Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Mini-Review Article

Evaluation of Nonconventional Extraction Methods of Resveratrol from Various Plant Sources - A Brief Review

Author(s): Sk Saidul, Susmita Das and Muddasarul Hoda*

Volume 10, Issue 2, 2023

Published on: 30 May, 2023

Page: [131 - 142] Pages: 12

DOI: 10.2174/2213346110666230517114652

Price: $65

conference banner
Abstract

Resveratrol is a stilbene class of phenolic phytochemical that has a wide range of utilization in several industries, including pharmaceutical, food and cosmetic industries. It is available in several plants, including grapes, berries, and peanuts. Major focus of research regarding resveratrol has been its therapeutic potential against major diseases, including cardiovascular, inflammatory, cancer, microbial and age-related diseases. However, its extraction methods have not been of much discussion. In this review, nonconventional methods, including supercritical fluid extraction, subcritical water extraction, microwave- assisted extraction, ultrasound assisted extraction, and high hydrostatic pressure extraction have been discussed in contrast to widely implemented conventional extraction methods. Nonconventional methods are considerably advanced over conventional methods. In this review, the efficiency of various nonconventional methods via optimization of their extraction parameters, such as the effects of modifiers, solvents, pressure, temperature, and extraction time, have been evaluated. Improvised extraction methods may result in cost-effective isolation of resveratrol.

Keywords: Resveratrol, supercritical fluid, ultrasound-assisted extraction, microwave-assisted extraction, subcritical water extraction, high hydrostatic pressurized liquid extraction.

Graphical Abstract
[1]
Wang, X.L.; Li, T.; Li, J.H.; Miao, S.Y.; Xiao, X.Z. The effects of resveratrol on inflammation and oxidative stress in a rat model of chronic obstructive pulmonary disease. Molecules, 2017, 22(9), 1529.
[http://dx.doi.org/10.3390/molecules22091529] [PMID: 28895883]
[2]
Hoda, M.; Hemaiswarya, S.; Doble, M. Role of Phenolic Phytochemicals in Diabetes Management; Springer: Singapore, 2019.
[http://dx.doi.org/10.1007/978-981-13-8997-9]
[3]
Brezoiu, A.M.; Matei, C.; Deaconu, M.; Stanciuc, A.M.; Trifan, A.; Gaspar-Pintiliescu, A.; Berger, D. Polyphenols extract from grape pomace. Characterization and valorisation through encapsulation into mesoporous silica-type matrices. Food Chem. Toxicol., 2019, 133, 110787.
[http://dx.doi.org/10.1016/j.fct.2019.110787] [PMID: 31449895]
[4]
Zhao, Y.; Shi, M.; Ye, J.H.; Zheng, X.Q.; Lu, J.L.; Liang, Y.R. Photo-induced chemical reaction of trans-resveratrol. Food Chem., 2015, 171, 137-143.
[http://dx.doi.org/10.1016/j.foodchem.2014.08.130] [PMID: 25308653]
[5]
Xavier Machado, T.O.; Portugal, I.B.M.; Padilha, C.V.S.; Ferreira Padilha, F.; dos Santos Lima, M. New trends in the use of enzymes for the recovery of polyphenols in grape byproducts. J. Food Biochem., 2021, 45(5), e13712.
[http://dx.doi.org/10.1111/jfbc.13712] [PMID: 33786844]
[6]
Dai, M.; Yuan, D.; Lei, Y.; Li, J.; Ren, Y.; Zhang, Y.; Cang, H.; Gao, W.; Tang, Y. Expression, purification and structural characterization of resveratrol synthase from Polygonum cuspidatum. Protein Expr. Purif., 2022, 191, 106024.
[http://dx.doi.org/10.1016/j.pep.2021.106024] [PMID: 34808343]
[7]
Becker, J.V.W.; Armstrong, G.O.; van der Merwe, M.J.; Lambrechts, M.G.; Vivier, M.A.; Pretorius, I.S. Metabolic engineering of Saccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol. FEMS Yeast Res., 2003, 4(1), 79-85.
[http://dx.doi.org/10.1016/S1567-1356(03)00157-0] [PMID: 14554199]
[8]
Vogt, T. Phenylpropanoid biosynthesis. Mol. Plant, 2010, 3(1), 2-20.
[http://dx.doi.org/10.1093/mp/ssp106] [PMID: 20035037]
[9]
Jitrangsri, K.; Chaidedgumjorn, A.; Satiraphan, M. Supercritical fluid extraction (SFE) optimization of trans-resveratrol from peanut kernels (Arachis hypogaea) by experimental design. J. Food Sci. Technol., 2020, 57(4), 1486-1494.
[http://dx.doi.org/10.1007/s13197-019-04184-9] [PMID: 32180645]
[10]
Dehghanian, Z.; Habibi, K.; Dehghanian, M.; Aliyar, S.; Asgari Lajayer, B.; Astatkie, T.; Minkina, T.; Keswani, C. Reinforcing the bulwark: Unravelling the efficient applications of plant phenolics and tannins against environmental stresses. Heliyon, 2022, 8(3), e09094.
[http://dx.doi.org/10.1016/j.heliyon.2022.e09094] [PMID: 35309390]
[11]
Rocha-González, H.I.; Ambriz-Tututi, M.; Granados-Soto, V. Resveratrol: A natural compound with pharmacological potential in neurodegenerative diseases. CNS Neurosci. Ther., 2008, 14(3), 234-247.
[http://dx.doi.org/10.1111/j.1755-5949.2008.00045.x] [PMID: 18684235]
[12]
Berman, A.Y.; Motechin, R.A.; Wiesenfeld, M.Y.; Holz, M.K. The therapeutic potential of resveratrol: A review of clinical trials. NPJ Precis. Oncol., 2017, 1(1), 1-9.
[http://dx.doi.org/10.1038/s41698-017-0038-6]
[13]
He, Y.; Wang, B.; Zhuang, Y.; Lu, Y. Study on separation and purification of resveratrol in wine grape residue with aqueous two phase extraction method. In: Advanced material research; Trans Tech Publications Ltd, 2012; pp. 550-553.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.550-553.1743]
[14]
Medina-Bolivar, F.; Condori, J.; Rimando, A.M.; Hubstenberger, J.; Shelton, K.; O’Keefe, S.F.; Bennett, S.; Dolan, M.C. Production and secretion of resveratrol in hairy root cultures of peanut. Phytochemistry, 2007, 68(14), 1992-2003.
[http://dx.doi.org/10.1016/j.phytochem.2007.04.039] [PMID: 17574636]
[15]
Abril, M.; Negueruela, A.; Pérez, C.; Juan, T.; Estopañán, G. Preliminary study of resveratrol content in Aragón red and rosé wines. Food Chem., 2005, 92(4), 729-736.
[http://dx.doi.org/10.1016/j.foodchem.2004.08.034]
[16]
This, P.; Lacombe, T.; Cadle-Davidson, M.; Owens, C.L. Wine grape (Vitis vinifera L.) color associates with allelic variation in the domestication gene VvmybA1. Theor. Appl. Genet., 2007, 114(4), 723-730.
[http://dx.doi.org/10.1007/s00122-006-0472-2] [PMID: 17221259]
[17]
Wang, D.G.; Liu, W.Y.; Chen, G.T. A simple method for the isolation and purification of resveratrol from Polygonum cuspidatum. J. Pharm. Anal., 2013, 3(4), 241-247.
[http://dx.doi.org/10.1016/j.jpha.2012.12.001] [PMID: 29403824]
[18]
Truong, V.L.; Jun, M.; Jeong, W.S. Role of resveratrol in regulation of cellular defense systems against oxidative stress. Biofactors, 2018, 44(1), 36-49.
[http://dx.doi.org/10.1002/biof.1399] [PMID: 29193412]
[19]
Ma, B.; Li, X. Resveratrol extracted from Chinese herbal medicines: A novel therapeutic strategy for lung diseases. Chin. Herb. Med., 2020, 12(4), 349-358.
[http://dx.doi.org/10.1016/j.chmed.2020.07.003] [PMID: 32963508]
[20]
Hoda, M.; Hemaiswarya, S.; Doble, M. Phenolic phytochemicals: Sources, biosynthesis, extraction, and their isolation. In: Role of Phenolic Phytochemicals in Diabetes Management; Springer: Singapore, 2019; pp. 13-44.
[http://dx.doi.org/10.1007/978-981-13-8997-9_2]
[21]
Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.; Lightfoot, D. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 2017, 6(4), 42.
[http://dx.doi.org/10.3390/plants6040042] [PMID: 28937585]
[22]
Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K.M.; Latha, L.Y. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr. J. Tradit. Complement. Altern. Med., 2010, 8(1), 1-10.
[http://dx.doi.org/10.4314/ajtcam.v8i1.60483] [PMID: 22238476]
[23]
Zwingelstein, M.; Draye, M.; Besombes, J.L.; Piot, C.; Chatel, G. Viticultural wood waste as a source of polyphenols of interest: Opportunities and perspectives through conventional and emerging extraction methods. Waste Manag., 2020, 102, 782-794.
[http://dx.doi.org/10.1016/j.wasman.2019.11.034] [PMID: 31812093]
[24]
Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med., 2018, 13(1), 20.
[http://dx.doi.org/10.1186/s13020-018-0177-x] [PMID: 29692864]
[25]
Anticona, M.; Blesa, J.; Frigola, A.; Esteve, M.J. High biological value compounds extraction from citrus waste with non-conventional methods. Foods, 2020, 9(6), 811.
[http://dx.doi.org/10.3390/foods9060811] [PMID: 32575685]
[26]
Hannay, B.; Hogarth, J.V.I. On the solubility of solids in gases. Proc. R. Soc. Lond., 1879, 29(196-199), 324-326.
[http://dx.doi.org/10.1098/rspl.1879.0054]
[27]
Uquiche, E.L.; Toro, M.T.; Quevedo, R.A. Supercritical extraction with carbon dioxide and co-solvent from Leptocarpha rivularis. J. Appl. Res. Med. Aromat. Plants, 2019, 14, 100210.
[http://dx.doi.org/10.1016/j.jarmap.2019.100210]
[28]
Duarte, K.; Justino, C.I.L.; Gomes, A.M.; Rocha-Santos, T.; Duarte, A.C. Green analytical methodologies for preparation of extracts and analysis of bioactive compounds.Comprehensive Analytical Chemistry; Elsevier: Amsterdam, Netherland, 2014, 65, pp. 59-78.
[http://dx.doi.org/10.1016/B978-0-444-63359-0.00004-5]
[29]
Díaz-Reinoso, B.; Moure, A.; Domínguez, H.; Parajó, J.C. Supercritical CO2 extraction and purification of compounds with antioxidant activity. J. Agric. Food Chem., 2006, 54(7), 2441-2469.
[http://dx.doi.org/10.1021/jf052858j] [PMID: 16569029]
[30]
Ibáñez, E.; Mendiola, J.A.; Castro-Puyana, M. Supercritical Fluid Extraction. In: Encyclopedia of Food and Health; Academic Press: Cambridge, Massachusetts, 2016; pp. 227-233.
[http://dx.doi.org/10.1016/B978-0-12-384947-2.00675-9]
[31]
Dias, A.L.B.; de Aguiar, A.C.; Rostagno, M.A. Extraction of natural products using supercritical fluids and pressurized liquids assisted by ultrasound: Current status and trends. Ultrason. Sonochem., 2021, 74, 105584.
[http://dx.doi.org/10.1016/j.ultsonch.2021.105584] [PMID: 33975187]
[32]
Wang, L.; Yang, B.; Du, X.; Yi, C. Optimisation of supercritical fluid extraction of flavonoids from Pueraria lobata. Food Chem., 2008, 108(2), 737-741.
[http://dx.doi.org/10.1016/j.foodchem.2007.11.031] [PMID: 26059155]
[33]
Bleve, M.; Ciurlia, L.; Erroi, E.; Lionetto, G.; Longo, L.; Rescio, L.; Schettino, T.; Vasapollo, G. An innovative method for the purification of anthocyanins from grape skin extracts by using liquid and sub-critical carbon dioxide. Separ. Purif. Tech., 2008, 64(2), 192-197.
[http://dx.doi.org/10.1016/j.seppur.2008.10.012]
[34]
Beňová, B.; Adam, M.; Pavlíková, P.; Fischer, J. Supercritical fluid extraction of piceid, resveratrol and emodin from Japanese knotweed. J. Supercrit. Fluids, 2010, 51(3), 325-330.
[http://dx.doi.org/10.1016/j.supflu.2009.10.009]
[35]
Pascual-Martí, M.; Salvador, A.; Chafer, A.; Berna, A. Supercritical fluid extraction of resveratrol from grape skin of Vitis vinifera and determination by HPLC. Talanta, 2001, 54(4), 735-740.
[http://dx.doi.org/10.1016/S0039-9140(01)00319-8] [PMID: 18968296]
[36]
Pereira, C.G.; Meireles, M.A.A. Supercritical fluid extraction of bioactive compounds: Fundamentals, applications and economic perspectives. Food Bioprocess Technol., 2010, 3(3), 340-372.
[http://dx.doi.org/10.1007/s11947-009-0263-2]
[37]
Bensebia, O.; Barth, D.; Bensebia, B.; Dahmani, A. Supercritical CO2 extraction of rosemary: Effect of extraction parameters and modelling. J. Supercrit. Fluids, 2009, 49(2), 161-166.
[http://dx.doi.org/10.1016/j.supflu.2009.01.007]
[38]
Berna, A.; Cháfer, A.; Montón, J.B. High-pressure solubility data of the system resveratrol (3)+ethanol (2)+CO2 (1). J. Supercrit. Fluids, 2001, 19(2), 133-139.
[http://dx.doi.org/10.1016/S0896-8446(00)00088-7]
[39]
Zhabayeva, A.N.; Velyamov, M.T.; Nakypbekova, N.E.; Dolgikh, S.G.; Adekenov, S.M. Supercritical fluid extraction in resveratrol isolation technology. Eurasian Chemico-Technol. J., 2021, 23(2), 119-124.
[http://dx.doi.org/10.18321/ectj1082]
[40]
Casas, L.; Mantell, C.; Rodríguez, M.; Ossa, E.J.M.; Roldán, A.; Ory, I.D.; Caro, I.; Blandino, A. Extraction of resveratrol from the pomace of Palomino fino grapes by supercritical carbon dioxide. J. Food Eng., 2010, 96(2), 304-308.
[http://dx.doi.org/10.1016/j.jfoodeng.2009.08.002]
[41]
Sharmila, G.; Nikitha, V.S.; Ilaiyarasi, S.; Dhivya, K.; Rajasekar, V.; Kumar, N.M.; Muthukumaran, K.; Muthukumaran, C. Ultrasound assisted extraction of total phenolics from Cassia auriculata leaves and evaluation of its antioxidant activities. Ind. Crops Prod., 2016, 84, 13-21.
[http://dx.doi.org/10.1016/j.indcrop.2016.01.010]
[42]
Sun, H.; Lin, Q.; Wei, W.; Qin, G. Ultrasound-assisted extraction of resveratrol from grape leaves and its purification on mesoporous carbon. Food Sci. Biotechnol., 2018, 27(5), 1353-1359.
[http://dx.doi.org/10.1007/s10068-018-0385-2] [PMID: 30319844]
[43]
Vinatoru, M. An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason. Sonochem., 2001, 8(3), 303-313.
[http://dx.doi.org/10.1016/S1350-4177(01)00071-2] [PMID: 11441615]
[44]
Kivilompolo, M.; Hyötyläinen, T. On-line coupled dynamic sonication-assisted extraction–liquid chromatography for the determination of phenolic acids in Lamiaceae herbs. J. Chromatogr. A, 2009, 1216(6), 892-896.
[http://dx.doi.org/10.1016/j.chroma.2008.12.006] [PMID: 19110254]
[45]
Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem., 2017, 34, 540-560.
[http://dx.doi.org/10.1016/j.ultsonch.2016.06.035] [PMID: 27773280]
[46]
Xu, D.P.; Zheng, J.; Zhou, Y.; Li, Y.; Li, S.; Li, H.B. Ultrasound-assisted extraction of natural antioxidants from the flower of Limonium sinuatum: Optimization and comparison with conventional methods. Food Chem., 2017, 217, 552-559.
[http://dx.doi.org/10.1016/j.foodchem.2016.09.013] [PMID: 27664671]
[47]
Kuo, C.H.; Chen, B.Y.; Liu, Y.C.; Chang, C.M.; Deng, T.S.; Chen, J.H.; Shieh, C.J. Optimized ultrasound-assisted extraction of phenolic compounds from Polygonum cuspidatum. Molecules, 2013, 19(1), 67-77.
[http://dx.doi.org/10.3390/molecules19010067] [PMID: 24362626]
[48]
Cacace, J.E.; Mazza, G. Mass transfer process during extraction of phenolic compounds from milled berries. J. Food Eng., 2003, 59(4), 379-389.
[http://dx.doi.org/10.1016/S0260-8774(02)00497-1]
[49]
Pingret, D.; Fabiano-Tixier, A.S.; Chemat, F. Degradation during application of ultrasound in food processing: A review. Food Control, 2013, 31(2), 593-606.
[http://dx.doi.org/10.1016/j.foodcont.2012.11.039]
[50]
Cho, Y.J.; Hong, J.Y.; Chun, H.S.; Lee, S.K.; Min, H.Y. Ultrasonication-assisted extraction of resveratrol from grapes. J. Food Eng., 2006, 77(3), 725-730.
[http://dx.doi.org/10.1016/j.jfoodeng.2005.06.076]
[51]
Lin, J.A.; Kuo, C.H.; Chen, B.Y.; Li, Y.; Liu, Y.C.; Chen, J.H.; Shieh, C.J. A novel enzyme-assisted ultrasonic approach for highly efficient extraction of resveratrol from Polygonum cuspidatum. Ultrason. Sonochem., 2016, 32, 258-264.
[http://dx.doi.org/10.1016/j.ultsonch.2016.03.018] [PMID: 27150769]
[52]
Yu, M.; Liu, H.; Shi, A.; Liu, L.; Wang, Q. Preparation of resveratrol-enriched and poor allergic protein peanut sprout from ultrasound treated peanut seeds. Ultrason. Sonochem., 2016, 28, 334-340.
[http://dx.doi.org/10.1016/j.ultsonch.2015.08.008] [PMID: 26384916]
[53]
Bruno, R.E.; Misturini, R.L.; Finger, A.; Perez, C.C.T.; da Silva Scapim, R.M.; Scaramal, M.G. Ultrasound assisted extraction of bioactive compounds from BRS Violet grape pomace followed by alginate-Ca2+ encapsulation. Food Chem., 2021, 338, 128101.
[http://dx.doi.org/10.1016/j.foodchem.2020.128101] [PMID: 33091979]
[54]
Flórez, N.; Conde, E.; Domínguez, H. Microwave assisted water extraction of plant compounds. J. Chem. Technol. Biotechnol., 2015, 90(4), 590-607.
[http://dx.doi.org/10.1002/jctb.4519]
[55]
Wang, L.; Weller, C.L. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Technol., 2006, 17(6), 300-312.
[http://dx.doi.org/10.1016/j.tifs.2005.12.004]
[56]
Geetha, N.; Harini, K.; Joseph, M.; Sangeetha, R.; Venkatachalam, P. A comparison of microwave assisted medicinal plant extractions for detection of their phytocompounds through qualitative phytochemical and FTIR analyses. Iran. J. Sci. Technol. Trans. A Sci., 2019, 43(2), 397-407.
[http://dx.doi.org/10.1007/s40995-017-0424-5]
[57]
Ajila, C.M.; Brar, S.K.; Verma, M.; Tyagi, R.D.; Godbout, S.; Valéro, J.R. Extraction and analysis of polyphenols: Recent trends. Crit. Rev. Biotechnol., 2011, 31(3), 227-249.
[http://dx.doi.org/10.3109/07388551.2010.513677] [PMID: 21073258]
[58]
Vinatoru, M.; Mason, T.J.; Calinescu, I. Ultrasonically assisted extraction (UAE) and Microwave Assisted Extraction (MAE) of functional compounds from plant materials. Trends Analyt. Chem., 2017, 97, 159-178.
[http://dx.doi.org/10.1016/j.trac.2017.09.002]
[59]
Joana Gil-Chávez, G.; Villa, J.A.; Ayala-Zavala, F.J.; Basilio, H.J.; Sepulveda, D.; Yahia, E.M.; González-Aguilar, G.A. Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: An overview. Compr. Rev. Food Sci. Food Saf., 2013, 12(1), 5-23.
[http://dx.doi.org/10.1111/1541-4337.12005]
[60]
Kwiatkowski, M.; Kravchuk, O.; Skouroumounis, G.K.; Taylor, D.K. Response surface parallel optimization of extraction of total phenolics from separate white and red grape skin mixtures with microwave-assisted and conventional thermal methods. J. Clean. Prod., 2020, 251, 119563.
[http://dx.doi.org/10.1016/j.jclepro.2019.119563]
[61]
Garcia, L.; Garcia, R.; Pacheco, G.; Sutili, F.; Souza, R.D.; Mansur, E.; Leal, I. Optimized extraction of resveratrol from Arachis repens handro by ultrasound and microwave: A correlation study with the antioxidant properties and phenol contents. Sci. World J., 2016, 2016, 1-10.
[http://dx.doi.org/10.1155/2016/5890897] [PMID: 28116343]
[62]
Camel, V. Recent extraction techniques for solid matrices—supercritical fluid extraction, pressurized fluid extraction and microwave-assisted extraction: Their potential and pitfalls. Analyst, 2001, 126(7), 1182-1193.
[http://dx.doi.org/10.1039/b008243k] [PMID: 11478658]
[63]
Casimiro, G.; Sutili, F.; Souza, R.; Garcia, R.; Pacheco, G.; Mansur, E.; Leal, I.; Lee, J.W.; Carradori, S. Trans-resveratrol extraction in four brazilian Arachis hypogea L. cultivars with microwave-assisted extraction: Optimization with response surface methodology and comparison with conventional maceration. J. Adv. Biol. Biotechnol., 2017, 13(1), 1-13.
[http://dx.doi.org/10.9734/JABB/2017/33430]
[64]
Chen, F.; Zhang, X.; Zhang, Q.; Du, X.; Yang, L.; Zu, Y.; Yang, F. Simultaneous synergistic microwave–ultrasonic extraction and hydrolysis for preparation of trans-resveratrol in tree peony seed oil-extracted residues using imidazolium-based ionic liquid. Ind. Crops Prod., 2016, 94, 266-280.
[http://dx.doi.org/10.1016/j.indcrop.2016.08.048]
[65]
Du, F.Y.; Xiao, X.H.; Li, G.K. Application of ionic liquids in the microwave-assisted extraction of trans-resveratrol from Rhizma Polygoni Cuspidati. J. Chromatogr. A, 2007, 1140(1-2), 56-62.
[http://dx.doi.org/10.1016/j.chroma.2006.11.049] [PMID: 17141255]
[66]
Torres, T.M.S.; Mazzutti, S.; Castiani, M.A.; Siddique, I.; Vitali, L.; Ferreira, S.R.S. Phenolic compounds recovered from ora-pro-nobis leaves by microwave assisted extraction. Biocatal. Agric. Biotechnol., 2022, 39, 102238.
[http://dx.doi.org/10.1016/j.bcab.2021.102238]
[67]
Ballard, T.S.; Mallikarjunan, P.; Zhou, K.; O’Keefe, S. Microwave-assisted extraction of phenolic antioxidant compounds from peanut skins. Food Chem., 2010, 120(4), 1185-1192.
[http://dx.doi.org/10.1016/j.foodchem.2009.11.063]
[68]
Piñeiro, Z.; Marrufo-Curtido, A.; Vela, C.; Palma, M. Microwave-assisted extraction of stilbenes from woody vine material. Food Bioprod. Process., 2017, 103, 18-26.
[http://dx.doi.org/10.1016/j.fbp.2017.02.006]
[69]
de la Hoz, A.; Díaz-Ortiz, Á.; Moreno, A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem. Soc. Rev., 2005, 34(2), 164-178.
[http://dx.doi.org/10.1039/B411438H] [PMID: 15672180]
[70]
Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules, 2010, 15(10), 7313-7352.
[http://dx.doi.org/10.3390/molecules15107313] [PMID: 20966876]
[71]
Fuchs, C.; Bakuradze, T.; Steinke, R.; Grewal, R.; Eckert, G.P.; Richling, E. Polyphenolic composition of extracts from winery by-products and effects on cellular cytotoxicity and mitochondrial functions in HepG2 cells. J. Funct. Foods, 2020, 70, 103988.
[http://dx.doi.org/10.1016/j.jff.2020.103988]
[72]
Karacabey, E.; Mazza, G. Bayındırlı L.; Artık, N. Extraction of bioactive compounds from milled grape canes (Vitis vinifera) using a pressurized low-polarity water extractor. Food Bioprocess Technol., 2012, 5(1), 359-371.
[http://dx.doi.org/10.1007/s11947-009-0286-8]
[73]
Manousi, N.; Sarakatsianos, I.; Samanidou, V. Extraction techniques of phenolic compounds and other bioactive compounds from medicinal and aromatic plants. In: Engineering Tools in the Beverage Industry; The Science of Beverages, Woodhead Publishing: Sawston, Cambridge, 2019; 3, pp. 283-314.
[http://dx.doi.org/10.1016/B978-0-12-815258-4.00010-X]
[74]
Fernández, D.P.; Goodwin, A.R.H.; Lemmon, E.W.; Levelt Sengers, J.M.H.; Williams, R.C. A formulation for the static permittivity of water and steam at temperatures from 238 K to 873 K at pressures up to 1200 MPa, including derivatives and debye–hückel coefficients. J. Phys. Chem. Ref. Data, 1997, 26(4), 1125-1166.
[http://dx.doi.org/10.1063/1.555997]
[75]
Teo, C.C.; Tan, S.N.; Yong, J.W.H.; Hew, C.S.; Ong, E.S. Pressurized hot water extraction (PHWE). J. Chromatogr. A, 2010, 1217(16), 2484-2494.
[http://dx.doi.org/10.1016/j.chroma.2009.12.050] [PMID: 20060531]
[76]
Cravotto, G.; Cintas, P. Extraction of Flavourings from Natural Sources In: Modifying Flavour in Food; Woodhead Publishing: Sawston, Cambridge, 2007; pp. 41-63.
[http://dx.doi.org/10.1533/9781845693367.41]
[77]
Rodrigues, L.G.G.; Mazzutti, S.; Siddique, I.; da Silva, M.; Vitali, L.; Ferreira, S.R.S. Subcritical water extraction and microwave-assisted extraction applied for the recovery of bioactive components from Chaya (Cnidoscolus aconitifolius Mill.). J. Supercrit. Fluids, 2020, 165, 104976.
[http://dx.doi.org/10.1016/j.supflu.2020.104976]
[78]
Piñeiro, Z.; Palma, M.; Barroso, C.G. Determination of trans-resveratrol in grapes by pressurised liquid extraction and fast high-performance liquid chromatography. J. Chromatogr. A, 2006, 1110(1-2), 61-65.
[http://dx.doi.org/10.1016/j.chroma.2006.01.067] [PMID: 16464455]
[79]
Zachová, Z. Tříska, J.; Vrchotová, N.; Balík, J.; Sajfrtová, M.; Sovová, H. Combining high-pressure methods for extraction of stilbenes from grape cane. J. Supercrit. Fluids, 2018, 142, 38-44.
[http://dx.doi.org/10.1016/j.supflu.2018.05.021]
[80]
Gabaston, J.; Leborgne, C.; Valls, J.; Renouf, E.; Richard, T.; Waffo-Teguo, P.; Mérillon, J.M. Subcritical water extraction of stilbenes from grapevine by-products: A new green chemistry approach. Ind. Crops Prod., 2018, 126, 272-279.
[http://dx.doi.org/10.1016/j.indcrop.2018.10.020]
[81]
Sánchez-Gómez, R.; Zalacain, A.; Alonso, G.L.; Salinas, M.R. Vine-shoot waste aqueous extracts for re-use in agriculture obtained by different extraction techniques: Phenolic, volatile, and mineral compounds. J. Agric. Food Chem., 2014, 62(45), 10861-10872.
[http://dx.doi.org/10.1021/jf503929v] [PMID: 25335896]
[82]
Tian, Y.; Wang, Y.; Ma, Y.; Zhu, P.; He, J.; Lei, J. Optimization of subcritical water extraction of resveratrol from grape seeds by response surface methodology. Appl. Sci., 2017, 7(4), 321.
[http://dx.doi.org/10.3390/app7040321]
[83]
Chainukool, S.; Goto, M.; Hannongbua, S.; Shotipruk, A. Subcritical water extraction of resveratrol from barks of Shorea roxburghii G. Don. Sep. Sci. Technol., 2014, 49(13), 2073-2078.
[http://dx.doi.org/10.1080/01496395.2014.905595]
[84]
Jovanović Galović, A.; Jovanović Lješković, N.; Vidović, S.; Vladić, J.; Jojić, N.; Ilić, M.; Srdić Rajić, T.; Kojić, V.; Jakimov, D. The effects of resveratrol-rich extracts of Vitis vinifera pruning waste on HeLa, MCF-7 and MRC-5 cells: Apoptosis, autophagia and necrosis interplay. Pharmaceutics, 2022, 14(10), 2017.
[http://dx.doi.org/10.3390/pharmaceutics14102017] [PMID: 36297452]
[85]
Rodríguez De Luna, S.L.; Ramírez-Garza, R.E.; Serna Saldívar, S.O. Environmentally friendly methods for flavonoid extraction from plant material: Impact of their operating conditions on yield and antioxidant properties. Sci. World J., 2020, 2020, 1-38.
[http://dx.doi.org/10.1155/2020/6792069] [PMID: 32908461]
[86]
Shouqin, Z.; Jun, X.; Changzheng, W. High hydrostatic pressure extraction of flavonoids from propolis. J. Chem. Technol. Biotechnol., 2005, 80(1), 50-54.
[http://dx.doi.org/10.1002/jctb.1153]
[87]
Xi, J. Ultrahigh pressure extraction of bioactive compounds from plants—A review. Crit. Rev. Food Sci. Nutr., 2017, 57(6), 1097-1106.
[http://dx.doi.org/10.1080/10408398.2013.874327] [PMID: 25830766]
[88]
Briones-Labarca, V.; Plaza-Morales, M.; Giovagnoli-Vicuña, C.; Jamett, F. High hydrostatic pressure and ultrasound extractions of antioxidant compounds, sulforaphane and fatty acids from Chilean papaya (Vasconcellea pubescens) seeds: Effects of extraction conditions and methods. Lebensm. Wiss. Technol., 2015, 60(1), 525-534.
[http://dx.doi.org/10.1016/j.lwt.2014.07.057]
[89]
Xu, D.P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.J.; Li, H.B. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. Int. J. Mol. Sci., 2017, 18(1), 96.
[http://dx.doi.org/10.3390/ijms18010096] [PMID: 28067795]
[90]
Xi, J.; Shen, D.; Zhao, S.; Lu, B.; Li, Y.; Zhang, R. Characterization of polyphenols from green tea leaves using a high hydrostatic pressure extraction. Int. J. Pharm., 2009, 382(1-2), 139-143.
[http://dx.doi.org/10.1016/j.ijpharm.2009.08.023] [PMID: 19715745]
[91]
Zhao, Y.; Jiang, Y.; Ding, Y.; Wang, D.; Deng, Y. High hydrostatic pressure-assisted extraction of high-molecular-weight melanoidins from black garlic: Composition, structure, and bioactive properties. J. Food Qual., 2019, 2019, 1-8.
[http://dx.doi.org/10.1155/2019/1682749]
[92]
Mustafa, A.; Turner, C. Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Anal. Chim. Acta, 2011, 703(1), 8-18.
[http://dx.doi.org/10.1016/j.aca.2011.07.018] [PMID: 21843670]
[93]
Conde, E.; Moure, A.; Domínguez, H.; Parajó, J.C. Extraction of natural antioxidants from plant foods. In: Separation, Extraction and Concentration Processes in the Food, Beverage and Nutraceutical Industries; Woodhead Publishing Series in Food Science, Technology and Nutrition, 2013; pp. 506-594.
[http://dx.doi.org/10.1533/9780857090751.2.506]
[94]
Herrero, M.; Sánchez-Camargo, A.P.; Cifuentes, A.; Ibáñez, E. Plants, seaweeds, microalgae and food by-products as natural sources of functional ingredients obtained using pressurized liquid extraction and supercritical fluid extraction. Trends Analyt. Chem., 2015, 71, 26-38.
[http://dx.doi.org/10.1016/j.trac.2015.01.018]
[95]
Luthria, D.L. Influence of experimental conditions on the extraction of phenolic compounds from parsley (Petroselinum crispum) flakes using a pressurized liquid extractor. Food Chem., 2008, 107(2), 745-752.
[http://dx.doi.org/10.1016/j.foodchem.2007.08.074]
[96]
Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng., 2013, 117(4), 426-436.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.01.014]
[97]
Rodríguez-Meizoso, I.; Jaime, L.; Santoyo, S.; Cifuentes, A.; García-Blairsy Reina, G.; Señoráns, F.J.; Ibáñez, E. Pressurized fluid extraction of bioactive compounds from Phormidium species. J. Agric. Food Chem., 2008, 56(10), 3517-3523.
[http://dx.doi.org/10.1021/jf703719p] [PMID: 18457400]
[98]
Howard, L.; Pandjaitan, N. Pressurized liquid extraction of flavonoids from spinach. J. Food Sci., 2008, 73(3), C151-C157.
[http://dx.doi.org/10.1111/j.1750-3841.2007.00658.x] [PMID: 18387092]
[99]
Battistella, L.H.F.; Lentz, L.; Gonçalves, R.L.G.; Mezzomo, N.; Vitali, L.; Salvador, F.S.R. Pressurized liquid extraction applied for the recovery of phenolic compounds from beetroot waste. Biocatal. Agric. Biotechnol., 2019, 21, 101353.
[http://dx.doi.org/10.1016/j.bcab.2019.101353]
[100]
Trela, B.C.; Waterhouse, A.L. Resveratrol: Isomeric molar absorptivities and stability. J. Agric. Food Chem., 1996, 44(5), 1253-1257.
[http://dx.doi.org/10.1021/jf9504576]
[101]
Gizir, A.M.; Turker, N.; Artuvan, E. Pressurized acidified water extraction of black carrot Daucus carota ssp. sativus var. atrorubens Alef anthocyanins. Eur. Food Res. Technol., 2008, 226(3), 363-370.
[http://dx.doi.org/10.1007/s00217-006-0546-z]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy