Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Post-translational Modifications by Acyl Groups Regulate FEN1’s Activities and Play Essential Roles in Cell Proliferation and DNA Repair

Author(s): Yue Xiao, Mingyu Yin, Yiyi Wang, Rongyi Shi, Shuyu Mao, Yuejin Hua* and Hong Xu*

Volume 30, Issue 7, 2023

Published on: 21 June, 2023

Page: [597 - 607] Pages: 11

DOI: 10.2174/0929866530666230529152209

Price: $65

Abstract

Background: Flap endonuclease 1 (FEN1), well known for its structural-specific nuclease, possessing 5'-flap endonuclease and 5'-3' exonuclease activities, is mainly involved in DNA replication and repair. Protein lysine acetylation is an important posttranslational modification that could regulate numerous proteins’ activity, subcellular localization, protein-protein interaction etc., and influences many biological processes. Our previous studies on integrated succinylome profiles found that succinylation and acetylation levels of FEN1 would change under different conditions. Succinylation at FEN1 Lys200 site results in the accumulation of damaged DNA and increased susceptibility to fork-stalling agents. The interplay with other forms of modification could affects its protein interaction affinity and thus contribute to genome stability.

Objective: This article studied the biological role of FEN1 by acyl modification in HeLa cells.

Method: In order to explore the function of FEN1 acylation in cells, we mimicked the presence or absence of acetylation or succinylation by mutating key amino acids to glutamic acid and glutamine. We carried out a series of experiments including cell cycle, MTS, enzyme kinetics measurements, immunofluorescence and so on.

Results: The absence of acylation of FEN1 leads to the blocked cell cycle process and the reduced efficiency of FEN1 on its DNA substrates, affecting the interaction of FEN1 with both repair and replication related proteins and thus its role in the repair of DNA damage.

Conclusion: We have verified acyl groups could modify Lys125, Lys252 and Lys254 of FEN1. Acylation level of these three is important for enzyme activity, cell proliferation and DNA damage response, thus contributing to genome stability.

Keywords: FEN1, posttranslational modification, acetylation, succinylation, DNA repair, genome stability.

Graphical Abstract
[1]
Liu, Y.; Kao, H.I.; Bambara, R.A. Flap endonuclease 1: A central component of DNA metabolism. Annu. Rev. Biochem., 2004, 73(1), 589-615.
[http://dx.doi.org/10.1146/annurev.biochem.73.012803.092453] [PMID: 15189154]
[2]
Nazarkina Zh, K.; Lavrik, O.I.; Khodyreva, S.N. Mol. Biol., 2008, 42(3), 405-421. INCOMPLETE.
[PMID: 18702299]
[3]
Zheng, L.; Jia, J.; Finger, L.D.; Guo, Z.; Zer, C.; Shen, B. Functional regulation of FEN1 nuclease and its link to cancer. Nucleic Acids Res., 2011, 39(3), 781-794.
[http://dx.doi.org/10.1093/nar/gkq884] [PMID: 20929870]
[4]
Klungland, A.; Lindahl, T. Second pathway for completion of human DNA base excision-repair: Reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBO J., 1997, 16(11), 3341-3348.
[http://dx.doi.org/10.1093/emboj/16.11.3341] [PMID: 9214649]
[5]
Kim, K.; Biade, S.; Matsumoto, Y. Involvement of flap endonuclease 1 in base excision DNA repair. J. Biol. Chem., 1998, 273(15), 8842-8848.
[http://dx.doi.org/10.1074/jbc.273.15.8842] [PMID: 9535864]
[6]
Tishkoff, D.X.; Filosi, N.; Gaida, G.M.; Kolodner, R.D. A novel mutation avoidance mechanism dependent on S. cerevisiae RAD27 is distinct from DNA mismatch repair. Cell, 1997, 88(2), 253-263.
[http://dx.doi.org/10.1016/S0092-8674(00)81846-2] [PMID: 9008166]
[7]
Ayyagari, R.; Gomes, X.V.; Gordenin, D.A.; Burgers, P.M.J. Okazaki fragment maturation in yeast. I. Distribution of functions between FEN1 AND DNA2. J. Biol. Chem., 2003, 278(3), 1618-1625.
[http://dx.doi.org/10.1074/jbc.M209801200] [PMID: 12424238]
[8]
Zheng, L.; Zhou, M.; Chai, Q.; Parrish, J.; Xue, D.; Patrick, S.M.; Turchi, J.J.; Yannone, S.M.; Chen, D.; Shen, B. Novel function of the flap endonuclease 1 complex in processing stalled DNA replication forks. EMBO Rep., 2005, 6(1), 83-89.
[http://dx.doi.org/10.1038/sj.embor.7400313] [PMID: 15592449]
[9]
Sharma, S.; Otterlei, M.; Sommers, J.A.; Driscoll, H.C.; Dianov, G.L.; Kao, H.I.; Bambara, R.A.; Brosh, R.M., Jr WRN helicase and FEN-1 form a complex upon replication arrest and together process branchmigrating DNA structures associated with the replication fork. Mol. Biol. Cell, 2004, 15(2), 734-750.
[http://dx.doi.org/10.1091/mbc.e03-08-0567] [PMID: 14657243]
[10]
Parenteau, J.; Wellinger, R.J. Differential processing of leading and lagging-strand ends at Saccharomyces cerevisiae telomeres revealed by the absence of Rad27p nuclease. Genetics, 2002, 162(4), 1583-1594.
[http://dx.doi.org/10.1093/genetics/162.4.1583] [PMID: 12524334]
[11]
Saharia, A.; Guittat, L.; Crocker, S.; Lim, A.; Steffen, M.; Kulkarni, S.; Stewart, S.A. Flap endonuclease 1 contributes to telomere stability. Curr. Biol., 2008, 18(7), 496-500.
[http://dx.doi.org/10.1016/j.cub.2008.02.071] [PMID: 18394896]
[12]
Yang, J.; Freudenreich, C.H. Haploinsufficiency of yeast FEN1 causes instability of expanded CAG/CTG tracts in a length-dependent manner. Gene, 2007, 393(1-2), 110-115.
[http://dx.doi.org/10.1016/j.gene.2007.01.025] [PMID: 17383831]
[13]
Zheng, L.; Dai, H.; Zhou, M.; Li, M.; Singh, P.; Qiu, J.; Tsark, W.; Huang, Q.; Kernstine, K.; Zhang, X.; Lin, D.; Shen, B. Fen1 mutations result in autoimmunity, chronic inflammation and cancers. Nat. Med., 2007, 13(7), 812-819.
[http://dx.doi.org/10.1038/nm1599] [PMID: 17589521]
[14]
Sun, H.; He, L.; Wu, H.; Pan, F.; Wu, X.; Zhao, J.; Hu, Z.; Sekhar, C.; Li, H.; Zheng, L.; Chen, H.; Shen, B.H.; Guo, Z. The FEN1 L209P mutation interferes with long-patch base excision repair and induces cellular transformation. Oncogene, 2017, 36(2), 194-207.
[http://dx.doi.org/10.1038/onc.2016.188] [PMID: 27270424]
[15]
Shen, B.; Singh, P.; Liu, R.; Qiu, J.; Zheng, L.; Finger, L.D.; Alas, S. Multiple but dissectible functions of FEN-1 nucleases in nucleic acid processing, genome stability and diseases. BioEssays, 2005, 27(7), 717-729.
[http://dx.doi.org/10.1002/bies.20255] [PMID: 15954100]
[16]
Bruning, J.B.; Shamoo, Y. Structural and thermodynamic analysis of human PCNA with peptides derived from DNA polymerasedelta p66 subunit and flap endonuclease-1. Structure, 2004, 12(12), 2209-2219.
[http://dx.doi.org/10.1016/j.str.2004.09.018] [PMID: 15576034]
[17]
Sakurai, S.; Kitano, K.; Yamaguchi, H.; Hamada, K.; Okada, K.; Fukuda, K.; Uchida, M.; Ohtsuka, E.; Morioka, H.; Hakoshima, T. Structural basis for recruitment of human flap endonuclease 1 to PCNA. EMBO J., 2005, 24(4), 683-693.
[http://dx.doi.org/10.1038/sj.emboj.7600519] [PMID: 15616578]
[18]
Wang, W.; Brandt, P.; Rossi, M.L.; Lindsey-Boltz, L.; Podust, V.; Fanning, E.; Sancar, A.; Bambara, R.A. The human Rad9–Rad1–Hus1 checkpoint complex stimulates flap endonuclease 1. Proc. Natl. Acad. Sci. USA, 2004, 101(48), 16762-16767.
[http://dx.doi.org/10.1073/pnas.0407686101] [PMID: 15556996]
[19]
Sharma, S.; Sommers, J.A.; Gary, R.K.; Friedrich-Heineken, E.; Hübscher, U.; Brosh, R.M., Jr The interaction site of Flap Endonuclease-1 with WRN helicase suggests a coordination of WRN and PCNA. Nucleic Acids Res., 2005, 33(21), 6769-6781.
[http://dx.doi.org/10.1093/nar/gki1002] [PMID: 16326861]
[20]
Cheng, I.C.; Chen, B.C.; Shuai, H.H.; Chien, F.C.; Chen, P.; Hsieh, T. Wuho is a new member in maintaining genome stability through its interaction with flap endonuclease 1. PLoS Biol., 2016, 14(1), e1002349.
[http://dx.doi.org/10.1371/journal.pbio.1002349] [PMID: 26751069]
[21]
Li, X.; Li, J.; Harrington, J.; Lieber, M.R.; Burgers, P.M.J. Lagging strand DNA synthesis at the eukaryotic replication fork involves binding and stimulation of FEN-1 by proliferating cell nuclear antigen. J. Biol. Chem., 1995, 270(38), 22109-22112.
[http://dx.doi.org/10.1074/jbc.270.38.22109] [PMID: 7673186]
[22]
Brosh, R.M., Jr; von Kobbe, C.; Sommers, J.A.; Karmakar, P.; Opresko, P.L.; Piotrowski, J.; Dianova, I.; Dianov, G.L.; Bohr, V.A. Werner syndrome protein interacts with human flap endonuclease 1 and stimulates its cleavage activity. EMBO J., 2001, 20(20), 5791-5801.
[http://dx.doi.org/10.1093/emboj/20.20.5791] [PMID: 11598021]
[23]
Henneke, G.; Koundrioukoff, S.; Hübscher, U. Phosphorylation of human Fen1 by cyclin-dependent kinase modulates its role in replication fork regulation. Oncogene, 2003, 22(28), 4301-4313.
[http://dx.doi.org/10.1038/sj.onc.1206606] [PMID: 12853968]
[24]
Guo, Z.; Zheng, L.; Xu, H.; Dai, H.; Zhou, M.; Pascua, M.R.; Chen, Q.M.; Shen, B. Methylation of FEN1 suppresses nearby phosphorylation and facilitates PCNA binding. Nat. Chem. Biol., 2010, 6(10), 766-773.
[http://dx.doi.org/10.1038/nchembio.422] [PMID: 20729856]
[25]
Guo, Z.; Kanjanapangka, J.; Liu, N.; Liu, S.; Liu, C.; Wu, Z.; Wang, Y.; Loh, T.; Kowolik, C.; Jamsen, J.; Zhou, M.; Truong, K.; Chen, Y.; Zheng, L.; Shen, B. Sequential posttranslational modifications program FEN1 degradation during cell-cycle progression. Mol. Cell, 2012, 47(3), 444-456.
[http://dx.doi.org/10.1016/j.molcel.2012.05.042] [PMID: 22749529]
[26]
Balakrishnan, L.; Stewart, J.; Polaczek, P.; Campbell, J.L.; Bambara, R.A. Acetylation of Dna2 endonuclease/helicase and flap endonuclease 1 by p300 promotes DNA stability by creating long flap intermediates. J. Biol. Chem., 2010, 285(7), 4398-4404.
[http://dx.doi.org/10.1074/jbc.M109.086397] [PMID: 20019387]
[27]
Xu, X.; Shi, R.; Zheng, L.; Guo, Z.; Wang, L.; Zhou, M.; Zhao, Y.; Tian, B.; Truong, K.; Chen, Y.; Shen, B.; Hua, Y.; Xu, H. SUMO-1 modification of FEN1 facilitates its interaction with Rad9–Rad1–Hus1 to counteract DNA replication stress. J. Mol. Cell Biol., 2018, 10(5), 460-474.
[http://dx.doi.org/10.1093/jmcb/mjy047] [PMID: 30184152]
[28]
Gao, J.; Shao, K.; Chen, X.; Li, Z.; Liu, Z.; Yu, Z.; Aung, L.H.H.; Wang, Y.; Li, P. The involvement of post-translational modifications in cardiovascular pathologies: Focus on SUMOylation, neddylation, succinylation, and prenylation. J. Mol. Cell. Cardiol., 2020, 138, 49-58.
[http://dx.doi.org/10.1016/j.yjmcc.2019.11.146] [PMID: 31751566]
[29]
Lin, Z.F.; Xu, H.B.; Wang, J.Y.; Lin, Q.; Ruan, Z.; Liu, F.B.; Jin, W.; Huang, H.H.; Chen, X. SIRT5 desuccinylates and activates SOD1 to eliminate ROS. Biochem. Biophys. Res. Commun., 2013, 441(1), 191-195.
[http://dx.doi.org/10.1016/j.bbrc.2013.10.033] [PMID: 24140062]
[30]
Park, J.; Chen, Y.; Tishkoff, D.X.; Peng, C.; Tan, M.; Dai, L.; Xie, Z.; Zhang, Y.; Zwaans, B.M.M.; Skinner, M.E.; Lombard, D.B.; Zhao, Y. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol. Cell, 2013, 50(6), 919-930.
[http://dx.doi.org/10.1016/j.molcel.2013.06.001] [PMID: 23806337]
[31]
Xu, H.; Chen, X.; Xu, X.; Shi, R.; Suo, S.; Cheng, K.; Zheng, Z.; Wang, M.; Wang, L.; Zhao, Y.; Tian, B.; Hua, Y. Lysine acetylation and succinylation in hela cells and their essential roles in response to UV-induced stress. Sci. Rep., 2016, 6(1), 30212.
[http://dx.doi.org/10.1038/srep30212] [PMID: 27452117]
[32]
Zhou, C.; Dai, J.; Lu, H.; Chen, Z.; Guo, M.; He, Y.; Gao, K.; Ge, T.; Jin, J.; Wang, L.; Tian, B.; Hua, Y.; Zhao, Y. Succinylome analysis reveals the involvement of lysine succinylation in the extreme resistance of Deinococcus radiodurans. Proteomics, 2019, 19(20), 1900158.
[http://dx.doi.org/10.1002/pmic.201900158] [PMID: 31487437]
[33]
Shi, R.; Wang, Y.; Gao, Y.; Xu, X.; Mao, S.; Xiao, Y.; Song, S.; Wang, L.; Tian, B.; Zhao, Y.; Hua, Y.; Xu, H. Succinylation at a key residue of FEN1 is involved in the DNA damage response to maintain genome stability. Am. J. Physiol. Cell Physiol., 2020, 319(4), C657-C666.
[http://dx.doi.org/10.1152/ajpcell.00137.2020] [PMID: 32783654]
[34]
Cheng, K.; Xu, H.; Chen, X.; Wang, L.; Tian, B.; Zhao, Y.; Hua, Y. Structural basis for DNA 5´-end resection by RecJ. eLife, 2016, 5, e14294.
[http://dx.doi.org/10.7554/eLife.14294] [PMID: 27058167]
[35]
Xu, H.; Shi, R.; Han, W.; Cheng, J.; Xu, X.; Cheng, K.; Wang, L.; Tian, B.; Zheng, L.; Shen, B.; Hua, Y.; Zhao, Y. Structural basis of 5′ flap recognition and protein–protein interactions of human flap endonuclease 1. Nucleic Acids Res., 2018, 46(21), 11315-11325.
[http://dx.doi.org/10.1093/nar/gky911] [PMID: 30295841]
[36]
Wang, M.; Lin, H. Understanding the function of mammalian sirtuins and protein lysine acylation. Annu. Rev. Biochem., 2021, 90(1), 245-285.
[http://dx.doi.org/10.1146/annurev-biochem-082520-125411] [PMID: 33848425]
[37]
Chinopoulos, C. The mystery of extramitochondrial proteins lysine succinylation. Int. J. Mol. Sci., 2021, 22(11), 6085.
[http://dx.doi.org/10.3390/ijms22116085] [PMID: 34199982]
[38]
Weinert, B.T.; Schölz, C.; Wagner, S.A.; Iesmantavicius, V.; Su, D.; Daniel, J.A.; Choudhary, C. Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Rep., 2013, 4(4), 842-851.
[http://dx.doi.org/10.1016/j.celrep.2013.07.024] [PMID: 23954790]
[39]
Matsuzaki, H.; Daitoku, H.; Hatta, M.; Aoyama, H.; Yoshimochi, K.; Fukamizu, A. Acetylation of foxo1 alters its dna-binding ability and sensitivity to phosphorylation. Proc. Natl. Acad. Sci. USA, 2005, 102(32), 11278-11283.
[http://dx.doi.org/10.1073/pnas.0502738102] [PMID: 16076959]
[40]
Li, X.; Zhang, C.; Zhao, T.; Su, Z.; Li, M.; Hu, J.; Wen, J.; Shen, J.; Wang, C.; Pan, J.; Mu, X.; Ling, T.; Li, Y.; Wen, H.; Zhang, X.; You, Q. Lysine-222 succinylation reduces lysosomal degradation of lactate dehydrogenase a and is increased in gastric cancer. J. Exp. Clin. Cancer Res., 2020, 39(1), 172.
[http://dx.doi.org/10.1186/s13046-020-01681-0] [PMID: 32859246]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy