Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Review Article

Recent Advancements in Novel Formulations of Anti-psoriatic Agents for Effective Delivery: Clinical Importance and Patent Survey

Author(s): Nikhil Dadwal, Balak Das Kurmi, Dilpreet Singh and Amrinder Singh*

Volume 18, Issue 3, 2024

Published on: 03 August, 2023

Page: [259 - 277] Pages: 19

DOI: 10.2174/1872210517666230601124620

Price: $65

Abstract

Background: An autoimmune-mediated dermatological ailment featuring recurrent episodes is acknowledged as psoriasis. Around the world, 2–3% of people suffer from this autoimmune skin condition.

Objectives: The primary goal of the current review is to analyse and determine the effectiveness of conventional and emerging nano technological strategies to alleviate psoriasis and discuss future perspectives.

Methods: A thorough search of numerous electronic databases, including Science Direct, Scopus, Google Scholar, Clinical Trials, Google Patents, Research Gate, and PubMed, yielded all the data used in this review paper about the management of psoriasis via various anti-psoriatic agent and nanotechnology approaches. Keywords such as topical, liposomes, niosomes, micro needles, clinical trials, patents, pathogenesis, biosimilars, cytokines, and other pertinent words were investigated.

Results: Nano technological approaches are gaining prominence since they enable targeted delivery, rapid onset of action with limited systemic exposure. Researchers have investigated innovative, alternative therapeutic approaches that are both secure and efficient for treating psoriatic conditions. Further, the potential role of numerous psoriatic conventional therapies has been explored. The patents granted or in process to address psoriasis via topical route have been well explored. Modern nanotechnology has made it possible for pharmaceuticals to be delivered with improved physical, chemical, pharmacokinetic, and pharmacodynamic qualities. Despite extensive research complete cure for psoriasis is hampered.

Conclusion: Relying on the extensive literature review, it can be inferred that nanoparticles based novel delivery strategies have the possibility of enhancing the pharmacological activity and eliminating or resolving problems associated with this ailment. The different drug delivery systems available for the treatment of psoriasis along with the clinical trials in different stages, patents in process and granted, the commercialized status of therapeutic molecules, and the future of research in this area have been thoroughly reviewed.

Keywords: Psoriasis, cytokines, biologics, topical, patents, nanocarrier.

Next »
Graphical Abstract
[1]
Griffiths CEM, Barker JNWN. Pathogenesis and clinical features of psoriasis. Lancet 2007; 370(9583): 263-71.
[http://dx.doi.org/10.1016/S0140-6736(07)61128-3] [PMID: 17658397]
[2]
Remröd C, Sjöström K, Svensson Å. Psychological differences between early- and late-onset psoriasis: A study of personality traits, anxiety and depression in psoriasis. Br J Dermatol 2013; 169(2): 344-50.
[http://dx.doi.org/10.1111/bjd.12371] [PMID: 23565588]
[3]
Boehncke WH, Schön MP. Psoriasis. Lancet 2015; 386(9997): 983-94.
[http://dx.doi.org/10.1016/S0140-6736(14)61909-7] [PMID: 26025581]
[4]
Gottlieb AB, Chao C, Dann F. Psoriasis comorbidities. J Dermatolog Treat 2008; 19(1): 5-21.
[http://dx.doi.org/10.1080/09546630701364768] [PMID: 18273720]
[5]
Fujii RK, Mould JF, Tang B, et al. PSY46 Burden of disease in patients with diagnosed psoriasis in Brazil: Results from 2011 National Health and Wellness Survey (NHWS). Value Health 2012; 15(4): A107.
[http://dx.doi.org/10.1016/j.jval.2012.03.580]
[6]
Dvorakova V, Markham T. Psoriasis: Current treatment options and recent advances. Prescriber 2013; 24(10): 13-20.
[http://dx.doi.org/10.1002/psb.1059]
[7]
Griffiths CEM, Armstrong AW, Gudjonsson JE, Barker JNWN. Psoriasis. Lancet 2021; 397(10281): 1301-15.
[http://dx.doi.org/10.1016/S0140-6736(20)32549-6] [PMID: 33812489]
[8]
Sala M, Elaissari A, Fessi H. Advances in psoriasis physiopathology and treatments: Up to date of mechanistic insights and perspectives of novel therapies based on innovative skin drug delivery systems (ISDDS). J Control Release 2016; 239: 182-202.
[http://dx.doi.org/10.1016/j.jconrel.2016.07.003] [PMID: 27381248]
[9]
Zhang YT, Shen LN, Wu ZH, Zhao JH, Feng NP. Comparison of ethosomes and liposomes for skin delivery of psoralen for psoriasis therapy. Int J Pharm 2014; 471(1-2): 449-52.
[http://dx.doi.org/10.1016/j.ijpharm.2014.06.001] [PMID: 24907596]
[10]
Rodríguez-Luna A, Talero E, Ávila-Román J, et al. Preparation and in vivo evaluation of rosmarinic acid-loaded transethosomes after percutaneous application on a psoriasis animal model. AAPS PharmSciTech 2021; 22(3): 103.
[http://dx.doi.org/10.1208/s12249-021-01966-3] [PMID: 33712964]
[11]
Lebwohl MG, Tanghetti EA, Stein Gold L, Del Rosso JQ, Gilyadov NK, Jacobson A. Fixed-combination halobetasol propionate and tazarotene in the treatment of psoriasis: Narrative review of mechanisms of action and therapeutic benefits. Dermatol Ther 2021; 11(4): 1157-74.
[http://dx.doi.org/10.1007/s13555-021-00560-6] [PMID: 34106439]
[12]
Piquero-Casals J, Morgado-Carrasco D, Granger C, Trullàs C, Jesús-Silva A, Krutmann J. Urea in dermatology: A review of its emollient, moisturizing, keratolytic, skin barrier enhancing and antimicrobial properties. Dermatol Ther 2021; 11(6): 1905-15.
[http://dx.doi.org/10.1007/s13555-021-00611-y] [PMID: 34596890]
[13]
Birkir S. Use of cgrp antagonist compounds for treatment of psoriasis. U.S. patent 1,0668,132, 2016.
[14]
Campbell T, Zhao Z, Yeung SC, et al. Imidazopyridine derivatives as alpha4beta7 integrin inhibitors. Australia 2,022,218,459, 2022.
[15]
Cunbo MA, Panliang GAO, Shaojing HU, et al. Novel heterocyclic derivatives useful as SHP2 inhibitors. Australia AU2022204681A1, 2022.
[16]
Yamanaka K, Yamamoto O, Honda T. Pathophysiology of psoriasis: A review. J Dermatol 2021; 48(6): 722-31.
[http://dx.doi.org/10.1111/1346-8138.15913] [PMID: 33886133]
[17]
Hawkes JE, Chan TC, Krueger JG. Psoriasis pathogenesis and the development of novel targeted immune therapies. J Allergy Clin Immunol 2017; 140(3): 645-53.
[http://dx.doi.org/10.1016/j.jaci.2017.07.004] [PMID: 28887948]
[18]
Schön MP, Erpenbeck L. The interleukin-23/interleukin-17 axis links adaptive and innate immunity in psoriasis. Front Immunol 2018; 9: 1323.
[http://dx.doi.org/10.3389/fimmu.2018.01323] [PMID: 29963046]
[19]
Nograles KE, Zaba LC, Guttman-Yassky E, et al. Th17 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-response pathways. Br J Dermatol 2008; 159(5): 1092-102.
[http://dx.doi.org/10.1111/j.1365-2133.2008.08769.x] [PMID: 18684158]
[20]
Fitch E, Harper E, Skorcheva I, Kurtz SE, Blauvelt A. Pathophysiology of psoriasis: Recent advances on IL-23 and Th17 cytokines. Curr Rheumatol Rep 2007; 9(6): 461-7.
[http://dx.doi.org/10.1007/s11926-007-0075-1] [PMID: 18177599]
[21]
Iwakura Y, Ishigame H, Saijo S, Nakae S. Functional specialization of interleukin-17 family members. Immunity 2011; 34(2): 149-62.
[http://dx.doi.org/10.1016/j.immuni.2011.02.012] [PMID: 21349428]
[22]
O’Shea JJ, Gadina M. Selective Janus kinase inhibitors come of age. Nat Rev Rheumatol 2019; 15(2): 74-5.
[http://dx.doi.org/10.1038/s41584-018-0155-9] [PMID: 30622297]
[23]
Stockinger B, Veldhoen M. Differentiation and function of Th17 T cells. Curr Opin Immunol 2007; 19(3): 281-6.
[http://dx.doi.org/10.1016/j.coi.2007.04.005] [PMID: 17433650]
[24]
Awasthi A, Riol-Blanco L, Jäger A, et al. Cutting edge: IL-23 receptor gfp reporter mice reveal distinct populations of IL-17-producing cells. J Immunol 2009; 182(10): 5904-8.
[http://dx.doi.org/10.4049/jimmunol.0900732] [PMID: 19414740]
[25]
Martin DA, Towne JE, Kricorian G, et al. The emerging role of IL-17 in the pathogenesis of psoriasis: Preclinical and clinical findings. J Invest Dermatol 2013; 133(1): 17-26.
[http://dx.doi.org/10.1038/jid.2012.194] [PMID: 22673731]
[26]
Witte E, Kokolakis G, Witte K, et al. IL-19 is a component of the pathogenetic IL-23/IL-17 cascade in psoriasis. J Invest Dermatol 2014; 134(11): 2757-67.
[http://dx.doi.org/10.1038/jid.2014.308] [PMID: 25046339]
[27]
Rapalli VK, Singhvi G, Dubey SK, Gupta G, Chellappan DK, Dua K. Emerging landscape in psoriasis management: From topical application to targeting biomolecules. Biomed Pharmacother 2018; 106: 707-13.
[http://dx.doi.org/10.1016/j.biopha.2018.06.136] [PMID: 29990862]
[28]
Carrascosa JM, Jacobs I, Petersel D, Strohal R. Biosimilar drugs for psoriasis: Principles, present, and near future. Dermatol Ther 2018; 8(2): 173-94.
[http://dx.doi.org/10.1007/s13555-018-0230-9] [PMID: 29549597]
[29]
Isaacs JD, Cutolo M, Keystone EC, Park W, Braun J. Biosimilars in immune‐mediated inflammatory diseases: initial lessons from the first approved biosimilar anti‐tumour necrosis factor monoclonal antibody. J Intern Med 2016; 279(1): 41-59.
[http://dx.doi.org/10.1111/joim.12432] [PMID: 26403380]
[30]
Feldman SR, Bagel J, Namak S. Biosimilars for immune-mediated chronic diseases in primary care: What a practicing physician needs to know. Am J Med Sci 2018; 355(5): 411-7.
[http://dx.doi.org/10.1016/j.amjms.2017.12.014] [PMID: 29753369]
[31]
Gossec L, Smolen JS, Ramiro S, et al. European League Against Rheumatism (EULAR) recommendations for the management of psoriatic arthritis with pharmacological therapies: 2015 update. Ann Rheum Dis 2016; 75(3): 499-510.
[http://dx.doi.org/10.1136/annrheumdis-2015-208337] [PMID: 26644232]
[32]
Gisondi P, Altomare G, Ayala F, et al. Italian guidelines on the systemic treatments of moderate-to-severe plaque psoriasis. J Eur Acad Dermatol Venereol 2017; 31(5): 774-90.
[http://dx.doi.org/10.1111/jdv.14114] [PMID: 28244153]
[33]
Schadler ED, Ortel B, Mehlis SL. Biologics for the primary care physician: Review and treatment of psoriasis. Dis Mon 2019; 65(3): 51-90.
[http://dx.doi.org/10.1016/j.disamonth.2018.06.001] [PMID: 30037762]
[34]
Zagni E, Colombo D, Fiocchi M, et al. Pharmaco-utilization of biologic drugs in patients affected by psoriasis, psoriatic arthritis and ankylosing spondylitis in an Italian real-world setting. Expert Rev Pharmacoecon Outcomes Res 2020; 20(5): 491-7.
[http://dx.doi.org/10.1080/14737167.2020.1800456] [PMID: 32701033]
[35]
National psoriasis foudation. Use of ilumya Available from: https://www.psoriasis.org/ilumya/ (Accessed on: 30th sep, 2022).
[36]
National psoriasis foudation. Use of Skyrizi Available from: https://www.psoriasis.org/skyrizi/ (Accessed on: 30th sep, 2022).
[37]
National psoriasis foudation. Use of tremfya Available from: https://www.psoriasis.org/tremfya/ (Accessed on: 30th sep, 2022).
[38]
National psoriasis foudation. Use of Orencia Available from: https://www.psoriasis.org/orencia/ (Accessed on: 30th sep, 2022).
[39]
National psoriasis foudation. Use of cosentyx Available from: https://www.psoriasis.org/cose ntyx/ (Accessed on: 30th sep, 2022).
[40]
National psoriasis foudation. Use of Taltz Available from: https://www.psoriasis.org/taltz/ (Accessed on: 30th sep, 2022).
[41]
National psoriasis foudation. Use of Siliq Available from: https://www.psoriasis.org/siliq/ (Accessed on: 30th sep, 2022).
[42]
National psoriasis foudation. Use of Stelara Available from:https://www.psoriasis.org/stelara/ (Accessed on: 30th sep, 2022).
[43]
National psoriasis foudation. Use of Cimzia Available from: https://www.psoriasis.org/cimzia/ (Accessed on: 30th sep, 2022).
[44]
National psoriasis foudation. Use of Enbrel Available from: https://www.psoriasis.org/enbrel/ (Accessed on: 30th sep, 2022).
[45]
National psoriasis foudation. Use of Humira Available from: https://www.psoriasis.org/humira/ (Accessed on: 30th sep, 2022).
[46]
National psoriasis foudation. Use of Remicade Available from: https://www.psoriasis.org/remicade/ (Accessed on: 30th sep, 2022).
[47]
National psoriasis foudation. Use of Simponi Available from: https://www.psoriasis.org/simponi/ (Accessed on: 30th sep, 2022).
[48]
National psoriasis foudation. Use of Simponiaria Available from: https://www.psoriasis.org/simponiaria/ (Accessed on: 30th sep, 2022).
[49]
Uva L, Miguel D, Pinheiro C, et al. Mechanisms of action of topical corticosteroids in psoriasis. Int J Endocrinol 2012; 2012: 561018.
[http://dx.doi.org/10.1155/2012/561018]
[50]
Dattola A, Silvestri M, Bennardo L, et al. Update of calcineurin inhibitors to treat inverse psoriasis: A systematic review. Dermatol Ther 2018; 31(6): e12728.
[http://dx.doi.org/10.1111/dth.12728] [PMID: 30295379]
[51]
Buechler CR, Veenstra J, Stein Gold L. New topical therapies for psoriasis. Dermatol Rev 2021; 2(5): 262-8.
[http://dx.doi.org/10.1002/der2.84]
[52]
Brownstone ND, Bhutani T, Koo J. Halobetasol propionate and tazarotene combination lotion 0.01%/0.045% for psoriasis. Curr Dermatol Rep 2021; 10(1): 21-5.
[http://dx.doi.org/10.1007/s13671-020-00327-w]
[53]
U.S. food & Drug Administration, Drugs@FDA : FDA-Approved Drugs. Available from: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=077227 (Accessed on: 20th aug, 2022).
[54]
Dutta S, Chawla S, Kumar S. Psoriasis: A review of existing therapies and recent advances in treatment. Differentiation 2018; 4(1): 12-23.
[55]
Mosca M, Hong J, Hadeler E, Brownstone N, Bhutani T, Liao W. Scalp psoriasis: A literature review of effective therapies and updated recommendations for practical management. Dermatol Ther 2021; 11(3): 769-97.
[http://dx.doi.org/10.1007/s13555-021-00521-z] [PMID: 33893995]
[56]
Shetty K, Sherje AP. Nano intervention in topical delivery of corticosteroid for psoriasis and atopic dermatitis—a systematic review. J Mater Sci Mater Med 2021; 32(8): 88.
[http://dx.doi.org/10.1007/s10856-021-06558-y] [PMID: 34331599]
[57]
McClanahan DR, English JC III. Therapeutics for adult nail psoriasis and nail lichen planus: A guide for clinicians. Am J Clin Dermatol 2018; 19(4): 559-84.
[http://dx.doi.org/10.1007/s40257-018-0350-0] [PMID: 29488102]
[58]
Kravvas G, Gholam K. Use of topical therapies for pediatric psoriasis: A systematic review. Pediatr Dermatol 2018; 35(3): 296-302.
[http://dx.doi.org/10.1111/pde.13422] [PMID: 29493005]
[59]
Shi H, Sadler PJ. How promising is phototherapy for cancer? Br J Cancer 2020; 123(6): 871-3.
[http://dx.doi.org/10.1038/s41416-020-0926-3] [PMID: 32587359]
[60]
Derheimer FA, Hicks JK, Paulsen MT, Canman CE, Ljungman M. Psoralen-induced DNA interstrand cross-links block transcription and induce p53 in an ataxia-telangiectasia and rad3-related-dependent manner. Mol Pharmacol 2009; 75(3): 599-607.
[http://dx.doi.org/10.1124/mol.108.051698] [PMID: 19064630]
[61]
Kemény L, Varga E, Novak Z. Advances in phototherapy for psoriasis and atopic dermatitis. Expert Rev Clin Immunol 2019; 15(11): 1205-14.
[http://dx.doi.org/10.1080/1744666X.2020.1672537] [PMID: 31575297]
[62]
Elmets CA, Lim HW, Stoff B, et al. Joint American academy of dermatology–national psoriasis foundation guidelines of care for the management and treatment of psoriasis with phototherapy. J Am Acad Dermatol 2019; 81(3): 775-804.
[http://dx.doi.org/10.1016/j.jaad.2019.04.042] [PMID: 31351884]
[63]
Alalaiwe A, Hung CF, Leu YL, et al. The active compounds derived from Psoralea corylifolia for photochemotherapy against psoriasis-like lesions: The relationship between structure and percutaneous absorption. Eur J Pharm Sci 2018; 124: 114-26.
[http://dx.doi.org/10.1016/j.ejps.2018.08.031] [PMID: 30153523]
[64]
Zhang P, Wu MX. A clinical review of phototherapy for psoriasis. Lasers Med Sci 2018; 33(1): 173-80.
[http://dx.doi.org/10.1007/s10103-017-2360-1] [PMID: 29067616]
[65]
Hamblin MR. Shining light on the head: Photobiomodulation for brain disorders. BBA Clin 2016; 6: 113-24.
[http://dx.doi.org/10.1016/j.bbacli.2016.09.002] [PMID: 27752476]
[66]
Food US. Active ingredients for the control of psoriasis.
[67]
Khalil S, Bardawil T, Stephan C, et al. Retinoids: A journey from the molecular structures and mechanisms of action to clinical uses in dermatology and adverse effects. J Dermatolog Treat 2017; 28(8): 684-96.
[http://dx.doi.org/10.1080/09546634.2017.1309349] [PMID: 28318351]
[68]
Heath MS, Sahni DR, Curry ZA, Feldman SR. Pharmacokinetics of tazarotene and acitretin in psoriasis. Expert Opin Drug Metab Toxicol 2018; 14(9): 919-27.
[http://dx.doi.org/10.1080/17425255.2018.1515198] [PMID: 30134735]
[69]
Zhao Y, Brown MB, Jones SA. Pharmaceutical foams: Are they the answer to the dilemma of topical nanoparticles? Nanomedicine 2010; 6(2): 227-36.
[http://dx.doi.org/10.1016/j.nano.2009.08.002] [PMID: 19715774]
[70]
Lira AAM, Cordo PLA, Nogueira ECF, et al. Optimization of topical all-trans retinoic acid penetration using poly-DL-lactide and poly-DL-lactide-co-glycolide microparticles. J Colloid Sci Biotechnol 2013; 2(2): 123-9.
[http://dx.doi.org/10.1166/jcsb.2013.1041]
[71]
Jada A. A special issue on inorganic colloidal particles, synthesis, surface properties and applications. J Colloid Sci Biotechnol 2014; 3(1): 1-2.
[http://dx.doi.org/10.1166/jcsb.2014.1071]
[72]
Lei W, Yu C, Lin H, Zhou X. Development of tacrolimus-loaded transfersomes for deeper skin penetration enhancement and therapeutic effect improvement in vivo. Asian J Pharm 2013; 8(6): 336-45.
[73]
An J, Zhang D, Wu J, et al. The acitretin and methotrexate combination therapy for psoriasis vulgaris achieves higher effectiveness and less liver fibrosis. Pharmacol Res 2017; 121: 158-68.
[http://dx.doi.org/10.1016/j.phrs.2017.04.014] [PMID: 28414177]
[74]
Gregoriadis G. Liposome research in drug delivery: The early days. J Drug Target 2008; 16(7-8): 520-4.
[http://dx.doi.org/10.1080/10611860802228350] [PMID: 18686120]
[75]
Walunj M, Doppalapudi S, Bulbake U, Khan W. Preparation, characterization, and in vivo evaluation of cyclosporine cationic liposomes for the treatment of psoriasis. J Liposome Res 2020; 30(1): 68-79.
[http://dx.doi.org/10.1080/08982104.2019.1593449] [PMID: 30897993]
[76]
Marianecci C, Di Marzio L, Rinaldi F, et al. Niosomes from 80s to present: The state of the art. Adv Colloid Interface Sci 2014; 205: 187-206.
[http://dx.doi.org/10.1016/j.cis.2013.11.018] [PMID: 24369107]
[77]
Jyothi SL, Krishna KL, Ameena SVK, Sankar R, Pramod K, Gangadharappa HV. Drug delivery systems for the treatment of psoriasis: Current status and prospects. J Drug Deliv Sci Technol 2021; 62: 102364.
[http://dx.doi.org/10.1016/j.jddst.2021.102364]
[78]
Bhardwaj P, Tripathi P, Gupta R, Pandey S. Niosomes: A review on niosomal research in the last decade. J Drug Deliv Sci Technol 2020; 56: 101581.
[http://dx.doi.org/10.1016/j.jddst.2020.101581]
[79]
Chen S, Hanning S, Falconer J, Locke M, Wen J. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. Eur J Pharm Biopharm 2019; 144: 18-39.
[http://dx.doi.org/10.1016/j.ejpb.2019.08.015] [PMID: 31446046]
[80]
Abdelbary AA, AbouGhaly MHH. Design and optimization of topical methotrexate loaded niosomes for enhanced management of psoriasis: Application of Box–Behnken design, in-vitro evaluation and in-vivo skin deposition study. Int J Pharm 2015; 485(1-2): 235-43.
[http://dx.doi.org/10.1016/j.ijpharm.2015.03.020] [PMID: 25773359]
[81]
Mehnert W, Mäder K. Solid lipid nanoparticles. Adv Drug Deliv Rev 2012; 64: 83-101.
[http://dx.doi.org/10.1016/j.addr.2012.09.021] [PMID: 11311991]
[82]
Sathe P, Saka R, Kommineni N, Raza K, Khan W. Dithranol-loaded nanostructured lipid carrier-based gel ameliorate psoriasis in imiquimod-induced mice psoriatic plaque model. Drug Dev Ind Pharm 2019; 45(5): 826-38.
[http://dx.doi.org/10.1080/03639045.2019.1576722] [PMID: 30764674]
[83]
Pradhan M, Singh D, Murthy SN, Singh MR. Design, characterization and skin permeating potential of Fluocinolone acetonide loaded nanostructured lipid carriers for topical treatment of psoriasis. Steroids 2015; 101: 56-63.
[http://dx.doi.org/10.1016/j.steroids.2015.05.012] [PMID: 26049018]
[84]
Walve J, Bakliwal S, Rane B, Pawar S. Transfersomes: A surrogated carrier for transdermal drug delivery system. Int J Appl Biol Pharm Technol 2011; 2: 204-13.
[85]
Benson HAE. Transfersomes for transdermal drug delivery. Expert Opin Drug Deliv 2006; 3(6): 727-37.
[http://dx.doi.org/10.1517/17425247.3.6.727] [PMID: 17076595]
[86]
Zhang CZ, Niu J, Chong YS, et al. Porous microspheres as promising vehicles for the topical delivery of poorly soluble asiaticoside accelerate wound healing and inhibit scar formation in vitro & in vivo. Eur J Pharm Biopharm 2016; 109: 1-13.
[http://dx.doi.org/10.1016/j.ejpb.2016.09.005] [PMID: 27614186]
[87]
Chaware P, Sharma S, Bhandari A, Garud A, Garud N. Bioadhesive microspheres: A review on preparation and in-vitro characterization. World J Pharm Res 2015; 4(2): 423-36.
[88]
Farah FH. Magnetic microspheres: A novel drug delivery system. J Anal Pharm Res 2016; 3(5): 00067.
[89]
Mukund JY, Kantilal BR, Sudhakar RN. Floating microspheres: A review. Braz J Pharm Sci 2012; 48(1): 17-30.
[http://dx.doi.org/10.1590/S1984-82502012000100003]
[90]
Krishna K, Reddy C, Srikanth S. A review on microsphere for novel drug delivery system. Int J Res Pharm Chem 2013; 3(4): 763-7.
[91]
Renkecz T, Horvath V. Preparation of molecularly imprinted microspheres by precipitation polymerization. Synthetic Antibodies. Springer 2017; pp. 341-52.
[http://dx.doi.org/10.1007/978-1-4939-6857-2_21]
[92]
Saini S, Kumar S, Choudhary M. Nitesh, Budhwar V. Microspheres as controlled drug delivery system: an updated review. Int J Pharm Sci Res 2018; 9(5): 1760-8.
[93]
Xu J, Chen H, Chu Z, et al. A multifunctional composite hydrogel as an intrinsic and extrinsic coregulator for enhanced therapeutic efficacy for psoriasis. J Nanobiotechnology 2022; 20(1): 155.
[http://dx.doi.org/10.1186/s12951-022-01368-y] [PMID: 35331238]
[94]
Gupta PN, Mishra V, Rawat A, et al. Non-invasive vaccine delivery in transfersomes, niosomes and liposomes: A comparative study. Int J Pharm 2005; 293(1-2): 73-82.
[http://dx.doi.org/10.1016/j.ijpharm.2004.12.022] [PMID: 15778046]
[95]
Negi P, Sharma I, Hemrajani C, et al. Thymoquinone-loaded lipid vesicles: A promising nanomedicine for psoriasis. BMC Complement Altern Med 2019; 19(1): 334.
[http://dx.doi.org/10.1186/s12906-019-2675-5] [PMID: 31771651]
[96]
Liu M, Fréchet JMJ. Designing dendrimers for drug delivery. Pharm Sci Technol Today 1999; 2(10): 393-401.
[http://dx.doi.org/10.1016/S1461-5347(99)00203-5] [PMID: 10498919]
[97]
Hawker CJ, Frechet JMJ. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J Am Chem Soc 1990; 112(21): 7638-47.
[http://dx.doi.org/10.1021/ja00177a027]
[98]
Boas U, Heegaard PMH. Dendrimers in drug research. Chem Soc Rev 2004; 33(1): 43-63.
[http://dx.doi.org/10.1039/b309043b] [PMID: 14737508]
[99]
Tripathy S, Das MK. Dendrimers and their applications as novel drug delivery carriers. J Appl Pharm Sci 2013; 3(9): 142-9.
[100]
Tripathi PK, Gorain B, Choudhury H, Srivastava A, Kesharwani P. Dendrimer entrapped microsponge gel of dithranol for effective topical treatment. Heliyon 2019; 5(3): e01343.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01343] [PMID: 30957038]
[101]
Wen Z, Lu J, Zhang Y, et al. Facile inverse micelle fabrication of magnetic ordered mesoporous iron cerium bimetal oxides with excellent performance for arsenic removal from water. J Hazard Mater 2020; 383: 121172.
[http://dx.doi.org/10.1016/j.jhazmat.2019.121172] [PMID: 31522062]
[102]
Ghezzi M, Pescina S, Padula C, et al. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release 2021; 332: 312-36.
[http://dx.doi.org/10.1016/j.jconrel.2021.02.031] [PMID: 33652113]
[103]
Supasena W, Muangnoi C, Thaweesest W, et al. Enhanced antipsoriatic activity of mycophenolic acid against the tnf-α-induced hacat cell proliferation by conjugated poloxamer micelles. J Pharm Sci 2020; 109(2): 1153-60.
[http://dx.doi.org/10.1016/j.xphs.2019.11.010] [PMID: 31751564]
[104]
Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 2000; 45(1): 89-121.
[http://dx.doi.org/10.1016/S0169-409X(00)00103-4] [PMID: 11104900]
[105]
Langasco R, Tanrıverdi ST, Özer Ö, et al. Prolonged skin retention of clobetasol propionate by bio-based microemulsions: A potential tool for scalp psoriasis treatment. Drug Dev Ind Pharm 2018; 44(3): 398-406.
[http://dx.doi.org/10.1080/03639045.2017.1395458] [PMID: 29098874]
[106]
Kaur A, Katiyar SS, Kushwah V, Jain S. Nanoemulsion loaded gel for topical co-delivery of clobitasol propionate and calcipotriol in psoriasis. Nanomedicine 2017; 13(4): 1473-82.
[http://dx.doi.org/10.1016/j.nano.2017.02.009] [PMID: 28259803]
[107]
Fahmy AM, El-Setouhy DA, Habib BA, Tayel SA. Enhancement of transdermal delivery of haloperidol via spanlastic dispersions: Entrapment efficiency vs. particle size. AAPS PharmSciTech 2019; 20(3): 95.
[http://dx.doi.org/10.1208/s12249-019-1306-2] [PMID: 30694404]
[108]
Elmowafy E, El-Gogary RI, Ragai MH, Nasr M. Novel antipsoriatic fluidized spanlastic nanovesicles: in vitro physicochemical characterization, ex vivo cutaneous retention and exploratory clinical therapeutic efficacy. Int J Pharm 2019; 568: 118556.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118556] [PMID: 31348982]
[109]
Weerheim A, Ponec M. Determination of stratum corneum lipid profile by tape stripping in combination with high-performance thin-layer chromatography. Arch Dermatol Res 2001; 293(4): 191-9.
[http://dx.doi.org/10.1007/s004030100212] [PMID: 11380152]
[110]
Li Q, Fang H, Dang E, Wang G. The role of ceramides in skin homeostasis and inflammatory skin diseases. J Dermatol Sci 2020; 97(1): 2-8.
[http://dx.doi.org/10.1016/j.jdermsci.2019.12.002] [PMID: 31866207]
[111]
Yang X, Tang Y, Wang M, et al. Co-delivery of methotrexate and nicotinamide by cerosomes for topical psoriasis treatment with enhanced efficacy. Int J Pharm 2021; 605: 120826.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120826] [PMID: 34171426]
[112]
Thaçi D, Augustin M, Krutmann J, Luger T. Importance of basic therapy in psoriasis. J Dtsch Dermatol Ges 2015; 13(5): 415-8.
[http://dx.doi.org/10.1111/ddg.12615] [PMID: 25918082]
[113]
Vovesná A, Zhigunov A, Balouch M, Zbytovská J. Ceramide liposomes for skin barrier recovery: A novel formulation based on natural skin lipids. Int J Pharm 2021; 596: 120264.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120264] [PMID: 33486027]
[114]
Abdelgawad R, Nasr M, Moftah NH, Hamza MY. Phospholipid membrane tubulation using ceramide doping “Cerosomes”: Characterization and clinical application in psoriasis treatment. Eur J Pharm Sci 2017; 101: 258-68.
[http://dx.doi.org/10.1016/j.ejps.2017.02.030] [PMID: 28232140]
[115]
Albash R, Yousry C, Al-Mahallawi AM, Alaa-Eldin AA. Utilization of PEGylated cerosomes for effective topical delivery of fenticonazole nitrate: in-vitro characterization, statistical optimization, and in-vivo assessment. Drug Deliv 2021; 28(1): 1-9.
[http://dx.doi.org/10.1080/10717544.2020.1859000] [PMID: 33322971]
[116]
Edens C, Collins ML, Goodson JL, Rota PA, Prausnitz MR. A microneedle patch containing measles vaccine is immunogenic in non-human primates. Vaccine 2015; 33(37): 4712-8.
[http://dx.doi.org/10.1016/j.vaccine.2015.02.074] [PMID: 25770786]
[117]
Ita K. Dissolving microneedles for transdermal drug delivery: Advances and challenges. Biomed Pharmacother 2017; 93: 1116-27.
[http://dx.doi.org/10.1016/j.biopha.2017.07.019] [PMID: 28738520]
[118]
Rzhevskiy AS, Singh TRR, Donnelly RF, Anissimov YG. Microneedles as the technique of drug delivery enhancement in diverse organs and tissues. J Control Release 2018; 270: 184-202.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.048] [PMID: 29203415]
[119]
Sivamani RK, Liepmann D, Maibach HI. Microneedles and transdermal applications. Expert Opin Drug Deliv 2007; 4(1): 19-25.
[http://dx.doi.org/10.1517/17425247.4.1.19] [PMID: 17184159]
[120]
Qin X, Chen C, Zhang Y, et al. Acitretin modulates HaCaT cells proliferation through STAT1- and STAT3-dependent signaling. Saudi Pharm J 2017; 25(4): 620-4.
[http://dx.doi.org/10.1016/j.jsps.2017.04.034] [PMID: 28579901]
[121]
Pikal MJ. The role of electroosmotic flow in transdermal iontophoresis. Adv Drug Deliv Rev 2001; 46(1-3): 281-305.
[http://dx.doi.org/10.1016/S0169-409X(00)00138-1] [PMID: 11259844]
[122]
Subramony JA, Sharma A, Phipps JB. Microprocessor controlled transdermal drug delivery. Int J Pharm 2006; 317(1): 1-6.
[http://dx.doi.org/10.1016/j.ijpharm.2006.03.053] [PMID: 16713690]
[123]
Fukuta T, Tanaka D, Inoue S, Michiue K, Kogure K. Overcoming thickened pathological skin in psoriasis via iontophoresis combined with tight junction-opening peptide AT1002 for intradermal delivery of NF-κB decoy oligodeoxynucleotide. Int J Pharm 2021; 602: 120601.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120601] [PMID: 33905867]
[124]
Singhvi G, Manchanda P, Hans N, Dubey SK, Gupta G. Microsponge: An emerging drug delivery strategy. Drug Dev Res 2019; 80(2): 200-8.
[http://dx.doi.org/10.1002/ddr.21492] [PMID: 30456763]
[125]
Devi N, Kumar S, Prasad M, Rao R. Eudragit RS100 based microsponges for dermal delivery of clobetasol propionate in psoriasis management. J Drug Deliv Sci Technol 2020; 55: 101347.
[http://dx.doi.org/10.1016/j.jddst.2019.101347]
[126]
Guimarães D, Cavaco-Paulo A, Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int J Pharm 2021; 601: 120571.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120571] [PMID: 33812967]
[127]
Shah P, Jariwala R, Kapadiya S, Sabale VP, Patel P, Chaudhari PM. Niosomes: A novel nanometric vesicular system for drug delivery. Nanocarriers: Drug Delivery System. Springer 2021; pp. 201-26.
[http://dx.doi.org/10.1007/978-981-33-4497-6_8]
[128]
Patel MR, San Martin-Gonzalez MF. Characterization of ergocalciferol loaded solid lipid nanoparticles. J Food Sci 2012; 77(1): N8-N13.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02517.x] [PMID: 22260120]
[129]
Sunilendu BR, Shafiq S, Jitendra DP, Jinesh SP. Topical pharmaceutical compositions containing nanodroplets for the treatment psoriasis. Patent US 8,992,994 B2, 2011.
[130]
Juntao LXW, Changying S, Alexa B, Walter H. Lipidic compoundtelodendrimer hybrid nanoparticles and methods of making and uses thereof. U.S. patents 20,170,266,292, 2017.
[131]
Zheng YMS. A kind of Celastrol or tripterine derivate vesica and preparation method thereof China. Patent CN108743534A, 2018.
[132]
Makatia MC, Tomdin Y P, John B, Onurji AC, Antonios OA. Nanoparticle-based therapy for inflammatory diseases. Patent JP2021534232A, 2019.
[133]
Raghavan PR. Metadichol® liquid and gel nanoparticle formulations. U.S. patents US20140275285A1, 2014.
[134]
Zhao lc, Roy L, Van DP, et al. Cyclodextrin-based polymers for therapeutic delivery. Patent WO2017177055, 2017.
[135]
Life care innovations, Psorisome Gel. Available from: https://www.lifecareinnovations.com/psorisome-gel.php (Accessed on: 20 aug, 2022).
[136]
Life care innovations, Lipotar S Gel. Available from: https://www.lifecareinnovations.com/lipotar.php (Accessed on: 20th aug, 2022).
[137]
Formulation and Clinical Evaluation of Ethosomal and Liposomal Preparations of Anthralin in Psoriasis. NCT03348462, Available from:https://clinicaltrials.gov/ct2/show/NCT03348462
[138]
Taclonex Ointment With Hydrogel Patch Occlusion for the Treatment of Psoriasis. NCT00924950, Available from: https://clinicaltrials.gov/ct2/show/NCT00924950

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy