
Hsu, P.D.; Scott, D.A.; Weinstein, J.A.; Ran, F.A.; Konermann, S.; Agarwala, V.; Li, Y.; Fine, E.J.; Wu, X.; Shalem, O.; Cradick, T.J.; Marraffini, L.A.; Bao, G.; Zhang, F. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol., 2013, 31(9), 827-832.
[http://dx.doi.org/10.1038/nbt.2647] [PMID: 23873081]
[95]
Sternberg, S.H.; Redding, S.; Jinek, M.; Greene, E.C.; Doudna, J.A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature, 2014, 507(7490), 62-67.
[http://dx.doi.org/10.1038/nature13011] [PMID: 24476820]
[96]
Charlesworth, C.T.; Deshpande, P.S.; Dever, D.P.; Camarena, J.; Lemgart, V.T.; Cromer, M.K.; Vakulskas, C.A.; Collingwood, M.A.; Zhang, L.; Bode, N.M.; Behlke, M.A.; Dejene, B.; Cieniewicz, B.; Romano, R.; Lesch, B.J.; Gomez-Ospina, N.; Mantri, S.; Pavel-Dinu, M.; Weinberg, K.I.; Porteus, M.H. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat. Med., 2019, 25(2), 249-254.
[http://dx.doi.org/10.1038/s41591-018-0326-x] [PMID: 30692695]
[97]
Ferdosi, S.R.; Ewaisha, R.; Moghadam, F.; Krishna, S.; Park, J.G.; Ebrahimkhani, M.R.; Kiani, S.; Anderson, K.S. Multifunctional CRISPR-Cas9 with engineered immunosilenced human T cell epitopes. Nat. Commun., 2019, 10(1), 1842.
[http://dx.doi.org/10.1038/s41467-019-09693-x] [PMID: 31015529]
[98]
Ihry, R.J.; Worringer, K.A.; Salick, M.R.; Frias, E.; Ho, D.; Theriault, K.; Kommineni, S.; Chen, J.; Sondey, M.; Ye, C.; Randhawa, R.; Kulkarni, T.; Yang, Z.; McAllister, G.; Russ, C.; Reece-Hoyes, J.; Forrester, W.; Hoffman, G.R.; Dolmetsch, R.; Kaykas, A. p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells. Nat. Med., 2018, 24(7), 939-946.
[http://dx.doi.org/10.1038/s41591-018-0050-6] [PMID: 29892062]
[99]
Haapaniemi, E.; Botla, S.; Persson, J.; Schmierer, B.; Taipale, J. CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response. Nat. Med., 2018, 24(7), 927-930.
[http://dx.doi.org/10.1038/s41591-018-0049-z] [PMID: 29892067]
[100]
Shalem, O.; Sanjana, N.E.; Hartenian, E.; Shi, X.; Scott, D.A.; Mikkelsen, T.S.; Heckl, D.; Ebert, B.L.; Root, D.E.; Doench, J.G.; Zhang, F. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science, 2014, 343(6166), 84-87.
[http://dx.doi.org/10.1126/science.1247005] [PMID: 24336571]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy