Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Role of Fibrinogen in Type-2 Diabetes Mellitus with Diabetic Neuropathy and its Preliminary Mechanism

Author(s): Wei-Li Gu, Zhen-Hong Li, Si-Qin Zhang, Pian Ao, Xiao-Bei Zhu, Xin Zhao, Xin-Yue Zhang, Deng-Feng Zhang, Xiao-Juan Huang, Yu Jiang and Li Wei*

Volume 30, Issue 6, 2023

Published on: 01 June, 2023

Page: [486 - 497] Pages: 12

DOI: 10.2174/0929866530666230509140515

open access plus

Abstract

Introduction: Diabetic peripheral neuropathy (DN) is the most common complication of type 2 diabetes mellitus (T2DM).

Objective: This study aimed to explore the role of fibrinogen (FIB) in T2DM neuropathy and its preliminary mechanism.

Methods: Ten male Sprague-Dawley rats were divided into a normal control group (NC group) and a T2DM neuropathy model group (DN group). The DN group was given a high-energy diet and streptozotocin, while the NC group was given a normal diet and a citric acid buffer. The expression levels of related proteins were analysed.

Results: Electrophysiology: Compared with the NC group, the conduction latency of the somatosensory-evoked potential and nerve conduction velocity was prolonged in the DN group, while the motor nerve action potential was decreased. As seen under a light microscope, the peripheral nerve fibres in the DN group were swollen, and the nerve fibres in the posterior funiculus of the spinal cord were loose or missing. Moreover, as seen under an electron microscope, the peripheral nerve demyelination of the DN group was severe, with microvascular blood coagulation, luminal stenosis, and collapse. Compared with the NC group, in the DN group, the expression of FIB was positively correlated with the expression of both ionised calcium-binding adaptor molecule-1 and glial fibrillary acidic protein. Compared with the NC group, in the DN group, the expression of platelet/endothelial cell adhesion molecule-1 and B-cell lymphoma 2 was negatively correlated.

Conclusion: The increased concentration of FIB may be the cause of neuropathy, and its mechanism may be related to its promotion of inflammatory response, blood coagulation, and vascular stenosis.

Keywords: Fibrinogen, diabetic neuropathy, demyelination, inflammation, blood coagulation, vascular stenosis.

Graphical Abstract
[1]
Li, Y.; Gao, Y.; Gong, Y.; Guo, Y.; Wang, L.; Liu, Q.; Chen, F.; Zhang, T. Treatment with Tang-luo-ning altered the microRNA expression profile in rats with diabetic peripheral neuropathy. Bioengineered, 2020, 11(1), 841-851.
[http://dx.doi.org/10.1080/21655979.2020.1797282] [PMID: 32718271]
[2]
Gudlavalleti, A.G.; Babu, G.R.; van Schayck, O.C.P.; Schaper, N.C.; Lewis, M.G.; Murthy, G.V.S. Evaluation of competence training for the minimally trained health worker in type 2 diabetes. Medicine, 2020, 99(44), e22959.
[http://dx.doi.org/10.1097/MD.0000000000022959] [PMID: 33126364]
[3]
Al-Geffari, M. Comparison of different screening tests for diagnosis of diabetic peripheral neuropathy in Primary Health Care setting. Int. J. Health Sci., 2012, 6(2), 127-134.
[http://dx.doi.org/10.12816/0005988] [PMID: 23580893]
[4]
Zhou, X.; Qu, H.; Lu, S.; Wang, B. Correlation between plasma fibrinogen level and nerve conduction velocity in patients with diabetic peripheral neuropathy. Chin. Mod. Med. J., 2018, 28(38), 109-114.
[5]
Chen, G.; He, Y. Research progress of human fibrinogen. Gansu Med., 2017, 36(9), 721-725.
[6]
Lee, S.; Lee, M.Y.; Nam, J.S.; Kang, S.; Park, J.S.; Shin, S.; Ahn, C.W.; Kim, K.R. Hemorheological approach for early detection of chronic kidney disease and diabetic nephropathy in Type 2 Diabetes. Diabetes Technol. Ther., 2015, 17(11), 808-815.
[http://dx.doi.org/10.1089/dia.2014.0295] [PMID: 26214546]
[7]
Garrido-Castells, X.; Becerro-de-Bengoa-Vallejo, R.; Calvo-Lobo, C.; Losa-Iglesias, M.E.; Palomo-López, P.; Navarro-Flores, E.; López-López, D. Effectiveness of leukocyte and platelet-rich fibrin versus nitrofurazone on nail post-surgery bleeding and wound cicatrization period reductions: A randomized single blinded clinical trial. J. Clin. Med., 2019, 8(10), 1552.
[http://dx.doi.org/10.3390/jcm8101552] [PMID: 31569623]
[8]
Backeström, A.; Papadopoulos, K.; Eriksson, S.; Olsson, T.; Andersson, M.; Blennow, K.; Zetterberg, H.; Nyberg, L.; Rolandsson, O. Acute hyperglycaemia leads to altered frontal lobe brain activity and reduced working memory in type 2 diabetes. PLoS One, 2021, 16(3), e0247753.
[http://dx.doi.org/10.1371/journal.pone.0247753] [PMID: 33739980]
[9]
Wang, Y.; Wang, P.; Chen, F.; Lulu, M.; Huang, S.; Liu, Z. Potential synaptic plasticity‐based Shenzhiling oral liquid for a SAD Mouse Model. Brain Behav., 2019, 9(9), e01385.
[http://dx.doi.org/10.1002/brb3.1385] [PMID: 31429527]
[10]
Kong, S.; Ruan, J.; Zhang, K.; Hu, B.; Cheng, Y.; Zhang, Y.; Yang, S.; Li, K. Kill two birds with one stone: Making multi-transgenic pre-diabetes mouse models through insulin resistance and pancreatic apoptosis pathogenesis. PeerJ, 2018, 6, e4542.
[http://dx.doi.org/10.7717/peerj.4542] [PMID: 29682407]
[11]
MacKenzie, N.E.; Kowalchuk, C.; Agarwal, S.M.; Costa-Dookhan, K.A.; Caravaggio, F.; Gerretsen, P.; Chintoh, A.; Remington, G.J.; Taylor, V.H.; Müeller, D.J.; Graff-Guerrero, A.; Hahn, M.K. Antipsychotics, metabolic adverse effects, and cognitive function in schizophrenia. Front. Psychiatry, 2018, 9, 622.
[http://dx.doi.org/10.3389/fpsyt.2018.00622] [PMID: 30568606]
[12]
Kamal, A.; Ramakers, G.M.J.; Gispen, W.H.; Biessels, G.J.; Al Ansari, A. Hyperinsulinemia in rats causes impairment of spatial memory and learning with defects in hippocampal synaptic plasticity by involvement of postsynaptic mechanisms. Exp. Brain Res., 2013, 226(1), 45-51.
[http://dx.doi.org/10.1007/s00221-013-3409-4] [PMID: 23371746]
[13]
Wang, X.; Xu, B. Establishment of animal model of type 2 diabetic peripheral neuropathy and analysis of detection indicators. J Chin. Acad. Med. Sci., 2020, 42(5), 658-666.
[14]
Yin, J.; Zhang, M.; Yang, H. Establishment of peripheral neuropathy model in type 2 diabetic rats and detection of related indicators. International Journal of Laboratory Medicine, 2013, 34(1), 1-2.
[15]
Babaya, N.; Ueda, H.; Noso, S.; Hiromine, Y.; Itoi-Babaya, M.; Kobayashi, M.; Fujisawa, T.; Ikegami, H. Verification that mouse chromosome 14 is responsible for susceptibility to streptozotocin in NSY mice. Int. J. Endocrinol., 2018, 2018, 1-7.
[http://dx.doi.org/10.1155/2018/7654979] [PMID: 30584426]
[16]
Sullivan, K.A.; Hayes, J.M.; Wiggin, T.D.; Backus, C.; Su Oh, S.; Lentz, S.I.; Brosius, F., III; Feldman, E.L. Mouse models of diabetic neuropathy. Neurobiol. Dis., 2007, 28(3), 276-285.
[http://dx.doi.org/10.1016/j.nbd.2007.07.022] [PMID: 17804249]
[17]
Bradbury, A.M.; Rafi, M.A.; Bagel, J.H.; Brisson, B.K.; Marshall, M.S.; Pesayco Salvador, J.; Jiang, X.; Swain, G.P.; Prociuk, M.L. ODonnell, P.A.; Fitzgerald, C.; Ory, D.S.; Bongarzone, E.R.; Shelton, G.D.; Wenger, D.A.; Vite, C.H. AAVrh10 gene therapy ameliorates central and peripheral nervous system disease in canine globoid cell leukodystrophy (Krabbe Disease). Hum. Gene Ther., 2018, 29(7), 785-801.
[http://dx.doi.org/10.1089/hum.2017.151] [PMID: 29316812]
[18]
Qu, X.; Guo, R.; Zhang, Z.; Ma, L.; Wu, X.; Luo, M.; Dong, F.; Yao, R. bFGF protects pre-oligodendrocytes from oxygen/glucose deprivation injury to ameliorate demyelination. Cell. Mol. Neurobiol., 2015, 35(7), 913-920.
[http://dx.doi.org/10.1007/s10571-015-0186-6] [PMID: 25833395]
[19]
Zhang, X.S.; Zhang, X.; Zhou, M.L.; Zhou, X.M.; Li, N.; Li, W.; Cong, Z.X.; Sun, Q.; Zhuang, Z.; Wang, C.X.; Shi, J.X. Amelioration of oxidative stress and protection against early brain injury by astaxanthin after experimental subarachnoid hemorrhage. J. Neurosurg., 2014, 121(1), 42-54.
[http://dx.doi.org/10.3171/2014.2.JNS13730] [PMID: 24724856]
[20]
Wang, S.; Zheng, Y.; Li, J.; Yu, Y.; Zhang, W.; Song, M.; Liu, Z.; Min, Z.; Hu, H.; Jing, Y.; He, X.; Sun, L.; Ma, L.; Esteban, C.R.; Chan, P.; Qiao, J.; Zhou, Q.; Izpisua Belmonte, J.C.; Qu, J.; Tang, F.; Liu, G.H. Single-Cell transcriptomic atlas of primate ovarian aging. Cell, 2020, 180(3), 585-600.e19.
[http://dx.doi.org/10.1016/j.cell.2020.01.009] [PMID: 32004457]
[21]
Zhang, S.; Li, J.; Nong, X.; Zhan, Y.; Xu, J.; Zhao, D.; Ma, C.; Wang, Y.; Li, Y.; Li, Z.; Li, J. Artesunate combined with metformin ameliorate on diabetes-induced xerostomia by mitigating superior salivatory nucleus and salivary glands injury in Type 2 Diabetic rats via the PI3K/AKT pathway. Front. Pharmacol., 2021, 12, 774674.
[http://dx.doi.org/10.3389/fphar.2021.774674] [PMID: 34987398]
[22]
Li, H.; Fang, Q.; Nie, Q.; Hu, J.; Yang, C.; Huang, T.; Li, H.; Nie, S. Hypoglycemic and hypolipidemic mechanism of tea polysaccharides on Type 2 Diabetic rats via gut microbiota and metabolism alteration. J. Agric. Food Chem., 2020, 68(37), 10015-10028.
[http://dx.doi.org/10.1021/acs.jafc.0c01968] [PMID: 32811143]
[23]
Roy Chowdhury, S.K.; Smith, D.R.; Saleh, A.; Schapansky, J.; Marquez, A.; Gomes, S.; Akude, E.; Morrow, D.; Calcutt, N.A.; Fernyhough, P. Impaired adenosine monophosphate-activated protein kinase signalling in dorsal root ganglia neurons is linked to mitochondrial dysfunction and peripheral neuropathy in diabetes. Brain, 2012, 135(6), 1751-1766.
[http://dx.doi.org/10.1093/brain/aws097] [PMID: 22561641]
[24]
Li, R.; Wang, B.; Wu, C.; Li, D.; Wu, Y.; Ye, L.; Ye, L.; Chen, X.; Li, P.; Yuan, Y.; Zhang, H.; Xie, L.; Li, X.; Xiao, J.; Wang, J. Acidic fibroblast growth factor attenuates type 2 diabetes-induced demyelination via suppressing oxidative stress damage. Cell Death Dis., 2021, 12(1), 107.
[http://dx.doi.org/10.1038/s41419-021-03407-2] [PMID: 33479232]
[25]
Kanekiyo, K.; Inamori, K.; Kitazume, S.; Sato, K.; Maeda, J.; Higuchi, M.; Kizuka, Y.; Korekane, H.; Matsuo, I.; Honke, K.; Taniguchi, N. Loss of branched O-mannosyl glycans in astrocytes accelerates remyelination. J. Neurosci., 2013, 33(24), 10037-10047.
[http://dx.doi.org/10.1523/JNEUROSCI.3137-12.2013] [PMID: 23761899]
[26]
La Starza, S.; Ferraldeschi, M.; Buscarinu, M.C.; Romano, S.; Fornasiero, A.; Mechelli, R.; Umeton, R.; Ristori, G.; Salvetti, M. Genome-Wide multiple sclerosis association data and coagulation. Front. Neurol., 2019, 10, 95.
[http://dx.doi.org/10.3389/fneur.2019.00095] [PMID: 30837932]
[27]
Ramaglia, V.; Sheikh-Mohamed, S.; Legg, K.; Park, C.; Rojas, O.L.; Zandee, S.; Fu, F.; Ornatsky, O.; Swanson, E.C.; Pitt, D.; Prat, A.; McKee, T.D.; Gommerman, J.L. Multiplexed imaging of immune cells in staged multiple sclerosis lesions by mass cytometry. eLife, 2019, 8, e48051.
[http://dx.doi.org/10.7554/eLife.48051] [PMID: 31368890]
[28]
Szaba, F.M.; Smiley, S.T. Roles for thrombin and fibrin(ogen) in cytokine/chemokine production and macrophage adhesion in vivo. Blood, 2002, 99(3), 1053-1059.
[http://dx.doi.org/10.1182/blood.V99.3.1053] [PMID: 11807012]
[29]
Adams, R.A.; Bauer, J.; Flick, M.J.; Sikorski, S.L.; Nuriel, T.; Lassmann, H.; Degen, J.L.; Akassoglou, K. The fibrin-derived γ377-395 peptide inhibits microglia activation and suppresses relapsing paralysis in central nervous system autoimmune disease. J. Exp. Med., 2007, 204(3), 571-582.
[http://dx.doi.org/10.1084/jem.20061931] [PMID: 17339406]
[30]
Demir, S.A.; Timur, Z.K.; Ateş, N.; Martínez, L.A.; Seyrantepe, V. GM2 ganglioside accumulation causes neuroinflammation and behavioral alterations in a mouse model of early onset Tay-Sachs disease. J. Neuroinflammation, 2020, 17(1), 277.
[http://dx.doi.org/10.1186/s12974-020-01947-6] [PMID: 32951593]
[31]
Schachtrup, C.; Ryu, J.K.; Helmrick, M.J.; Vagena, E.; Galanakis, D.K.; Degen, J.L.; Margolis, R.U.; Akassoglou, K. Fibrinogen triggers astrocyte scar formation by promoting the availability of active TGF-beta after vascular damage. J. Neurosci., 2010, 30(17), 5843-5854.
[http://dx.doi.org/10.1523/JNEUROSCI.0137-10.2010] [PMID: 20427645]
[32]
Akassoglou, K.; Yu, W.M.; Akpinar, P.; Strickland, S. Fibrin inhibits peripheral nerve remyelination by regulating Schwann cell differentiation. Neuron, 2002, 33(6), 861-875.
[http://dx.doi.org/10.1016/S0896-6273(02)00617-7] [PMID: 11906694]
[33]
Shen, D.; Ma, N.; Yang, Y.; Liu, X.; Qin, Z.; Li, S.; Jiao, Z.; Kong, X.; Li, J. UPLC-Q-TOF/MS-Based plasma metabolomics to evaluate the effects of aspirin eugenol ester on blood stasis in rats. Molecules, 2019, 24(13), 2380.
[http://dx.doi.org/10.3390/molecules24132380] [PMID: 31252591]
[34]
Aleman, M. M.; Walton, B. L.; Byrnes, J. R.; Wolberg, A. S. Fibrinogen and red blood cells in venous thrombosis. Thromb Res., 2014, 133(0 1), Suppl 1, S38-40.
[http://dx.doi.org/10.1016/j.thromres.2014.03.017]
[35]
Simón-Pérez, E.; Simón-Pérez, C.; Alonso-Peña, D.; Pontón-Cortina, A.; Chicharro-Luna, E.; Martínez-Nova, A.; Navarro-Flores, E. Stiffness degree of ankle range of motion in diabetic patients with atypical amputation. Rev. Assoc. Med. Bras., 2022, 66(2), 216-221.

© 2024 Bentham Science Publishers | Privacy Policy