Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Mini-Review Article Section: Biochemistry

Recent Advancement in the Green Synthesis of Silver Nanoparticles

Author(s): Ajay Thakur, Monika Verma, Ruchi Bharti* and Renu Sharma

Volume 3, Issue 5, 2023

Published on: 21 June, 2023

Page: [322 - 348] Pages: 27

DOI: 10.2174/2210298103666230511162421

Price: $65

Abstract

Because of its miscellaneous properties, developing less environmentally hazardous and trustworthy methodologies has become one of the most crucial steps toward synthesizing nanoparticles (NPs) among researchers and scientists. In this direction, silver nanoparticles (AgNPs or SNPs) have gained much attention because of their anti-inflammatory, antibacterial, antiviral, and antifungal properties, potential toxicity, and unusual physicochemical features. Concerning the toxicity of silver nanoparticles, silver nanoparticles may prove to be an essential tool against many drugresistant microorganisms and substitutes for antibiotics. However, the synthesis of AgNPs using conventional methods had a toxic impact and caused much damage to the ecosystem. Researchers have used various production techniques to prevent the adverse effects of toxic chemicals, including algae, bacteria, fungi, and plants. This review study has covered recent advancements in green synthetic methodologies for synthesizing AgNPs. This insight provides a comprehensive overview of key findings in the green synthesis of Ag nanoparticles and attempts to focus on factors affecting their synthesis, characterization, applications, potential toxic impact on living organisms, merits/ demerits, and prospects.

Keywords: Silver nanoparticles (Ag NPs), green synthesis, biofunctionality, physiochemical properties, characterization, applications.

Graphical Abstract
[1]
Dahl, J.A.; Maddux, B.L.S.; Hutchison, J.E. Toward greener nanosynthesis. Chem. Rev., 2007, 107(6), 2228-2269.
[http://dx.doi.org/10.1021/cr050943k] [PMID: 17564480]
[2]
Hutchison, J.E. Greener nanoscience: A proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano, 2008, 2(3), 395-402.
[http://dx.doi.org/10.1021/nn800131j] [PMID: 19206562]
[3]
Sharma, V.K.; Yngard, R.A.; Lin, Y. Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci., 2009, 145(1-2), 83-96.
[http://dx.doi.org/10.1016/j.cis.2008.09.002]
[4]
Schmid, G. Clusters and colloids: From theory to applications; John Wiley & Sons, 2008.
[5]
Pastoriza-Santos, I.; Liz-Marzán, L.M. Formation of PVP-protected metal nanoparticles in DMF. Langmuir, 2002, 18(7), 2888-2894.
[http://dx.doi.org/10.1021/la015578g]
[6]
Dong, S.A.; Zhou, S.P. Photochemical synthesis of colloidal gold nanoparticles. Mater. Sci. Eng. B, 2007, 140(3), 153-159.
[http://dx.doi.org/10.1016/j.mseb.2007.03.020]
[7]
Cheng, J.; Yao, S.; Zhang, W.; Zou, Y. Preparation and characterization of silver colloids with different morphologies under ultrasonic field. Front. Chem. China, 2006, 1(4), 418-422.
[http://dx.doi.org/10.1007/s11458-006-0067-0]
[8]
Rao, Y.N.; Banerjee, D.; Datta, A.; Das, S.K.; Guin, R.; Saha, A. Gamma irradiation route to synthesis of highly re-dispersible natural polymer capped silver nanoparticles. Radiat. Phys. Chem., 2010, 79(12), 1240-1246.
[http://dx.doi.org/10.1016/j.radphyschem.2010.07.004]
[9]
Yin, B.; Ma, H.; Wang, S.; Chen, S. Electrochemical synthesis of silver nanoparticles under protection of poly (N-vinylpyrrolidone). J. Phys. Chem. B, 2003, 107(34), 8898-8904.
[http://dx.doi.org/10.1021/jp0349031]
[10]
Shankar, S.S.; Rai, A.; Ahmad, A.; Sastry, M. Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci., 2004, 275(2), 496-502.
[http://dx.doi.org/10.1016/j.jcis.2004.03.003] [PMID: 15178278]
[11]
Tao, A.; Sinsermsuksakul, P.; Yang, P. Polyhedral silver nanocrystals with distinct scattering signatures. Angew. Chem. Int. Ed., 2006, 45(28), 4597-4601.
[http://dx.doi.org/10.1002/anie.200601277] [PMID: 16791902]
[12]
Hebeish, A.A.; El-Rafie, M.H.; Abdel-Mohdy, F.A.; Abdel-Halim, E.S.; Emam, H.E. Carboxymethyl cellulose for green synthesis and stabilization of silver nanoparticles. Carbohydr. Polym., 2010, 82(3), 933-941.
[http://dx.doi.org/10.1016/j.carbpol.2010.06.020]
[13]
Anastas, P.T.; Warner, J.C. “Principles of green chemistry.” Green chemistry. Theory Pract., 1998, 29, 1421-1442.
[14]
Raveendran, P.; Fu, J.; Wallen, S.L. Completely “green” synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc., 2003, 125(46), 13940-13941.
[http://dx.doi.org/10.1021/ja029267j] [PMID: 14611213]
[15]
Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res., 2016, 7(1), 17-28.
[http://dx.doi.org/10.1016/j.jare.2015.02.007] [PMID: 26843966]
[16]
Rice-evans, C.A.; Miller, N.J.; Bolwell, P.G.; Bramley, P.M.; Pridham, J.B. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic. Res., 1995, 22(4), 375-383.
[http://dx.doi.org/10.3109/10715769509145649] [PMID: 7633567]
[17]
Khodaie, M.; Ghasemi, N.; Ramezani, M. Green synthesis of silver nanoparticles using (Eryngium Campestre) leaf extract. Eurasian Chem. Commu, 2019, 1(5), 441-450.
[http://dx.doi.org/10.33945/SAMI/ECC.2019.5.4]
[18]
Hamedi, S.; Shojaosadati, S.A. Rapid and green synthesis of silver nanoparticles using Diospyros lotus extract: Evaluation of their biological and catalytic activities. Polyhedron, 2019, 171, 172-180.
[http://dx.doi.org/10.1016/j.poly.2019.07.010]
[19]
Jemilugba, O.T.; Sakho, E.H.M.; Parani, S.; Mavumengwana, V.; Oluwafemi, O.S. Green synthesis of silver nanoparticles using Combretum erythrophyllum leaves and its antibacterial activities. Colloid Interface Sci. Commun., 2019, 31, 100191.
[http://dx.doi.org/10.1016/j.colcom.2019.100191]
[20]
Krishnakumar, K.; Dineshkumar, B.; Ramesh, P.R. Green synthesis of silver nanoparticles using Hydnocarpus pentandra leaf extract: In-vitro cyto-toxicity studies against MCF-7 cell line. J. Young Pharm., 2018, 10(1), 16.
[http://dx.doi.org/10.5530/jyp.2018.10.5]
[21]
Asadi, S. Green synthesis of silver nanoparticles using Taxus baccata leaves extract and identify its specifications. J. Mater. Environ. Sci., 2018, 9, 2798-2803.
[22]
Shaik, M.R. Plant-extract-assisted green synthesis of silver nanoparticles using Origanum vulgare L. extract and their microbicidal activities. Sustainability, 2018, 10(4), 913.
[http://dx.doi.org/10.3390/su10040913]
[23]
Khan, M.Z.H. Green synthesis and characterization of silver nanoparticles using Coriandrum sativum leaf extract. Eng. Sci. Technol.an Int. J., 2018, 13(1), 158-166.
[24]
Hamelian, M. Green synthesis of silver nanoparticles using Thymus kotschyanus extract and evaluation of their antioxidant, antibacterial and cytotoxic effects. Appl. Organomet. Chem., 2018, 32(9), e4458.
[http://dx.doi.org/10.1002/aoc.4458]
[25]
Kumar, S.U.; Ankamwar, B.; Karmakar, S.; Halder, A.; Das, P. Green synthesis of silver nanoparticles using the plant extract of shikakai and reetha. Mater. Today Proc., 2018, 5(1), 2321-2329.
[http://dx.doi.org/10.1016/j.matpr.2017.09.236]
[26]
Chunfa, D.; Fei, C.; Xianglin, Z.; Xiangjie, W.; Xiuzhi, Y.; Bin, Y. Rapid and green synthesis of monodisperse silver nanoparticles using mulberry leaf extract. Rare Met. Mater. Eng., 2018, 47(4), 1089-1095.
[http://dx.doi.org/10.1016/S1875-5372(18)30125-5]
[27]
Selvakumar, P.; Sithara, R.; Viveka, K.; Sivashanmugam, P. Green synthesis of silver nanoparticles using leaf extract of Acalypha hispida and its application in blood compatibility. J. Photochem. Photobiol. B, 2018, 182, 52-61.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.03.018] [PMID: 29604554]
[28]
Lopes, C.R.B.; Courrol, L.C. Green synthesis of silver nanoparticles with extract of Mimusops coriacea and light. J. Lumin., 2018, 199, 183-187.
[http://dx.doi.org/10.1016/j.jlumin.2018.03.030]
[29]
Krishna, N.; Kumar, G.N.; Neethu, T.; John, R.; Babu, S.R.; Smitha, C.S. One pot green synthesis of silver nanoparticles with multiple applications. Mater. Today Proc., 2018, 5(9), 20567-20571.
[http://dx.doi.org/10.1016/j.matpr.2018.06.435]
[30]
Parthiban, E.; Manivannan, N.; Ramanibai, R.; Mathivanan, N. Green synthesis of silver-nanoparticles from Annona reticulata leaves aqueous extract and its mosquito larvicidal and anti-microbial activity on human pathogens. Biotechnol. Rep., 2019, 21, e00297.
[http://dx.doi.org/10.1016/j.btre.2018.e00297] [PMID: 30581768]
[31]
Ravichandran, V.; Vasanthi, S.; Shalini, S.; Shah, S.A.A.; Tripathy, M.; Paliwal, N. Green synthesis, characterization, antibacterial, antioxidant and photocatalytic activity of Parkia speciosa leaves extract mediated silver nanoparticles. Results Phys., 2019, 15, 102565.
[http://dx.doi.org/10.1016/j.rinp.2019.102565]
[32]
Syafiuddin, A. Salmiati; Hadibarata, T.; Salim, M.R.; Kueh, A.B.H.; Sari, A.A. A purely green synthesis of silver nanoparticles using Carica papaya, Manihot esculenta, and Morinda citrifolia: synthesis and antibacterial evaluations. Bioprocess Biosyst. Eng., 2017, 40(9), 1349-1361.
[http://dx.doi.org/10.1007/s00449-017-1793-z] [PMID: 28597212]
[33]
Balamurugan, M.; Saravanan, S. Green synthesis of silver nanoparticles by using Eucalyptus Globulus leaf extract. J. Inst. Eng. (India): A., 2017, 98(4), 461-467.
[http://dx.doi.org/10.1007/s40030-017-0236-9]
[34]
Gopinath, K.; Devi, N.P.; Govindarajan, M.; Bhakyaraj, K.; Kumaraguru, S.; Arumugam, A.; Alharbi, N.S.; Kadaikunnan, S.; Benelli, G. One-Pot green synthesis of silver nanoparticles using the orchid leaf extracts of Anoectochilus elatus: Growth inhibition activity on seven microbial pathogens. J. Cluster Sci., 2017, 28(3), 1541-1550.
[http://dx.doi.org/10.1007/s10876-017-1164-6]
[35]
Nasar, S.; Murtaza, G.; Mehmood, A.; Bhatti, T.M. Green approach to synthesis of silver nanoparticles using Ficus palmata leaf extract and their antibacterial profile. Pharm. Chem. J., 2017, 51(9), 811-817.
[http://dx.doi.org/10.1007/s11094-017-1698-9]
[36]
Nakhjavani, M.; Nikkhah, V.; Sarafraz, M.M.; Shoja, S.; Sarafraz, M. Green synthesis of silver nanoparticles using green tea leaves: Experimental study on the morphological, rheological and antibacterial behaviour. Heat Mass Transf., 2017, 53(10), 3201-3209.
[http://dx.doi.org/10.1007/s00231-017-2065-9]
[37]
Roy, P.; Das, B.; Mohanty, A.; Mohapatra, S. Green synthesis of silver nanoparticles using Azadirachta indica leaf extract and its antimicrobial study. Appl. Nanosci., 2017, 7(8), 843-850.
[http://dx.doi.org/10.1007/s13204-017-0621-8]
[38]
Ali, M.; Kim, B.; Belfield, K.D.; Norman, D.; Brennan, M.; Ali, G.S. Green synthesis and characterization of silver nanoparticles using Artemisia absinthium aqueous extract--A comprehensive study. Mater. Sci. Eng. C, 2016, 58, 359-365.
[http://dx.doi.org/10.1016/j.msec.2015.08.045] [PMID: 26478321]
[39]
Ahmed, S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J. Radiat. Res. Appl. Sci., 2016, 9(1), 1-7.
[http://dx.doi.org/10.1016/j.jrras.2015.06.006]
[40]
Yan-yu, R. Green synthesis and antimicrobial activity of monodisperse silver nanoparticles synthesized using Ginkgo Biloba leaf extract. Physics Letters A, 2016, 380(45), 3773-3777.
[http://dx.doi.org/10.1016/j.physleta.2016.09.029]
[41]
Ravichandran, V.; Vasanthi, S.; Shalini, S.; Ali, S.S.A.; Harish, R. Green synthesis of silver nanoparticles using Atrocarpus altilis leaf extract and the study of their antimicrobial and antioxidant activity. Mater. Lett., 2016, 180, 264-267.
[http://dx.doi.org/10.1016/j.matlet.2016.05.172]
[42]
de Jesús Ruíz-Baltazar, Á.; Reyes-López, S.Y.; Larrañaga, D.; Estévez, M.; Pérez, R. Green synthesis of silver nanoparticles using a Melissa officinalis leaf extract with antibacterial properties. Results Phys., 2017, 7, 2639-2643.
[http://dx.doi.org/10.1016/j.rinp.2017.07.044]
[43]
Noha, M.S.; Nahed, A.H. Characterization and anticancer potential of silver nanoparticles biosynthesized from Olea chrysophylla and Lavandula dentata leaf extracts on HCT116 colon cancer cells. J. Nanomater., 2019, 2019, 1-9.
[http://dx.doi.org/10.1155/2019/7361695]
[44]
Ahmed, M.J.; Murtaza, G.; Rashid, F.; Iqbal, J. Eco-friendly green synthesis of silver nanoparticles and their potential applications as antioxidant and anticancer agents. Drug Dev. Ind. Pharm., 2019, 45(10), 1682-1694.
[http://dx.doi.org/10.1080/03639045.2019.1656224] [PMID: 31407925]
[45]
Behravan, M.; Hossein, P.A.; Naghizadeh, A.; Ziaee, M.; Mahdavi, R.; Mirzapour, A. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int. J. Biol. Macromol., 2019, 124, 148-154.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.101] [PMID: 30447360]
[46]
Ezealisiji, K.M.; Noundou, X.S.; Ukwueze, S.E. Green synthesis and characterization of monodispersed silver nanoparticles using root bark aqueous extract of Annona muricata Linn and their antimicrobial activity. Appl. Nanosci., 2017, 7(8), 905-911.
[http://dx.doi.org/10.1007/s13204-017-0632-5]
[47]
Rao, N.H.; Lakshmidevi, N.; Pammi, S.V.; Kollu, P.; Ganpaty, S.; Lakshmi, P. Green synthesis of silver nanoparticles using methanolic root extracts of Diospyros paniculata and their antimicrobial activities. Mater. Sci. Eng. C, 2016, 62, 553-557.
[http://dx.doi.org/10.1016/j.msec.2016.01.072] [PMID: 26952458]
[48]
Alsammarraie, F.K.; Wang, W.; Zhou, P.; Mustapha, A.; Lin, M. Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities. Colloids Surf. B Biointerfaces, 2018, 171, 398-405.
[http://dx.doi.org/10.1016/j.colsurfb.2018.07.059] [PMID: 30071481]
[49]
Hernández-Morales, L.; Espinoza-Gómez, H.; Flores-López, L.Z.; Sotelo-Barrera, E.L.; Núñez-Rivera, A.; Cadena-Nava, R.D.; Alonso-Núñez, G.; Espinoza, K.A. Study of the green synthesis of silver nanoparticles using a natural extract of dark or white Salvia hispanica L. seeds and their antibacterial application. Appl. Surf. Sci., 2019, 489, 952-961.
[http://dx.doi.org/10.1016/j.apsusc.2019.06.031]
[50]
Alfuraydi, A.A.; Devanesan, S.; Al-Ansari, M.; AlSalhi, M.S.; Ranjitsingh, A.J. Eco-friendly green synthesis of silver nanoparticles from the sesame oil cake and its potential anticancer and antimicrobial activities. J. Photochem. Photobiol. B, 2019, 192, 83-89.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.01.011] [PMID: 30710829]
[51]
Girón-Vázquez, N.G.; Gómez-Gutiérrez, C.M.; Soto-Robles, C.A.; Nava, O.; Lugo-Medina, E.; Castrejón-Sánchez, V.H.; Vilchis-Nestor, A.R.; Luque, P.A. Study of the effect of Persea americana seed in the green synthesis of silver nanoparticles and their antimicrobial properties. Results Phys., 2019, 13, 102142.
[http://dx.doi.org/10.1016/j.rinp.2019.02.078]
[52]
Calle, L.C.; Martha, E.L.L. Green synthesis of silver nanoparticles using green coffee bean extract. In: VII Latin American Congress on Biomedical Engineering CLAIB, 2016Bucaramanga, Santander, ColombiaOctober 26th-28th, 2017
[53]
Dhand, V.; Soumya, L.; Bharadwaj, S.; Chakra, S.; Bhatt, D.; Sreedhar, B. Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater. Sci. Eng. C, 2016, 58, 36-43.
[http://dx.doi.org/10.1016/j.msec.2015.08.018] [PMID: 26478284]
[54]
Devi, M.; Devi, S.; Sharma, V.; Rana, N.; Bhatia, R.K.; Bhatt, A.K. Green synthesis of silver nanoparticles using methanolic fruit extract of Aegle marmelos and their antimicrobial potential against human bacterial pathogens. J. Tradit. Complement. Med., 2020, 10(2), 158-165.
[http://dx.doi.org/10.1016/j.jtcme.2019.04.007] [PMID: 32257879]
[55]
Gavamukulya, Y.; El-Shemy, H.A.; Meroka, A.M.; Madivoli, E.S.; Maina, E.N.; Wamunyokoli, F.; Magoma, G. Advances in green nanobiotechnology: Data for synthesis and characterization of silver nanoparticles from ethanolic extracts of fruits and leaves of Annona muricata. Data Brief, 2019, 25, 104194.
[http://dx.doi.org/10.1016/j.dib.2019.104194] [PMID: 31321276]
[56]
Saidu, F.K.; Mathew, A.; Parveen, A.; Valiyathra, V.; Thomas, G.V. Novel green synthesis of silver nanoparticles using clammy cherry (Cordia obliqua Willd) fruit extract and investigation on its catalytic and antimicrobial properties. SN Appl. Sci., 2019, 1(11), 1368.
[http://dx.doi.org/10.1007/s42452-019-1302-x]
[57]
Kumar, B.; Smita, K.; Debut, A.; Cumbal, L. Extracellular green synthesis of silver nanoparticles using Amazonian fruit Araza (Eugenia stipitata McVaugh). Trans. Nonferrous Met. Soc. China, 2016, 26(9), 2363-2371.
[http://dx.doi.org/10.1016/S1003-6326(16)64359-5]
[58]
Shankar, T.; Karthiga, P.; Swarnalatha, K.; Rajkumar, K. Green synthesis of silver nanoparticles using Capsicum frutescence and its intensified activity against E. coli. Resource-Efficient Technol., 2017, 3(3), 303-308.
[http://dx.doi.org/10.1016/j.reffit.2017.01.004]
[59]
Chen, C.H.; Lin, Y-C.; Mao, C-F.; Liao, W-T. Green synthesis, size control, and antibacterial activity of silver nanoparticles on chitosan films. Res. Chem. Intermed., 2019, 45(9), 4463-4472.
[http://dx.doi.org/10.1007/s11164-019-03842-z]
[60]
Wongpreecha, J.; Polpanich, D.; Suteewong, T.; Kaewsaneha, C.; Tangboriboonrat, P. One-pot, large-scale green synthesis of silver nanoparticles-chitosan with enhanced antibacterial activity and low cytotoxicity. Carbohydr. Polym., 2018, 199, 641-648.
[http://dx.doi.org/10.1016/j.carbpol.2018.07.039] [PMID: 30143172]
[61]
Khatami, M.; Sharifi, I.; Nobre, M.A.L.; Zafarnia, N.; Aflatoonian, M.R. Waste-grass-mediated green synthesis of silver nanoparticles and evaluation of their anticancer, antifungal and antibacterial activity. Green Chem. Lett. Rev., 2018, 11(2), 125-134.
[http://dx.doi.org/10.1080/17518253.2018.1444797]
[62]
Rajeshkumar, S. Synthesis of silver nanoparticles using fresh bark of Pongamia pinnata and characterization of its antibacterial activity against gram positive and gram negative pathogens. Resource-Efficient Technol., 2016, 2(1), 30-35.
[http://dx.doi.org/10.1016/j.reffit.2016.06.003]
[63]
Balavijayalakshmi, J.; Ramalakshmi, V. Carica papaya peel mediated synthesis of silver nanoparticles and its antibacterial activity against human pathogens. J. Appl. Res. Technol., 2017, 15(5), 413-422.
[http://dx.doi.org/10.1016/j.jart.2017.03.010]
[64]
Phongtongpasuk, S.; Poadang, S.; Yongvanich, N. Green synthetic approach to prepare silver nanoparticles using longan (Dimocarpus longan) peel extract and evaluation of their antibacterial activities. Mater. Today Proc., 2017, 4(5), 6317-6325.
[http://dx.doi.org/10.1016/j.matpr.2017.06.133]
[65]
Sudha, A.; Jeyakanthan, J.; Srinivasan, P. Green synthesis of silver nanoparticles using Lippia nodiflora aerial extract and evaluation of their antioxidant, antibacterial and cytotoxic effects. Resource-Efficient Technol., 2017, 3(4), 506-515.
[http://dx.doi.org/10.1016/j.reffit.2017.07.002]
[66]
Banerjee, P.; Satapathy, M.; Mukhopahayay, A.; Das, P. Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresour. Bioprocess., 2014, 1(1), 3.
[http://dx.doi.org/10.1186/s40643-014-0003-y]
[67]
Muniyappan, N.; Nagarajan, N.S. Green synthesis of silver nanoparticles with Dalbergia spinosa leaves and their applications in biological and catalytic activities. Process Biochem., 2014, 49(6), 1054-1061.
[http://dx.doi.org/10.1016/j.procbio.2014.03.015]
[68]
Johnson, A.S.; Obot, I.B.; Ukpong, U.S. Green synthesis of silver nanoparticles using Artemisia annua and Sida acuta leaves extract and their antimicrobial, antioxidant and corrosion inhibition potentials. J. Mater. Environ. Sci., 2014, 5(3), 899-906.
[69]
Khalil; Mostafa, MH Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab. J. Chem., 2014, 7(6), 1131-1139.
[70]
Fierascu, R.C. Characterization of silver nanoparticles obtained by using Rosmarinus officinalis extract and their antioxidant activity. Revue. Roumaine de. Chimie., 2014, 59(3-4), 213-218.
[71]
Augustine, R.; Kalarikkal, N.; Thomas, S. A facile and rapid method for the black pepper leaf mediated green synthesis of silver nanoparticles and the antimicrobial study. Appl. Nanosci., 2014, 4(7), 809-818.
[http://dx.doi.org/10.1007/s13204-013-0260-7]
[72]
Subbaiya, R. Green synthesis of silver nanoparticles from Phyllanthus amarus and their antibacterial and antioxidant properties. Int. J. Curr. Microbiol. Appl. Sci., 2014, 3(1), 600-606.
[73]
Sun, Q.; Cai, X.; Li, J.; Zheng, M.; Chen, Z.; Yu, C-P. Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids Surf. A Physicochem. Eng. Asp., 2014, 444, 226-231.
[http://dx.doi.org/10.1016/j.colsurfa.2013.12.065]
[74]
Indhumathy, J. Green synthesis of silver nanoparticles using cassia fistula leaf extract and its applications. MJPMS, 2014, 2014(3), 20-25.
[75]
Abdel-Aziz, M.S.; Shaheen, M.S.; El-Nekeety, A.A.; Abdel-Wahhab, M.A. Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. J. Saudi Chem. Soc., 2014, 18(4), 356-363.
[http://dx.doi.org/10.1016/j.jscs.2013.09.011]
[76]
Veerakumar, K.; Govindarajan, M. Adulticidal properties of synthesized silver nanoparticles using leaf extracts of Feronia elephantum (Rutaceae) against filariasis, malaria, and dengue vector mosquitoes. Parasitol. Res., 2014, 113(11), 4085-4096.
[http://dx.doi.org/10.1007/s00436-014-4077-4] [PMID: 25146645]
[77]
Suganya, G.; Karthi, S.; Shivakumar, M.S. Larvicidal potential of silver nanoparticles synthesized from Leucas aspera leaf extracts against dengue vector Aedes aegypti. Parasitol. Res., 2014, 113(3), 875-880.
[http://dx.doi.org/10.1007/s00436-013-3718-3] [PMID: 24337613]
[78]
Sivapriyajothi, S.; Mahesh, K.P.; Kovendan, K.; Subramaniam, J.; Murugan, K. Larvicidal and pupicidal activity of synthesized silver nanoparticles using Leucas aspera leaf extract against mosquito vectors, Aedes aegypti and Anopheles stephensi. J. Entomol. Acarol. Res., 2014, 46(2), 77-84.
[http://dx.doi.org/10.4081/jear.2014.1787]
[79]
Priya, S. Green synthesis of silver nanoparticles using Calotropis gigantea and their potential mosquito larvicidal property. J. Pure Appl. Zool, 2014, 2, 128-137.
[80]
Jeeva, K.; Thiyagarajan, M.; Elangovan, V.; Geetha, N.; Venkatachalam, P. Caesalpinia coriaria leaf extracts mediated biosynthesis of metallic silver nanoparticles and their antibacterial activity against clinically isolated pathogens. Ind. Crops Prod., 2014, 52, 714-720.
[http://dx.doi.org/10.1016/j.indcrop.2013.11.037]
[81]
Kumar, D.A.; Palanichamy, V.; Roopan, S.M. Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 127, 168-171.
[http://dx.doi.org/10.1016/j.saa.2014.02.058] [PMID: 24632169]
[82]
Sundar, B. Synthesis, characterization, antibacterial and antifungal studies of silver nanoparticles from Ocimum gratissimum L. Int. J. Pharm., 2014, 767-772.
[83]
Yuvarajan, R.; Natarajan, D.; Jayavel, R. Green synthesized silver nanoparticles from Indoneesiella echioides and its antibacterial potential. Indo Am. J. Pharm Res., 2014, 4, 5122.
[84]
Narayanan, K.B.; Park, H.H. Antifungal activity of silver nanoparticles synthesized using turnip leaf extract (Brassica rapa L.) against wood rotting pathogens. Eur. J. Plant Pathol., 2014, 140(2), 185-192.
[http://dx.doi.org/10.1007/s10658-014-0399-4]
[85]
Ravikumar, P.; Sathish Kumar, S. Antifungal activity of extracellularly synthesized silver nanoparticles from Morinda citrifolia. Int. J. Tech. Res. Appl., 2014, 2(4), 108-111.
[86]
Gaddam, S.A. Efficient and robust biofabrication of silver nanoparticles by cassia alata leaf extract and their antimicrobial activity. J. Nanostr. Chem., 2014, 4(1), 82.
[http://dx.doi.org/10.1007/s40097-014-0082-5]
[87]
Joseph, S.; Mathew, B. Microwave-assisted green synthesis of silver nanoparticles and the study on catalytic activity in the degradation of dyes. J. Mol. Liq., 2015, 204, 184-191.
[http://dx.doi.org/10.1016/j.molliq.2015.01.027]
[88]
Ghozali, S.Z.; Vuanghao, L.; Ahmad, N.H. Biosynthesis and characterization of silver nanoparticles using Catharanthus roseus leaf extract and its proliferative effects on cancer cell lines. J. Nanomed. Nanotechnol., 2015, 6, 305.
[89]
Mukundan, D.; Mohankumar, R.; Vasanthakumari, R. Green synthesis of silver nanoparticles using leaves extract of Bauhinia tomentosa linn and its in vitro anticancer potential. Mater. Today Proc., 2015, 2(9), 4309-4316.
[http://dx.doi.org/10.1016/j.matpr.2015.10.014]
[90]
Kathiravan, V.; Ravi, S.; Ashokkumar, S.; Velmurugan, S.; Elumalai, K.; Khatiwada, C.P. Green synthesis of silver nanoparticles using Croton sparsiflorus morong leaf extract and their antibacterial and antifungal activities. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 139, 200-205.
[http://dx.doi.org/10.1016/j.saa.2014.12.022] [PMID: 25561298]
[91]
Elangovan, K.; Elumalai, D.; Anupriya, S.; Shenbhagaraman, R.; Kaleena, P.K.; Murugesan, K. Phyto mediated biogenic synthesis of silver nanoparticles using leaf extract of Andrographis echioides and its bio-efficacy on anticancer and antibacterial activities. J. Photochem. Photobiol. B, 2015, 151, 118-124.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.05.015] [PMID: 26233711]
[92]
Vinmathi, V.; Packia Jacob, S.J. A green and facile approach for the synthesis of silver nanoparticles using aqueous extract of Ailanthus excelsa leaves, evaluation of its antibacterial and anticancer efficacy. Bull. Mater. Sci., 2015, 38(3), 625-628.
[http://dx.doi.org/10.1007/s12034-015-0916-x]
[93]
Ahmed, M.J.; Murtaza, G.; Mehmood, A.; Bhatti, T.M. Green synthesis of silver nanoparticles using leaves extract of Skimmia laureola: Characterization and antibacterial activity. Mater. Lett., 2015, 153, 10-13.
[http://dx.doi.org/10.1016/j.matlet.2015.03.143]
[94]
Dinesh, D.; Murugan, K.; Madhiyazhagan, P.; Panneerselvam, C.; Mahesh, K.P.; Nicoletti, M.; Jiang, W.; Benelli, G.; Chandramohan, B.; Suresh, U. Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: Towards an effective tool against the malaria vector Anopheles stephensi? Parasitol. Res., 2015, 114(4), 1519-1529.
[http://dx.doi.org/10.1007/s00436-015-4336-z] [PMID: 25653031]
[95]
Bose, D.; Chatterjee, S. Antibacterial activity of green synthesized silver nanoparticles using Vasaka (Justicia adhatoda L.) leaf extract. Indian J. Microbiol., 2015, 55(2), 163-167.
[http://dx.doi.org/10.1007/s12088-015-0512-1] [PMID: 25805902]
[96]
Latha, M.; Sumathi, M.; Manikandan, R.; Arumugam, A.; Prabhu, N.M. Biocatalytic and antibacterial visualization of green synthesized silver nanoparticles using Hemidesmus indicus. Microb. Pathog., 2015, 82, 43-49.
[http://dx.doi.org/10.1016/j.micpath.2015.03.008] [PMID: 25797527]
[97]
Chikdu, D. Green synthesis and characterization of silver nanoparticles by using Aloe barbadensis and its antibacterial activity. J. Global Biosci., 2015, 4(7), 2713-2719.
[98]
Ghaedi, M.; Yousefinejad, M.; Safarpoor, M.; Khafri, H.Z.; Purkait, M.K. Rosmarinus officinalis leaf extract mediated green synthesis of silver nanoparticles and investigation of its antimicrobial properties. J. Ind. Eng. Chem., 2015, 31, 167-172.
[http://dx.doi.org/10.1016/j.jiec.2015.06.020]
[99]
Anitha, P.; Sakthivel, P. Synthesis and characterization of silver nanoparticles using Persea americana (Avocado) and its anti-inflammatory effects on human blood cells. Int. J. Pharm. Sci. Rev. Res., 2015, 35(2), 173-177.
[100]
Ali, S. Green synthesis of silver nanoparticles using the leaf extract of Putranjiva roxburghii wall. and their antimicrobial activity. Asian J. Pharm. Clin. Res., 2015, 8(3), 335-338.
[101]
Poopathi, S.; De Britto, L.J.; Praba, V.L.; Mani, C.; Praveen, M. Synthesis of silver nanoparticles from Azadirachta indica-A most effective method for mosquito control. Environ. Sci. Pollut. Res. Int., 2015, 22(4), 2956-2963.
[http://dx.doi.org/10.1007/s11356-014-3560-x] [PMID: 25226837]
[102]
Bhumi, G.; Linga, R.M.; Savithramma, N. Green synthesis of silver nanoparticles from the leaf extract of Adhatoda vasica nees. and assessment of its antibacterial activity. Asian J. Pharm. Clin. Res., 2015, 8(3), 62-67.
[103]
Panneerselvam, C.; Murugan, K.; Amerasan, D. Biosynthesis of silver nanoparticles using plant extract and its anti-plasmodial property. Adv. Mat. Res., 2015, 1086, 11-30.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.1086.11]
[104]
Yugandhar, P.; Savithramma, N. Leaf assisted green synthesis of silver nanoparticles from Syzygium Alternifolium (Wt.) Walp. characterization and antimicrobial studies. Nano Biomed. Eng., 2015, 7(2), 2.
[http://dx.doi.org/10.5101/nbe.v7i2.p29-37]
[105]
Rajenran, R. Green synthesis, characterization, antimicrobial and cytotoxic effects of silver nanoparticles using Origanum heracleoticum L. leaf extract. Int. J. Pharm. Pharm. Sci., 2015, 7(4), 288-293.
[106]
Krithiga, N.; Rajalakshmi, N.; Jayachitra, A. Green synthesis of silver nanoparticles using leaf extracts of Clitoria ternatea and Solanum nigrum and study of its antibacterial effect against common nosocomial pathogens. J. Nanosci., 2015, 2015, 1-8.
[http://dx.doi.org/10.1155/2015/928204]
[107]
Nasrollahzadeh, M.; Mohammad, S. S.; Babaei, F.; Maham, M. Euphorbia helioscopia Linn as a green source for synthesis of silver nanoparticles and their optical and catalytic properties. J. Colloid Interface Sci., 2015, 450, 374-380.
[http://dx.doi.org/10.1016/j.jcis.2015.03.033] [PMID: 25854504]
[108]
Ashraf, J.M.; Ansari, M.A.; Khan, H.M.; Alzohairy, M.A.; Choi, I. Green synthesis of silver nanoparticles and characterization of their inhibitory effects on AGEs formation using biophysical techniques. Sci. Rep., 2016, 6(1), 20414.
[http://dx.doi.org/10.1038/srep20414] [PMID: 26829907]
[109]
Allafchian, A.R.; Mirahmadi-Zare, S.Z.; Jalali, S.A.H.; Hashemi, S.S.; Vahabi, M.R. Green synthesis of silver nanoparticles using phlomis leaf extract and investigation of their antibacterial activity. J. Nanostructure Chem., 2016, 6(2), 129-135.
[http://dx.doi.org/10.1007/s40097-016-0187-0]
[110]
Manjamadha, V.P.; Muthukumar, K. Ultrasound assisted green synthesis of silver nanoparticles using weed plant. Bioprocess Biosyst. Eng., 2016, 39(3), 401-411.
[http://dx.doi.org/10.1007/s00449-015-1523-3] [PMID: 26753832]
[111]
Parveen, M.; Ahmad, F.; Malla, A.M.; Azaz, S. Microwave-assisted green synthesis of silver nanoparticles from Fraxinus excelsior leaf extract and its antioxidant assay. Appl. Nanosci., 2016, 6(2), 267-276.
[http://dx.doi.org/10.1007/s13204-015-0433-7]
[112]
Sengottaiyan, A.; Mythili, R.; Selvankumar, T.; Aravinthan, A.; Kamala-Kannan, S.; Manoharan, K.; Thiyagarajan, P.; Govarthanan, M.; Kim, J-H. Green synthesis of silver nanoparticles using Solanum indicum L. and their antibacterial, splenocyte cytotoxic potentials. Res. Chem. Intermed., 2016, 42(4), 3095-3103.
[http://dx.doi.org/10.1007/s11164-015-2199-7]
[113]
Jain, S.; Mehata, M.S. Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property. Sci. Rep., 2017, 7(1), 15867.
[http://dx.doi.org/10.1038/s41598-017-15724-8] [PMID: 29158537]
[114]
Gomathi, M.; Rajkumar, P.V.; Prakasam, A.; Ravichandran, K. Green synthesis of silver nanoparticles using Datura stramonium leaf extract and assessment of their antibacterial activity. Resource-Efficient Technol., 2017, 3(3), 280-284.
[http://dx.doi.org/10.1016/j.reffit.2016.12.005]
[115]
Moodley, J.S. Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential. Adv. Nat. Sci.: Nanosci. Nanotechnol, 2018, 9(1), 015011.
[http://dx.doi.org/10.1088/2043-6254/aaabb2]
[116]
Sana, S.S.; Dogiparthi, L.K. Green synthesis of silver nanoparticles using Givotia moluccana leaf extract and evaluation of their antimicrobial activity. Mater. Lett., 2018, 226, 47-51.
[http://dx.doi.org/10.1016/j.matlet.2018.05.009]
[117]
Francis, S.; Joseph, S.; Koshy, E.P.; Mathew, B. Microwave assisted green synthesis of silver nanoparticles using leaf extract of elephantopus scaber and its environmental and biological applications. Artif. Cells Nanomed. Biotechnol., 2018, 46(4), 795-804.
[http://dx.doi.org/10.1080/21691401.2017.1345921] [PMID: 28681662]
[118]
Sarkar, S.; Kotteeswaran, V. Green synthesis of silver nanoparticlesfrom aqueous leaf extract of Pomegranate (Punica granatum) and their anticancer activity on human cervical cancer cells. Adv. Nat.Sci.: Nanosci. Nanotechnol., 2018, 9(2), 2-025014.
[http://dx.doi.org/10.1088/2043-6254/aac590]
[119]
Chahardoli, A.; Karimi, N.; Fattahi, A. Nigella arvensis leaf extract mediated green synthesis of silver nanoparticles: Their characteristic properties and biological efficacy. Adv. Powder Technol., 2018, 29(1), 202-210.
[http://dx.doi.org/10.1016/j.apt.2017.11.003]
[120]
Baghayeri, M. Green synthesis of silver nanoparticles using water extract of Salvia leriifolia: Antibacterial studies and applications as catalysts in the electrochemical detection of nitrite. Appl. Organomet. Chem., 2018, 32(2), e4057.
[http://dx.doi.org/10.1002/aoc.4057]
[121]
Kumar, V. Green synthesis of silver nanoparticles using leaf extract of Holoptelea integrifolia and preliminary investigation of its antioxidant, anti-inflammatory, antidiabetic and antibacterial activities. J. Environ. Chem. Eng., 2019, 7(3), 103094.
[http://dx.doi.org/10.1016/j.jece.2019.103094]
[122]
Jebril, S.; Khanfir, B.J.R.; Dridi, C. Green synthesis of silver nanoparticles using Melia azedarach leaf extract and their antifungal activities: In vitro and in vivo. Mater. Chem. Phys., 2020, 248, 122898.
[http://dx.doi.org/10.1016/j.matchemphys.2020.122898]
[123]
Rajkumar, P.V. Green synthesis of silver nanoparticles using Gymnema sylvestre leaf extract and evaluation of its antibacterial activity. S. Afr. J. Chem. Eng., 2020, 32(1), 1-4.
[124]
Hashemi, S.F.; Tasharrofi, N.; Saber, M.M. Green synthesis of silver nanoparticles using Teucrium polium leaf extract and assessment of their antitumor effects against MNK45 human gastric cancer cell line. J. Mol. Struct., 2020, 1208, 127889.
[http://dx.doi.org/10.1016/j.molstruc.2020.127889]
[125]
Nouri, A.; Tavakkoli, Y.M.; Lajevardi, A.; Rezaei, Z.; Ghorbanpour, M.; Tanzifi, M. Ultrasonic-assisted green synthesis of silver nanoparticles using Mentha aquatica leaf extract for enhanced antibacterial properties and catalytic activity. Colloid Interface Sci. Commun., 2020, 35, 100252.
[http://dx.doi.org/10.1016/j.colcom.2020.100252]
[126]
Maghimaa, M.; Alharbi, S.A. Green synthesis of silver nanoparticles from Curcuma longa L. and coating on the cotton fabrics for antimicrobial applications and wound healing activity. J. Photochem. Photobiol. B, 2020, 204, 111806.
[http://dx.doi.org/10.1016/j.jphotobiol.2020.111806] [PMID: 32044619]
[127]
Carson, L.; Bandara, S.; Joseph, M.; Green, T.; Grady, T.; Osuji, G.; Weerasooriya, A.; Ampim, P.; Woldesenbet, S. Green synthesis of silver nanoparticles with antimicrobial properties using Phyla dulcis plant extract. Foodborne Pathog. Dis., 2020, 17(8), 504-511.
[http://dx.doi.org/10.1089/fpd.2019.2714] [PMID: 32267778]
[128]
Siddiquee, M.A.; Parray, M.; Mehdi, S.H.; Alzahrani, K.A.; Alshehri, A.A.; Malik, M.A.; Patel, R. Green synthesis of silver nanoparticles from Delonix regia leaf extracts: In vitro cytotoxicity and interaction studies with bovine serum albumin. Mater. Chem. Phys., 2020, 242, 122493.
[http://dx.doi.org/10.1016/j.matchemphys.2019.122493]
[129]
Aslany, S.; Tafvizi, F.; Naseh, V. Characterization and evaluation of cytotoxic and apoptotic effects of green synthesis of silver nanoparticles using Artemisia Ciniformis on human gastric adenocarcinoma. Mater. Today Commun., 2020, 24, 101011.
[http://dx.doi.org/10.1016/j.mtcomm.2020.101011]
[130]
Guimarães, M.L.; da Silva, F.A.G., Jr; da Costa, M.M.; de Oliveira, H.P. Green synthesis of silver nanoparticles using Ziziphus joazeiro leaf extract for production of antibacterial agents. Appl. Nanosci., 2020, 10(4), 1073-1081.
[http://dx.doi.org/10.1007/s13204-019-01181-4]
[131]
Rajput, S.; Kumar, D.; Agrawal, V. Green synthesis of silver nanoparticles using Indian Belladonna extract and their potential antioxidant, anti-inflammatory, anticancer and larvicidal activities. Plant Cell Rep., 2020, 39(7), 921-939.
[http://dx.doi.org/10.1007/s00299-020-02539-7] [PMID: 32300886]
[132]
Moteriya, P.; Chanda, S. Green synthesis of silver nanoparticles from Caesalpinia pulcherrima leaf extract and evaluation of their antimicrobial, cytotoxic and genotoxic potential (3-in-1 system). J. Inorg. Organomet. Polym. Mater., 2020, 30(10), 3920-3932.
[http://dx.doi.org/10.1007/s10904-020-01532-7]
[133]
Uddin, A.K.M.R.; Siddique, M.A.B.; Rahman, F.; Ullah, A.K.M.A.; Khan, R. Cocos nucifera leaf extract mediated green synthesis of silver nanoparticles for enhanced antibacterial activity. J. Inorg. Organomet. Polym. Mater., 2020, 30(9), 3305-3316.
[http://dx.doi.org/10.1007/s10904-020-01506-9]
[134]
Alharbi, F.A.; Alarfaj, A.A. Green synthesis of silver nanoparticles from Neurada procumbens and its antibacterial activity against multi-drug resistant microbial pathogens. J. King Saud Univ. Sci., 2020, 32(2), 1346-1352.
[http://dx.doi.org/10.1016/j.jksus.2019.11.026]
[135]
Paulkumar, K.; Gnanajobitha, G.; Vanaja, M.; Rajeshkumar, S.; Malarkodi, C.; Pandian, K.; Annadurai, G. Piper nigrum leaf and stem assisted green synthesis of silver nanoparticles and evaluation of its antibacterial activity against agricultural plant pathogens. Sci. World J, 2014, 2014, 1-9.
[http://dx.doi.org/10.1155/2014/829894] [PMID: 24558336]
[136]
Sahayaraj, K.; Balasubramanyam, G.; Chavali, M. Green synthesis of silver nanoparticles using dry leaf aqueous extract of Pongamia glabra Vent (Fab.), Characterization and phytofungicidal activity. Environ. Nanotechnol. Monit. Manag., 2020, 14, 100349.
[http://dx.doi.org/10.1016/j.enmm.2020.100349]
[137]
Tamilarasi, P.; Meena, P. Green synthesis of silver nanoparticles (AgNPs) using Gomphrena globosa (Globe amaranth) leaf extract and their characterization. Mater. Today Proc., 2020, 33, 2209-2216.
[http://dx.doi.org/10.1016/j.matpr.2020.04.025]
[138]
Gudimalla, A.; Jose, J.; Varghese, R.J.; Thomas, S. Green synthesis of silver nanoparticles using Nymphae odorata extract incorporated films and antimicrobial activity. J. Polym. Environ., 2021, 29(5), 1412-1423.
[http://dx.doi.org/10.1007/s10924-020-01959-6]
[139]
Narayanan, M.; Divya, S.; Natarajan, D.; Senthil-Nathan, S.; Kandasamy, S.; Chinnathambi, A.; Alahmadi, T.A.; Pugazhendhi, A. Green synthesis of silver nanoparticles from aqueous extract of Ctenolepis garcini L. and assess their possible biological applications. Process Biochem., 2021, 107, 91-99.
[http://dx.doi.org/10.1016/j.procbio.2021.05.008]
[140]
Alahmad, A. Hypericum perforatum L.-mediated green synthesis of silver nanoparticles exhibiting antioxidant and anticancer activities. Nanomaterials., 2021, 11(2), 487.
[http://dx.doi.org/10.3390/nano11020487]
[141]
Sooraj, M.P.; Nair, A.S.; Vineetha, D. Sunlight-mediated green synthesis of silver nanoparticles using Sida retusa leaf extract and assessment of its antimicrobial and catalytic activities. Chem. Pap., 2021, 75(1), 351-363.
[http://dx.doi.org/10.1007/s11696-020-01304-0]
[142]
Keshari, A.K. Green synthesis of silver nanoparticles using Catharanthus roseus: Its antioxidant and antibacterial properties. Nanomed. Res. J., 2021, 6(1), 17-27.
[143]
Tsegay, M.G.; Gebretinsae, H.G.; Sackey, J.; Maaza, M.; Nuru, Z.Y. Green synthesis of khat mediated silver nanoparticles for efficient detection of mercury ions. Mater. Today Proc., 2021, 36, 368-373.
[http://dx.doi.org/10.1016/j.matpr.2020.04.217]
[144]
Rodríguez-Félix, F. Sustainable-green synthesis of silver nanoparticles using safflower (Carthamus tinctorius L.) waste extract and its antibacterial activity. Heliyon, 2021, 7(4), e06923.
[145]
Wang, Y. Green synthesis and chemical characterization of a novel anti-human pancreatic cancer supplement by silver nanoparticles containing Zingiber officinale leaf aqueous extract. Arab. J. Chem., 2021, 14(4), 103081.
[http://dx.doi.org/10.1016/j.arabjc.2021.103081]
[146]
Gul, A.R.; Shaheen, F.; Rafique, R.; Bal, J.; Waseem, S.; Park, T.J. Grass-mediated biogenic synthesis of silver nanoparticles and their drug delivery evaluation: A biocompatible anti-cancer therapy. Chem. Eng. J., 2021, 407, 127202.
[http://dx.doi.org/10.1016/j.cej.2020.127202]
[147]
Samuggam, S. Green synthesis and characterization of silver nanoparticles using spondias mombin extract and their antimicrobial activity against biofilm-producing bacteria. Molecules, 2021, 26(9), 2681.
[http://dx.doi.org/10.3390/molecules26092681]
[148]
Aisida, S.O.; Ugwu, K.; Akpa, P.A.; Nwanya, A.C.; Ejikeme, P.M.; Botha, S.; Ahmad, I.; Ezema, F.I. Morphological, optical and antibacterial study of green synthesized silver nanoparticles via Vernonia amygdalina. Mater. Today Proc., 2021, 36, 199-203.
[http://dx.doi.org/10.1016/j.matpr.2020.02.931]
[149]
Kong, Y. Novel green synthesis, chemical characterization, toxicity, colorectal carcinoma, antioxidant, anti-diabetic, and anticholinergic properties of silver nanoparticles: A chemopharmacological study. Arab. J. Chem., 2021, 14(6), 103193.
[http://dx.doi.org/10.1016/j.arabjc.2021.103193]
[150]
Sivakumar, M.; Surendar, S.; Jayakumar, M.; Seedevi, P.; Sivasankar, P.; Ravikumar, M.; Anbazhagan, M.; Murugan, T.; Siddiqui, S.S.; Loganathan, S. Parthenium hysterophorus mediated synthesis of silver nanoparticles and its evaluation of antibacterial and antineoplastic activity to combat liver cancer cells. J. Cluster Sci., 2021, 32(1), 167-177.
[http://dx.doi.org/10.1007/s10876-020-01775-x]
[151]
Koteswara, R. P.; Srinivasulu, S.; Ravindra nadh, M.; Vikram Babu, B.; Reddi, M.S.; Rama K., A. Anticancer and antibacterial activity of green synthesized silver nanoparticles using Adina cordifolia. Mater. Today Proc., 2021, 43, 1700-1706.
[http://dx.doi.org/10.1016/j.matpr.2020.10.043]
[152]
Al-Otibi, F.; Perveen, K.; Al-Saif, N.A.; Alharbi, R.I.; Bokhari, N.A.; Albasher, G.; Al-Otaibi, R.M.; Al-Mosa, M.A. Biosynthesis of silver nanoparticles using Malva parviflora and their antifungal activity. Saudi J. Biol. Sci., 2021, 28(4), 2229-2235.
[http://dx.doi.org/10.1016/j.sjbs.2021.01.012] [PMID: 33935565]
[153]
Mondal, N.K.; Chowdhury, A.; Dey, U.; Mukhopadhya, P.; Chatterjee, S.; Das, K.; Datta, J.K. Green synthesis of silver nanoparticles and its application for mosquito control. Asian Pac. J. Trop. Dis., 2014, 4, S204-S210.
[http://dx.doi.org/10.1016/S2222-1808(14)60440-0]
[154]
Suresh, G.; Gunasekar, P.H.; Kokila, D.; Prabhu, D.; Dinesh, D.; Ravichandran, N.; Ramesh, B.; Koodalingam, A.; Vijaiyan Siva, G. Green synthesis of silver nanoparticles using Delphinium denudatum root extract exhibits antibacterial and mosquito larvicidal activities. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 127, 61-66.
[http://dx.doi.org/10.1016/j.saa.2014.02.030] [PMID: 24632157]
[155]
Rathi, S. P.R.; Reka, M.; Poovazhagi, R.; Arul Kumar, M.; Murugesan, K. Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 135, 1137-1144.
[http://dx.doi.org/10.1016/j.saa.2014.08.019] [PMID: 25189525]
[156]
Bindhu, M.R.; Umadevi, M. Synthesis of silver nanoparticles using Catharanthus roseus root extract and its larvicidal effects. J. Environ. Boil., 36.6, 2015, 1283.
[157]
Sharma, D.; Ledwani, L.; Bhatnagar, N. Antimicrobial and cytotoxic potential of silver nanoparticles synthesized using Rheum emodi roots extract. Front Chem., 2015, 24(2), 121.
[158]
Pugazhendhi, S.; Kirubha, E.; Palanisamy, P.K.; Gopalakrishnan, R. Synthesis and characterization of silver nanoparticles from Alpinia calcarata by Green approach and its applications in bactericidal and nonlinear optics. Appl. Surf. Sci., 2015, 357, 1801-1808.
[http://dx.doi.org/10.1016/j.apsusc.2015.09.237]
[159]
Bindhu, M.R.; Umadevi, M. Antibacterial and catalytic activities of green synthesized silver nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 135, 373-378.
[http://dx.doi.org/10.1016/j.saa.2014.07.045] [PMID: 25093965]
[160]
Garibo, D.; Borbón-Nuñez, H.A.; de León, J.N.D.; García Mendoza, E.; Estrada, I.; Toledano-Magaña, Y.; Tiznado, H.; Ovalle-Marroquin, M.; Soto-Ramos, A.G.; Blanco, A.; Rodríguez, J.A.; Romo, O.A.; Chávez-Almazán, L.A.; Susarrey-Arce, A. Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Sci. Rep., 2020, 10(1), 12805.
[http://dx.doi.org/10.1038/s41598-020-69606-7] [PMID: 32732959]
[161]
Arshad, H.; Sami, M.A.; Sadaf, S.; Hassan, U. Salvadora persica mediated synthesis of silver nanoparticles and their antimicrobial efficacy. Sci. Rep., 2021, 11(1), 5996.
[http://dx.doi.org/10.1038/s41598-021-85584-w] [PMID: 33727607]
[162]
Reddy, N.J.; Nagoor Vali, D.; Rani, M.; Rani, S.S. Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. Mater. Sci. Eng. C, 2014, 34, 115-122.
[http://dx.doi.org/10.1016/j.msec.2013.08.039] [PMID: 24268240]
[163]
David, L.; Moldovan, B.; Vulcu, A.; Olenic, L.; Perde-Schrepler, M.; Fischer-Fodor, E.; Florea, A.; Crisan, M.; Chiorean, I.; Clichici, S.; Filip, G.A. Green synthesis, characterization and anti-inflammatory activity of silver nanoparticles using European black elderberry fruits extract. Colloids Surf. B Biointerfaces, 2014, 122, 767-777.
[http://dx.doi.org/10.1016/j.colsurfb.2014.08.018] [PMID: 25174985]
[164]
Alzahrani, E.; Welham, K. Optimization preparation of the biosynthesis of silver nanoparticles using watermelon and study of itsantibacterial activity. Int. J. Basic Appl. Sci, 2014, 3(4), 392.
[http://dx.doi.org/10.14419/ijbas.v3i4.3358]
[165]
Kiruthika, N.; Somanathan, T. Eco-synthesis of silver nanoparticles and its use to antibacterial and antifungal activity. J. Chem. Pharm. Sci. ISSN, 2014, 974, 2115.
[166]
Ghaffari-Moghaddam, M.; Hadi-Dabanlou, R. Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Crataegus douglasii fruit extract. J. Ind. Eng. Chem., 2014, 20(2), 739-744.
[http://dx.doi.org/10.1016/j.jiec.2013.09.005]
[167]
Rajakannu, S. Biosynthesis of silver nanoparticles using Garcinia mangostana fruit extract and their antibacterial, antioxidant activity. Int. J. Curr. Microbiol. Appl. Sci., 2015, 4, 944-952.
[168]
Heydari, R.; Rashidipour, M. Green synthesis of silver nanoparticles using extract of oak fruit hull (jaft): Synthesis and in vitro cytotoxic effect on mcf-7 cells. Int. J. Breast Cancer, 2015, 2015, 1-6.
[http://dx.doi.org/10.1155/2015/846743] [PMID: 25685560]
[169]
Gavade, S.J. Green synthesis of silver nanoparticles by using carambola fruit extract and their antibacterial activity. Adv. Nat. Sci.: Nanosci. Nanotechnol., 2015, 6(4), 045015.
[170]
Ali, Z.A.; Yahya, R.; Sekaran, S.D.; Puteh, R. Green synthesis of silver nanoparticles using apple extract and its antibacterial properties. Adv. Mater. Sci. Eng., 2016, 2016, 1-6.
[http://dx.doi.org/10.1155/2016/4102196]
[171]
Kumar, B.; Smita, K.; Cumbal, L.; Debut, A. Green synthesis of silver nanoparticles using Andean blackberry fruit extract. Saudi J. Biol. Sci., 2017, 24(1), 45-50.
[http://dx.doi.org/10.1016/j.sjbs.2015.09.006] [PMID: 28053570]
[172]
Saha, J.; Begum, A.; Mukherjee, A.; Kumar, S. A novel green synthesis of silver nanoparticles and their catalytic action in reduction of Methylene Blue dye. Sustain. Environ. Res., 2017, 27(5), 245-250.
[http://dx.doi.org/10.1016/j.serj.2017.04.003]
[173]
Wei, S.; Wang, Y.; Tang, Z.; Hu, J.; Su, R.; Lin, J.; Zhou, T.; Guo, H.; Wang, N.; Xu, R. A size-controlled green synthesis of silver nanoparticles by using the berry extract of Sea Buckthorn and their biological activities. New J. Chem., 2020, 44(22), 9304-9312.
[http://dx.doi.org/10.1039/D0NJ01335H]
[174]
Kazlagić, A.; Abud, O.A.; Ćibo, M.; Hamidović, S.; Borovac, B.; Omanović-Mikličanin, E. Green synthesis of silver nanoparticles using apple extract and its antimicrobial properties. Health Technol. (Berl.), 2020, 10(1), 147-150.
[http://dx.doi.org/10.1007/s12553-019-00378-5]
[175]
Umai, D.; Vikranth, A.; Meenambiga, S.S. A study on the green synthesis of silver nanoparticles from Olea europaea and its activity against oral pathogens. Mater. Today Proc., 2021, 44, 3647-3651.
[http://dx.doi.org/10.1016/j.matpr.2020.10.681]
[176]
Thi Lan Huong, V.; Nguyen, N.T. Green synthesis, characterization and antibacterial activity of silver nanoparticles using Sapindus mukorossi fruit pericarp extract. Mater. Today Proc., 2021, 42, 88-93.
[http://dx.doi.org/10.1016/j.matpr.2020.10.015]
[177]
Kpj, H.; Shantakani, S.; Botcha, S. Green synthesis of silver nanoparticles using aqueous fruit and tuber extracts of Momordica cymbalaria. J. Plant Biochem. Biotechnol., 2021, 30(1), 196-204.
[http://dx.doi.org/10.1007/s13562-019-00542-y]
[178]
Das, G.; Shin, H.S.; Kumar, A.; Vishnuprasad, C.N.; Patra, J.K. Photo-mediated optimized synthesis of silver nanoparticles using the extracts of outer shell fibre of Cocos nucifera L. fruit and detection of its antioxidant, cytotoxicity and antibacterial potential. Saudi J. Biol. Sci., 2021, 28(1), 980-987.
[http://dx.doi.org/10.1016/j.sjbs.2020.11.022] [PMID: 33424390]
[179]
Seku, K.; Hussaini, S.S.; Pejjai, B.; Al Balushi, M.M.S.; Dasari, R.; Golla, N.; Reddy, G.B. A rapid microwave-assisted synthesis of silver nanoparticles using Ziziphus jujuba Mill fruit extract and their catalytic and antimicrobial properties. Chem. Pap., 2021, 75(4), 1341-1354.
[http://dx.doi.org/10.1007/s11696-020-01386-w]
[180]
Ahmad, F.; Taj, M.B.; Ramzan, M.; Ali, H.; Ali, A.; Adeel, M.; Iqbal, H.M.N.; Imran, M. One-pot synthesis and characterization of in-house engineered silver nanoparticles from Flacourtia jangomas fruit extract with effective antibacterial profiles. J. Nanostructure Chem., 2021, 11(1), 131-141.
[http://dx.doi.org/10.1007/s40097-020-00354-w]
[181]
Arokiyaraj, S.; Valan Arasu, M.; Vincent, S.; Oh, Y-K.; Kim, K.H.; Choi, K-C.; Choi, S.H.; Prakash, N.U. Rapid green synthesis of silver nanoparticles from Chrysanthemum indicum L and its antibacterial and cytotoxic effects: An in vitro study. Int. J. Nanomedi., 2014, 9, 379-388.
[http://dx.doi.org/10.2147/IJN.S53546] [PMID: 24426782]
[182]
Baharara, J.; Namvar, F.; Ramezani, T.; Hosseini, N.; Mohamad, R. Green synthesis of silver nanoparticles using Achillea biebersteinii flower extract and its anti-angiogenic properties in the rat aortic ring model. Molecules, 2014, 19(4), 4624-4634.
[http://dx.doi.org/10.3390/molecules19044624] [PMID: 24739926]
[183]
Manisha, D.R. Biosynthesis of silver nanoparticles using flower extracts of Catharanthus roseus and evaluation of its antibacterial efficacy. World J. Pharm. Pharm. Sci., 2014, 3, 877-885.
[184]
Mata, R.; Reddy, N.J.; Rani, S.S. Catalytic and biological activities of green silver nanoparticles synthesized from Plumeria alba (frangipani) flower extract. Mater. Sci. Eng. C, 2015, 51, 216-225.
[http://dx.doi.org/10.1016/j.msec.2015.02.053] [PMID: 25842128]
[185]
Gogoi, N.; Babu, P.J.; Mahanta, C.; Bora, U. Green synthesis and characterization of silver nanoparticles using alcoholic flower extract of Nyctanthes arbortristis and in vitro investigation of their antibacterial and cytotoxic activities. Mater. Sci. Eng. C, 2015, 46, 463-469.
[http://dx.doi.org/10.1016/j.msec.2014.10.069] [PMID: 25492011]
[186]
Padalia, H.; Moteriya, P.; Chanda, S. Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential. Arab. J. Chem., 2015, 8(5), 732-741.
[http://dx.doi.org/10.1016/j.arabjc.2014.11.015]
[187]
Arokiyaraj, S.; Saravanan, M.; Badathala, V. Green synthesis of Silver nanoparticles using aqueous extract of Taraxacum officinale and its antimicrobial activity. South Indian J. Biol. Sci., 2015, 1(2), 115-118.
[http://dx.doi.org/10.22205/sijbs/2015/v1/i2/100433]
[188]
Remya, R.R.; Rajasree, S.R.R.; Aranganathan, L.; Suman, T.Y. An investigation on cytotoxic effect of bioactive AgNPs synthesized using Cassia fistula flower extract on breast cancer cell MCF-7. Biotechnol. Rep. (Amst.), 2015, 8, 110-115.
[http://dx.doi.org/10.1016/j.btre.2015.10.004] [PMID: 28352579]
[189]
Mameneh, R.; Ghaffari-Moghaddam, M.; Solouki, M.; Samzadeh-Kermani, A.; Sharifmoghadam, M.R. Characterization and antibacterial activity of plant mediated silver nanoparticles biosynthesized using Scrophularia striata flower extract. Russ. J. Appl. Chem., 2015, 88(3), 538-546.
[http://dx.doi.org/10.1134/S1070427215030271]
[190]
Nalvolthula, R.; Merugu, R.; Pratap, R. M.P. Phytochemical analysis; synthesis; antitumor and antimicrobial activity of silver nanoparticles using flower extracts of Ixora coccinea. Inter J Chem Tech Res, 2015, 7, 2374-2380.
[191]
Arokiyaraj, S.; Dinesh, K.V.; Elakya, V.; Kamala, T.; Park, S.K.; Ragam, M.; Saravanan, M.; Bououdina, M.; Arasu, M.V.; Kovendan, K.; Vincent, S. Biosynthesized silver nanoparticles using floral extract of Chrysanthemum indicum L.—potential for malaria vector control. Environ. Sci. Pollut. Res. Int., 2015, 22(13), 9759-9765.
[http://dx.doi.org/10.1007/s11356-015-4148-9] [PMID: 25637241]
[192]
Chekuri, M. Green synthesis of stable silver nanoparticles using flower extract of Rosa damascena: characterization, antimicrobial and anti-oxidant activity study. Eur. Chem. Bull., 2015, 4(10-12), 454-459.
[193]
Azarbani, F.; Shiravand, S. Green synthesis of silver nanoparticles by Ferulago macrocarpa flowers extract and their antibacterial, anti-fungal and toxic effects. Green Chem. Lett. Rev., 2020, 13(1), 41-49.
[http://dx.doi.org/10.1080/17518253.2020.1726504]
[194]
Varadavenkatesan, T.; Selvaraj, R.; Vinayagam, R. Green synthesis of silver nanoparticles using Thunbergia grandiflora flower extract and its catalytic action in reduction of Congo red dye. Mater. Today Proc., 2020, 23, 39-42.
[http://dx.doi.org/10.1016/j.matpr.2019.05.441]
[195]
Bindhu, M.R.; Umadevi, M.; Esmail, G.A.; Al-Dhabi, N.A.; Arasu, M.V. Green synthesis and characterization of silver nanoparticles from Moringa oleifera flower and assessment of antimicrobial and sensing properties. J. Photochem. Photobiol. B, 2020, 205, 111836.
[http://dx.doi.org/10.1016/j.jphotobiol.2020.111836] [PMID: 32172135]
[196]
Katta, V.K.M.; Dubey, R.S. Green synthesis of silver nanoparticles using Tagetes erecta plant and investigation of their structural, optical, chemical and morphological properties. Mater. Today Proc., 2021, 45, 794-798.
[http://dx.doi.org/10.1016/j.matpr.2020.02.809]
[197]
Palithya, S. Green synthesis of silver nanoparticles using flower extracts of Aerva lanata and their biomedical applications. Particul. Sci. Technol., 2021, 1-13.
[198]
Shanmugavadivu, M.; Kuppusamy, S.; Ranjithkumar, R. Synthesis of pomegranate peel extract mediated silver nanoparticles and its antibacterial activity. Am. J. Adv. Drug Deliv., 2014, 2(2), 174-182.
[199]
Najimu Nisha, S.; Aysha, O.S.; Syed Nasar Rahaman, J.; Vinoth Kumar, P.; Valli, S.; Nirmala, P.; Reena, A. Lemon peels mediated synthesis of silver nanoparticles and its antidermatophytic activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 124, 194-198.
[http://dx.doi.org/10.1016/j.saa.2013.12.019] [PMID: 24486863]
[200]
Ibrahim, H.M.M. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J. Radiat. Res. Appl. Sci., 2015, 8(3), 265-275.
[http://dx.doi.org/10.1016/j.jrras.2015.01.007]
[201]
Nasr, H.A.; Nassar, O.M.; El-Sayed, M.H.; Kobisi, A.A. Characterization and antimicrobial activity of lemon peel mediated green synthesis of silver nanoparticles. Int. J. Biol. Chem., 2019, 12(2), 56-63.
[http://dx.doi.org/10.26577/ijbch-2019-i2-7]
[202]
Nahar, K.N. Green synthesis of silver nanoparticles from Citrus sinensis peel extract and its antibacterial potential. Asian J. Green Chem., 2021, 5(1), 135-150.
[203]
Jabir, M.S.; Hussien, A.A.; Sulaiman, G.M.; Yaseen, N.Y.; Dewir, Y.H.; Alwahibi, M.S.; Soliman, D.A.; Rizwana, H. Green synthesis of silver nanoparticles from Eriobotrya japonica extract: A promising approach against cancer cells proliferation, inflammation, allergic disorders and phagocytosis induction. Artif. Cells Nanomed. Biotechnol., 2021, 49(1), 48-60.
[http://dx.doi.org/10.1080/21691401.2020.1867152] [PMID: 33403879]
[204]
Mehmood, A.; Murtaza, G.; Bhatti, T.M.; Raffi, M.; Kausar, R. Antibacterial efficacy of silver nanoparticles synthesized by a green method using bark extract of Melia azedarach L. J. Pharm. Innov., 2014, 9(3), 238-245.
[http://dx.doi.org/10.1007/s12247-014-9190-5]
[205]
Murugan, K.; Senthilkumar, B.; Senbagam, D.; Al-Sohaibani, S. Biosynthesis of silver nanoparticles using Acacia leucophloea extract and their antibacterial activity. Int. J. Nanomed., 2014, 9, 2431-2438.
[PMID: 24876776]
[206]
Yugandhar, P.; Haribabu, R.; Savithramma, N. Synthesis, characterization and antimicrobial properties of green-synthesised silver nanoparticles from stem bark extract of Syzygium alternifolium (Wt.) Walp. 3 Biotech., 2015, 5(6), 1031-1039.
[http://dx.doi.org/10.1007/s13205-015-0307-4]
[207]
Nayak, D.; Ashe, S.; Rauta, P.R.; Kumari, M.; Nayak, B. Bark extract mediated green synthesis of silver nanoparticles: Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Mater. Sci. Eng. C, 2016, 58, 44-52.
[http://dx.doi.org/10.1016/j.msec.2015.08.022] [PMID: 26478285]
[208]
Arya, G.; Kumari, R.M.; Gupta, N.; Kumar, A.; Chandra, R.; Nimesh, S. Green synthesis of silver nanoparticles using Prosopis juliflora bark extract: Reaction optimization, antimicrobial and catalytic activities. Artif. Cells Nanomed. Biotechnol., 2018, 46(5), 985-993.
[http://dx.doi.org/10.1080/21691401.2017.1354302] [PMID: 28720002]
[209]
Rohaizad, A. Green synthesis of silver nanoparticles from Catharanthus roseus dried bark extract deposited on graphene oxide for effective adsorption of methylene blue dye. J. Environ.Chem. Eng., 2020, 8(4), 4-103955.
[http://dx.doi.org/10.1016/j.jece.2020.103955]
[210]
Venkatesham, M.; Ayodhya, D.; Madhusudhan, A.; Santoshi Kumari, A.; Veerabhadram, G.; Girija, M. K. A novel green synthesis of silver nanoparticles using gum karaya: Characterization, antimicrobial and catalytic activity studies. J. Cluster Sci., 2014, 25(2), 409-422.
[http://dx.doi.org/10.1007/s10876-013-0620-1]
[211]
Rajkuberan, C.; Sudha, K.; Sathishkumar, G.; Sivaramakrishnan, S. Antibacterial and cytotoxic potential of silver nanoparticles synthesized using latex of Calotropis gigantea L. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 136(Pt B), 924-930.
[http://dx.doi.org/10.1016/j.saa.2014.09.115] [PMID: 25459618]
[212]
Sujitha, V.; Murugan, K.; Paulpandi, M.; Panneerselvam, C.; Suresh, U.; Roni, M.; Nicoletti, M.; Higuchi, A.; Madhiyazhagan, P.; Subramaniam, J.; Dinesh, D.; Vadivalagan, C.; Chandramohan, B.; Alarfaj, A.A.; Munusamy, M.A.; Barnard, D.R.; Benelli, G. Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitol. Res., 2015, 114(9), 3315-3325.
[http://dx.doi.org/10.1007/s00436-015-4556-2] [PMID: 26063530]
[213]
Ansari, M.A.; Alzohairy, M.A. One-pot facile green synthesis of silver nanoparticles using seed extract of Phoenix dactylifera and their bactericidal potential against MRSA. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-9.
[http://dx.doi.org/10.1155/2018/1860280] [PMID: 30046333]
[214]
Rautela, A.; Rani, J.; Das, M.D. Green synthesis of silver nanoparticles from Tectona grandis seeds extract: Characterization and mechanism of antimicrobial action on different microorganisms. J. Anal. Sci. Technol., 2019, 10(1), 1-10.
[http://dx.doi.org/10.1186/s40543-018-0163-z]
[215]
Qais, F.A.; Shafiq, A.; Ahmad, I.; Husain, F.M.; Khan, R.A.; Hassan, I. Green synthesis of silver nanoparticles using Carum copticum: Assessment of its quorum sensing and biofilm inhibitory potential against gram negative bacterial pathogens. Microb. Pathog., 2020, 144, 104172.
[http://dx.doi.org/10.1016/j.micpath.2020.104172] [PMID: 32224208]
[216]
Chand, K.; Jiao, C.; Lakhan, M.N.; Shah, A.H.; Kumar, V.; Fouad, D.E.; Chandio, M.B.; Ali, M.A.; Ahmed, M.; Cao, D. Green synthesis, characterization and photocatalytic activity of silver nanoparticles synthesized with Nigella Sativa seed extract. Chem. Phys. Lett., 2021, 763, 138218.
[http://dx.doi.org/10.1016/j.cplett.2020.138218]
[217]
Nazeruddin, G.M.; Prasad, N.R.; Prasad, S.R.; Shaikh, Y.I.; Waghmare, S.R.; Adhyapak, P. Coriandrum sativum seed extract assisted in situ green synthesis of silver nanoparticle and its anti-microbial activity. Ind. Crops Prod., 2014, 60, 212-216.
[http://dx.doi.org/10.1016/j.indcrop.2014.05.040]
[218]
Agarwal, P. Green synthesis of silver nanoparticles using callus extract of Capsicum annuum L. and their activity against microorganisms. Int. J. Nanotechnol. Appl., 2014, 4(5), 1-8.
[219]
Vijay Kumar, P.P.N.; Pammi, S.V.N.; Kollu, P.; Satyanarayana, K.V.V.; Shameem, U. Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their anti bacterial activity. Ind. Crops Prod., 2014, 52, 562-566.
[http://dx.doi.org/10.1016/j.indcrop.2013.10.050]
[220]
Dobrucka, R.; Długaszewska, J. Antimicrobial activities of silver nanoparticles synthesized by using water extract of Arnicae anthodium. Indian J. Microbiol., 2015, 55(2), 168-174.
[http://dx.doi.org/10.1007/s12088-015-0516-x] [PMID: 25805903]
[221]
Sadeghi, B.; Rostami, A.; Momeni, S.S. Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 134, 326-332.
[http://dx.doi.org/10.1016/j.saa.2014.05.078] [PMID: 25022505]
[222]
Shah, A.T.; Din, M.I.; Bashir, S.; Qadir, M.A.; Rashid, F. Green synthesis and characterization of silver nanoparticles using Ferocactus echidne extract as a reducing agent. Anal. Lett., 2015, 48(7), 1180-1189.
[http://dx.doi.org/10.1080/00032719.2014.974057]
[223]
Bagherzade, G.; Tavakoli, M.M.; Namaei, M.H. Green synthesis of silver nanoparticles using aqueous extract of saffron (Crocus sativus L.) wastages and its antibacterial activity against six bacteria. Asian Pac. J. Trop. Biomed., 2017, 7(3), 227-233.
[http://dx.doi.org/10.1016/j.apjtb.2016.12.014]
[224]
Pirtarighat, S.; Ghannadnia, M.; Baghshahi, S. Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J. Nanostructure Chem., 2019, 9(1), 1-9.
[http://dx.doi.org/10.1007/s40097-018-0291-4]
[225]
Jini, D.; Sharmila, S. Green synthesis of silver nanoparticles from Allium cepa and its in vitro antidiabetic activity. Mater. Today Proc., 2020, 22, 432-438.
[http://dx.doi.org/10.1016/j.matpr.2019.07.672]
[226]
Vorobyova, V.; Vasyliev, G.; Skiba, M. Eco-friendly “green” synthesis of silver nanoparticles with the black currant pomace extract and its antibacterial, electrochemical, and antioxidant activity. Appl. Nanosci., 2020, 10(12), 4523-4534.
[http://dx.doi.org/10.1007/s13204-020-01369-z]
[227]
Vasyliev, G.; Vorobyova, V.; Skiba, M.; Khrokalo, L. Green synthesis of silver nanoparticles using waste products (apricot and black currant pomace) aqueous extracts and their characterization. Adv. Mater. Sci. Eng., 2020, 2020, 1-11.
[http://dx.doi.org/10.1155/2020/4505787]
[228]
Kadam, J.; Dhawal, P.; Barve, S.; Kakodkar, S. Green synthesis of silver nanoparticles using cauliflower waste and their multifaceted applications in photocatalytic degradation of methylene blue dye and Hg2+ biosensing. SN Appl. Sci., 2020, 2(4), 738.
[http://dx.doi.org/10.1007/s42452-020-2543-4]
[229]
Pandey, V.K.; Upadhyay, S.N.; Mishra, P.K. Light-induced synthesis of silver nanoparticles using Ocimum tenuiflorum extract: Characterisation and application. J. Chem. Res., 2021, 45(1-2), 179-186.
[http://dx.doi.org/10.1177/1747519820936511]
[230]
Nakkala, J.R.; Mata, R.; Gupta, A.K.; Sadras, S.R. Biological activities of green silver nanoparticles synthesized with Acorous calamus rhizome extract. Eur. J. Med. Chem., 2014, 85, 784-794.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.024] [PMID: 25147142]
[231]
Thomas, S. Evaluation of antibacterial potential of silver nanoparticles (SNPs) produced using rhizome extract of Hedychium coronarium J. Koenig. Int. J. Pharm. Pharm. Sci., 2014, 6, 92-95.
[232]
Shalaby, T.I. Green synthesis of silver nanoparticles: synthesis, characterization and antibacterial activity. Nanosci. Nanotechnol, 2015, 5(2), 23-29.
[233]
Venkatadri, B.; Shanparvish, E.; Rameshkumar, M.R.; Arasu, M.V.; Al-Dhabi, N.A.; Ponnusamy, V.K.; Agastian, P. Green synthesis of silver nanoparticles using aqueous rhizome extract of Zingiber officinale and Curcuma longa: In-vitro anti-cancer potential on human colon carcinoma HT-29 cells. Saudi J. Biol. Sci., 2020, 27(11), 2980-2986.
[http://dx.doi.org/10.1016/j.sjbs.2020.09.021] [PMID: 33100856]
[234]
Taghavizadeh, Y.M.E.; Amiri, M.S.; Akbari, S.; Sharifalhoseini, M.; Nourbakhsh, F.; Mashreghi, M.; Ehsan, Y.; Abbasi, M.R.; Modarres, M.; Es-haghi, A. Green synthesis of silver nanoparticles using Helichrysum graveolens for biomedical applications and wastewater treat-ment. Bionanoscience, 2020, 10(4), 1121-1127.
[http://dx.doi.org/10.1007/s12668-020-00794-2]
[235]
Fatimah, I. Green synthesis of silver nanoparticles using extract of Parkia speciosa Hassk pods assisted by microwave irradiation. J. Adv. Res., 2016, 7(6), 961-969.
[http://dx.doi.org/10.1016/j.jare.2016.10.002] [PMID: 27857843]
[236]
Sherin, L.; Sohail, A.; Amjad, U-S.; Mustafa, M.; Jabeen, R.; Ul-Hamid, A. Facile green synthesis of silver nanoparticles using Terminalia bellerica kernel extract for catalytic reduction of anthropogenic water pollutants. Colloid Interface Sci. Commun., 2020, 37, 100276.
[http://dx.doi.org/10.1016/j.colcom.2020.100276]
[237]
Turunc, E.; Kahraman, O.; Binzet, R. Green synthesis of silver nanoparticles using pollen extract: Characterization, assessment of their electrochemical and antioxidant activities. Anal. Biochem., 2021, 621, 114123.
[http://dx.doi.org/10.1016/j.ab.2021.114123] [PMID: 33549546]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy