Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

CircPSMC3 Inhibits Colorectal Cancer Cell Growth and Migration by Controlling miR-31-5p/YAP/β-Catenin

Author(s): Ye Jin, Lingli Yu, Qi Wu*, Bin Zhang, Yun Chen, Xiaobo Zhan, Changfeng Liu and Zhi Chen

Volume 30, Issue 6, 2023

Published on: 05 June, 2023

Page: [469 - 476] Pages: 8

DOI: 10.2174/0929866530666230516143823

Price: $65

Abstract

Introduction: Colorectal cancer (CRC) is hackneyed cancer and a major lethiferous cancer. Circular RNAs (CircRNAs) have been discovered to own important roles in controlling CRC progression. CircPSMC3 is known to exhibit lower expression in diversified cancers. However, the regulatory function of CircPSMC3 in CRC keeps unclear.

Methods: The expression of CircPSMC3 and miR-31-5p was confirmed through RT-qPCR. The cell proliferation was measured through CCK-8 and EdU assays. The protein expression of genes was examined through a western blot. The cell invasion and migration were tested through Transwell and wound healing assays. The binding ability between CircPSMC3 and miR-31-5p was confirmed through the luciferase reporter assay.

Results: CircPSMC3 exhibited lower expression in CRC tissues and cell lines. Additionally, CircPSMC3 was revealed to suppress cell proliferation in CRC. Moreover, through Transwell and wound healing assays, CircPSMC3 was discovered to repress CRC cell invasion and migration. In CRC tissues, miR-31-5p expression was up-regulated and negatively correlated with CircPSMC3 expression. Further mechanism exploration experiments disclosed that CircPSMC3 is bound with miR-31-5p to modulate the YAP/β-catenin axis in CRC. At last, through rescue assays, CircPSMC3 inhibited cell proliferation, invasion and migration through sponging miR-31-5p in CRC.

Conclusion: Our work was the first time to probe the potential regulatory effects of CircPSMC3 in CRC, and these above results uncovered that CircPSMC3 inhibited CRC cell growth and migration through regulating miR-31-5p/YAP/β-catenin. This discovery hinted that CircPSMC3 may serve as a useful therapeutic candidate for CRC.

Keywords: CircPSMC3, miR-31-5p, colorectal cancer, YAP/β-catenin, potential regulatory effects, tissues.

Graphical Abstract
[1]
Brenner, H.; Kloor, M.; Pox, C.P. Colorectal cancer. Lancet, 2014, 383(9927), 1490-1502.
[http://dx.doi.org/10.1016/S0140-6736(13)61649-9] [PMID: 24225001]
[2]
Zhang, Y.; Chen, Z.; Li, J. The current status of treatment for colorectal cancer in China. Medicine, 2017, 96(40), e8242.
[http://dx.doi.org/10.1097/MD.0000000000008242] [PMID: 28984783]
[3]
Balchen, V.; Simon, K. Colorectal cancer development and advances in screening. Clin. Interv. Aging, 2016, 11, 967-976.
[http://dx.doi.org/10.2147/CIA.S109285] [PMID: 27486317]
[4]
Modest, D.P.; Pant, S.; Sartore-Bianchi, A. Treatment sequencing in metastatic colorectal cancer. Eur. J. Cancer, 2019, 109, 70-83.
[http://dx.doi.org/10.1016/j.ejca.2018.12.019]
[5]
McQuade, R.M.; Stojanovska, V.; Bornstein, J.C.; Nurgali, K. Colorectal cancer chemotherapy: The evolution of treatment and new approaches. Curr. Med. Chem., 2017, 24(15), 1537-1557.
[PMID: 28079003]
[6]
Oh, C.; Jo, Y.; Sim, S.; Yun, S.; Jeon, S.; Chung, W. Post-operative respiratory outcomes associated with the use of sugammadex in laparoscopic colorectal cancer surgery: A retrospective, propensity score matched cohort study. Signa Vitae, 2021, 17(1), 117-123.
[7]
Lei, M.; Zheng, G.; Ning, Q.; Zheng, J.; Dong, D. Translation and functional roles of circular RNAs in human cancer. Mol. Cancer, 2020, 19(1), 30.
[http://dx.doi.org/10.1186/s12943-020-1135-7] [PMID: 32059672]
[8]
Li, J.; Sun, D.; Pu, W.; Wang, J.; Peng, Y. Circular RNAs in cancer: Biogenesis, function, and clinical significance. Trends Cancer, 2020, 6(4), 319-336.
[http://dx.doi.org/10.1016/j.trecan.2020.01.012] [PMID: 32209446]
[9]
Guo, D.Q.; Liu, F.; Zhang, L.; Bian, N.N.; Liu, L.Y.; Kong, L.X.; Wang, Z.G. CircPSMC3 inhibits cell proliferation and induces cell apoptosis in nasopharyngeal carcinoma by downregulating ROCK1. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(3), 1219-1225.
[PMID: 32096151]
[10]
Rong, D.; Lu, C.; Zhang, B.; Fu, K.; Zhao, S.; Tang, W.; Cao, H. RETRACTED ARTICLE: CircPSMC3 suppresses the proliferation and metastasis of gastric cancer by acting as a competitive endogenous RNA through sponging miR-296-5p. Mol. Cancer, 2019, 18(1), 25.
[http://dx.doi.org/10.1186/s12943-019-0958-6] [PMID: 30777076]
[11]
Xu, T.; Yu, Y.; Guo, S.; He, L.; Mao, Z. CircPSMC3 suppresses migration and invasion of non-small cell lung cancer cells via miR-182-5p/NME2 Axis. Med. Sci. Monit., 2020, 26, e924134.
[http://dx.doi.org/10.12659/MSM.924134] [PMID: 32386284]
[12]
Dong, J.S.; Wu, B.; Chen, X.H. Circ PSMC3 inhibits prostate cancer cell proliferation by downregulating DGCR8. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(5), 2264-2270.
[PMID: 32196577]
[13]
Tang, B.; Wang, Y.; Zhu, F.; Li, H.; Liu, L.; Chen, Y.; Zhou, Y. Circular circPSMC3 inhibits hepatocellular carcinoma migration and invasion by upregulating RBM5. Minerva Med., 2021, 112(4), 521-522.
[http://dx.doi.org/10.23736/S0026-4806.19.06241-4] [PMID: 31726810]
[14]
Verduci, L.; Strano, S.; Yarden, Y.; Blandino, G. The circ RNA –micro RNA code: Emerging implications for cancer diagnosis and treatment. Mol. Oncol., 2019, 13(4), 669-680.
[http://dx.doi.org/10.1002/1878-0261.12468] [PMID: 30719845]
[15]
Zhu, C.; Wang, S.; Zheng, M.; Chen, Z.; Wang, G.; Ma, J.; Zhang, B.; Huang, W.; Sun, X.; Wang, C. miR-31-5p modulates cell progression in lung adenocarcinoma through TNS1/p53 axis. Strahlenther. Onkol., 2022, 198(3), 304-314.
[http://dx.doi.org/10.1007/s00066-021-01895-x] [PMID: 35037949]
[16]
Mi, B.; Li, Q.; Li, T.; Liu, G.; Sai, J. High miR-31-5p expression promotes colon adenocarcinoma progression by targeting TNS1. Aging, 2020, 12(8), 7480-7490.
[http://dx.doi.org/10.18632/aging.103096] [PMID: 32315285]
[17]
Tang, C.; Cai, Y.; Jiang, H.; Lv, Z.; Yang, C.; Xu, H.; Li, Z.; Li, Y. LncRNA MAGI2-AS3 inhibits bladder cancer progression by targeting the miR-31-5p/TNS1 axis. Aging, 2020, 12(24), 25547-25563.
[http://dx.doi.org/10.18632/aging.104162] [PMID: 33231563]
[18]
Zhu, D.; Huang, X.; Liang, F.; Zhao, L. RETRACTED ARTICLE: LncRNA miR503HG interacts with miR-31-5p through multiple ways to regulate cancer cell invasion and migration in ovarian cancer. J. Ovarian Res., 2020, 13(1), 3.
[http://dx.doi.org/10.1186/s13048-019-0599-9] [PMID: 31907059]
[19]
Qi, X.; Zhang, D.H.; Wu, N.; Xiao, J.H.; Wang, X.; Ma, W. ceRNA in cancer: Possible functions and clinical implications. J. Med. Genet., 2015, 52(10), 710-718.
[http://dx.doi.org/10.1136/jmedgenet-2015-103334] [PMID: 26358722]
[20]
Yang, T.; Sun, J.; Wang, W.; Li, D.; Yang, X.; Jia, A.; Ma, Y.; Fan, Z. Hsa_circ_0006732 regulates colorectal cancer cell proliferation, invasion and EMT by miR-127-5p/RAB3D axis. Mol. Cell. Biochem., 2022, 477(12), 2751-2760.
[http://dx.doi.org/10.1007/s11010-022-04458-5] [PMID: 35616807]
[21]
Cao, L.; Dong, G.; Li, H. CircRNA circ-ATAD1 suppresses miR-618 maturation to participate in colorectal cancer. BMC Gastroenterol., 2022, 22(1), 215.
[http://dx.doi.org/10.1186/s12876-022-02183-3] [PMID: 35505304]
[22]
Zhao, C.; Chen, H.; Min, K. CircCDC6 restrains tumor growth and glycolysis energy metabolism in colorectal cancer via regulating miR-3187-3p and downstream PRKAA2. J. Bioenerg. Biomembr., 2022, 54(3), 163-174.
[http://dx.doi.org/10.1007/s10863-022-09938-3] [PMID: 35438362]
[23]
Yan, D.; Liu, W.; Liu, Y.; Zhu, X. Circular RNA circ_0065378 upregulates tumor suppressor candidate 1 by competitively binding with miR‐4701‐5p to alleviate colorectal cancer progression. J. Gastroenterol. Hepatol., 2022, 37(6), 1107-1118.
[http://dx.doi.org/10.1111/jgh.15862] [PMID: 35434854]
[24]
Saliminejad, K.; Khorram Khorshid, H.R.; Soleymani Fard, S.; Ghaffari, S.H. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J. Cell. Physiol., 2019, 234(5), 5451-5465.
[http://dx.doi.org/10.1002/jcp.27486] [PMID: 30471116]
[25]
Zhang, C.; Chen, C.; Wen, H.; Song, Z.; Hu, P. miR-182-5p enhances cisplatin resistance in epithelial ovarian cancer by downregulating GRB2. Eur. J. Gynaecol. Oncol., 2021, 42(2), 353-359.
[http://dx.doi.org/10.31083/j.ejgo.2021.02.5419]
[26]
Zhu, F.; Yu, Z.; Li, D. miR-187 modulates cardiomyocyte apoptosis and oxidative stress in myocardial infarction mice via negatively regulating DYRK2. Signa Vitae, 2021, 17(5), 142-150.
[27]
Ren, T.J.; Liu, C.; Hou, J.F.; Shan, F.X. CircDDX17 reduces 5-fluorouracil resistance and hinders tumorigenesis in colorectal cancer by regulating miR-31-5p/KANK1 axis. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(4), 1743-1754.
[PMID: 32141542]
[28]
Peng, H.; Wang, L.; Su, Q.; Yi, K.; Du, J.; Wang, Z. MiR-31-5p promotes the cell growth, migration and invasion of colorectal cancer cells by targeting NUMB. Biomed. Pharmacother., 2010, 109, 208-216.
[http://dx.doi.org/10.1016/j.biopha.2018.10.048]
[29]
Kubota, N.; Taniguchi, F.; Nyuya, A.; Umeda, Y.; Mori, Y.; Fujiwara, T.; Tanioka, H.; Tsuruta, A.; Yamaguchi, Y.; Nagasaka, T. Upregulation of microRNA 31 is associated with poor prognosis in patients with advanced colorectal cancer. Oncol. Lett., 2020, 19(4), 2685-2694.
[http://dx.doi.org/10.3892/ol.2020.11365] [PMID: 32218819]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy