Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Letter Article

Rice Malt: A Solvent-Catalyst for the Synthesis of N-Substituted Pyrroles

Author(s): Ram Naresh Yadav, Taoufik Rohand and Bimal Krishna Banik*

Volume 10, Issue 4, 2023

Published on: 05 September, 2023

Page: [276 - 282] Pages: 7

DOI: 10.2174/2213337210666230516151722

Price: $65

Abstract

Aim: The synthesis of diverse N-substituted pyrroles utilizing rice malt is identified. The reaction of hexane-2,5-dione with various primary amines develops the intriguing pyrrole scaffold in moderate to good yields.

Methods: The reaction was carried out at room to ambient temperature in an extremely environmentally benign condition, without the need for any additional solvents or catalysts.

Results: In the synthesis of N-derivatized pyrroles, several 1 amines, both cyclic and acyclic residue, have been accomplished.

Conclusion: To the best of my knowledge, no study has been reported so far based on Paal- Knorr pyrrole synthesis utilizing rice malt as a catalyst and solvent.

Keywords: Rice malt, polysaccharides, polyhydroxy-sugar, paal-knorr, pyrrole, chemotherapeutics, hexane-2, 5-dione, amine, cyclodehydration, cyclo-condensation, aromatization.

Graphical Abstract
[1]
Jacobi PA, Coutts LD, Guo J, Hauck SI, Leung SH. New strategies for the synthesis of biologically important tetrapyrroles. The “B,C + D + A” approach to linear tetrapyrroles. J Org Chem 2000; 65(1): 205-13.
[http://dx.doi.org/10.1021/jo991503u] [PMID: 10813917]
[2]
Cho H, Madden R, Nisanci B, Török B. The Paal–Knorr reaction revisited. A catalyst and solvent-free synthesis of underivatized and N-substituted pyrroles. Green Chem 2015; 17(2): 1088-99.
[http://dx.doi.org/10.1039/C4GC01523A]
[3]
Debasish Bandyopadhyay a, Sanghamitra Mukherjee a, Jose C. Granados b, John D. Short b c, Bimal K. Banik, Ultrasound-assisted bismuth nitrate-induced green synthesis of novel pyrrole derivatives and their biological evaluation as anticancer agents. Eur J Med Chem 2012; 50: 209-15.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.055]
[4]
Hunt DA, Treacy MF. Pyrrole insecticides: A new class of agriculturally important insecticides functioning as uncouplers of oxidative phosphorylationInsecticides with novel modes of action. Berlin, Heidelberg: Springer 1998; pp. 138-51.
[http://dx.doi.org/10.1007/978-3-662-03565-8_8]
[5]
Khajuria R, Dham S, Kapoor KK. Active methylenes in the synthesis of a pyrrole motif: An imperative structural unit of pharmaceuticals, natural products and optoelectronic materials. RSC Advances 2016; 6(43): 37039-66.
[http://dx.doi.org/10.1039/C6RA03411J]
[6]
Gong J, Liu J, Tan X, Li Z, Li Q, Zhang J. Bio-preparation and regulation of pyrrole structure nano-pigment based on biomimetic membrane. Nanomaterials 2019; 9(1): 114.
[http://dx.doi.org/10.3390/nano9010114] [PMID: 30669357]
[7]
Yue B, Wang C, Wagner P, et al. Electrodeposition of pyrrole and 3-(4-tert-butylphenyl)thiophene copolymer for supercapacitor applications. Synth Met 2012; 162(24): 2216-21.
[http://dx.doi.org/10.1016/j.synthmet.2012.09.024]
[8]
Devasurendra AM, Zhang C, Young JA, Tillekeratne LMV, Anderson JL, Kirchhoff JR. Electropolymerized pyrrole-based conductive polymeric ionic liquids and their application for solid-phase microextraction. ACS Appl Mater Interfaces 2017; 9(29): 24955-63.
[http://dx.doi.org/10.1021/acsami.7b05793] [PMID: 28675034]
[9]
Bailly C. Lamellarins, from A to Z: A family of anticancer marine pyrrole alkaloids. Curr Med Chem Anticancer Agents 2004; 4(4): 363-78.
[http://dx.doi.org/10.2174/1568011043352939] [PMID: 15281908]
[10]
Fürstner A. Chemistry and biology of roseophilin and the prodigiosin alkaloids: A survey of the last 2500 years. Angew Chem Int Ed 2003; 42(31): 3582-603.
[http://dx.doi.org/10.1002/anie.200300582] [PMID: 12916029]
[11]
Tanaka R, Tanaka A. Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 2007; 58(1): 321-46.
[http://dx.doi.org/10.1146/annurev.arplant.57.032905.105448] [PMID: 17227226]
[12]
Khaghaninejad S, Heravi MM. Paal–Knorr reaction in the synthesis of heterocyclic compounds Advances in heterocyclic chemistry. Academic Press 2014; Vol. 111: pp. 95-146.
[http://dx.doi.org/10.1016/B978-0-12-420160-6.00003-3]
[13]
Balakrishna A, Aguiar A, Sobral PJM, Wani MY, Almeida e Silva J, Sobral AJFN. Paal–Knorr synthesis of pyrroles: From conventional to green synthesis. Catal Rev, Sci Eng 2019; 61(1): 84-110.
[http://dx.doi.org/10.1080/01614940.2018.1529932]
[14]
Paal C. Ueber die Derivate des acetophenonacetessigesters und des acetonylacetessigesters. Ber Dtsch Chem Ges 1884; 17(2): 2756-67.
[http://dx.doi.org/10.1002/cber.188401702228]
[15]
Knorr L. Synthese von furfuranderivaten aus dem diacetbernsteinsäureester. Ber Dtsch Chem Ges 1884; 17(2): 2863-70.
[http://dx.doi.org/10.1002/cber.188401702254]
[16]
Rivera S, Bandyopadhyay D, Banik BK. Facile synthesis of N-substituted pyrroles via microwave-induced bismuth nitrate-catalyzed reaction. Tetrahedron Lett 2009; 50(39): 5445-8.
[http://dx.doi.org/10.1016/j.tetlet.2009.06.002]
[17]
Bharate JB, Sharma R, Aravinda S, et al. Montmorillonite clay catalyzed synthesis of functionalized pyrroles through domino four-component coupling of amines, aldehydes, 1,3-dicarbonyl compounds and nitroalkanes. RSC Advances 2013; 3(44): 21736-42.
[http://dx.doi.org/10.1039/c3ra43324b]
[18]
Wang Y, Jiang CM, Li HL, He FS, Luo X, Deng WP. Regioselective iodine-catalyzed construction of polysubstituted pyrroles from allenes and enamines. J Org Chem 2016; 81(18): 8653-8.
[http://dx.doi.org/10.1021/acs.joc.6b01737] [PMID: 27559822]
[19]
Sharma N, Peddinti RK. Iodine-catalyzed regioselective synthesis of multisubstiuted pyrrole polyheterocycles free from rotamers and keto–enol tautomers. J Org Chem 2017; 82(18): 9360-6.
[http://dx.doi.org/10.1021/acs.joc.7b01538] [PMID: 28836777]
[20]
Zheng H, Shi Q, Du K, Mei Y, Zhang P. A novel enzyme-catalyzed synthesis of N-substituted pyrrole derivatives. Mol Divers 2013; 17(2): 245-50.
[http://dx.doi.org/10.1007/s11030-013-9426-1] [PMID: 23361455]
[21]
Xu J, Green AP, Turner NJ. Chemo‐enzymatic synthesis of pyrazines and pyrroles. Angew Chem Int Ed 2018; 57(51): 16760-3.
[http://dx.doi.org/10.1002/anie.201810555] [PMID: 30335228]
[22]
Michlik S, Kempe R. A sustainable catalytic pyrrole synthesis. Nat Chem 2013; 5(2): 140-4.
[http://dx.doi.org/10.1038/nchem.1547] [PMID: 23344449]
[23]
Nagarapu L, Mallepalli R, Yeramanchi L, Bantu R. Polyethylene glycol (PEG-400) as an efficient and recyclable reaction medium for one-pot synthesis of polysubstituted pyrroles under catalyst-free conditions. Tetrahedron Lett 2011; 52(26): 3401-4.
[http://dx.doi.org/10.1016/j.tetlet.2011.04.095]
[24]
Soni J, Sahiba N, Sethiya A, Agarwal S. Polyethylene glycol: A promising approach for sustainable organic synthesis. J Mol Liq 2020; 315: 113766.
[http://dx.doi.org/10.1016/j.molliq.2020.113766]
[25]
Nasir Baig RB, Varma RS. Organic synthesis via magnetic attraction: Benign and sustainable protocols using magnetic nanoferrites. Green Chem 2013; 15(2): 398-417.
[http://dx.doi.org/10.1039/C2GC36455G]
[26]
Srinivas R, Thirupathi B. One-step synthesis of 1, 2, 5-trisubstituted pyrroles by copper catalyzed condensation of 1, 4-diones with primary amines. Curr Org Chem 2012; 16(20): 2482-9.
[http://dx.doi.org/10.2174/138527212803520182]
[27]
Banik M, Ramirez B, Reddy A, Bandyopadhyay D, Banik BK. Polystyrenesulfonate-catalyzed synthesis of novel pyrroles through Paal-Knorr reaction. Org Med Chem Lett 2012; 2(1): 11.
[http://dx.doi.org/10.1186/2191-2858-2-11] [PMID: 22452839]
[28]
Díaz-Ortiz Á, Prieto P, de la Hoz A. A critical overview on the effect of microwave irradiation in organic synthesis. Chem Rec 2019; 19(1): 85-97.
[http://dx.doi.org/10.1002/tcr.201800059] [PMID: 30035361]
[29]
de la Hoz Antonio, Angel Díaz-Ortiz, Pilar Prieto. "Microwave-assisted green organic synthesis." 2016; 1-33.
[http://dx.doi.org/10.1039/9781782623632-00001]
[30]
Banik BK, Banik I, Renteria M, Dasgupta SK. A straightforward highly efficient Paal–Knorr synthesis of pyrroles. Tetrahedron Lett 2005; 46(15): 2643-5.
[http://dx.doi.org/10.1016/j.tetlet.2005.02.103]
[31]
Banik BK, Samajdar S, Banik I. Simple synthesis of substituted pyrroles. J Org Chem 2004; 69(1): 213-6.
[http://dx.doi.org/10.1021/jo035200i] [PMID: 14703403]
[32]
Bandyopadhyay D, Rivera G, Salinas I, Aguilar H, Banik BK. Remarkable iodine-catalyzed synthesis of novel pyrrole-bearing N-polyaromatic β-lactams. Molecules 2010; 15(2): 1082-8.
[http://dx.doi.org/10.3390/molecules15021082] [PMID: 20335963]
[33]
Shaikh AL, Banik BK. A novel asymmetric synthesis of 3-(1H-Pyrrol-1-yl)-substituted β-Lactams via a bismuth nitrate-catalyzed reaction. Helv Chim Acta 2012; 95(5): 839-44.
[http://dx.doi.org/10.1002/hlca.201100202]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy