Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Editorial

Recent Advances and Future Challenges in Drug Discovery for Leishmaniasis Based on Natural Products

Author(s): Joao Henrique Ghilardi Lago* and Luiz Felipe Domingues Passero

Volume 27, Issue 5, 2023

Published on: 06 June, 2023

Page: [379 - 383] Pages: 5

DOI: 10.2174/1385272827666230430003735

Next »
[1]
Votýpka, J.; d’Avila-Levy, C.M.; Grellier, P.; Maslov, D.A.; Lukeš, J.; Yurchenko, V. New approaches to systematics of trypanosomatidae: Criteria for taxonomic (Re)description. Trends Parasitol., 2015, 31(10), 460-469.
[http://dx.doi.org/10.1016/j.pt.2015.06.015] [PMID: 26433249]
[2]
Barrett, M.P.; Croft, S.L. Management of trypanosomiasis and leishmaniasis. Br. Med. Bull., 2012, 104(1), 175-196.
[http://dx.doi.org/10.1093/bmb/lds031] [PMID: 23137768]
[3]
Carvalho, A.K.; Silveira, F.T.; Passero, L.F.D.; Gomes, C.M.C.; Corbett, C.E.P.; Laurenti, M.D. Leishmania (V.) braziliensis and L. (L.) amazonensis promote differential expression of dendritic cells and cellular immune response in murine model. Parasite Immunol., 2012, 34(8-9), 395-403.
[http://dx.doi.org/10.1111/j.1365-3024.2012.01370.x] [PMID: 22587683]
[4]
Solana, J.C.; Chicharro, C.; García, E.; Aguado, B.; Moreno, J.; Requena, J.M. Assembly of a large collection of maxicircle sequences and their usefulness for Leishmania taxonomy and strain typing. Genes, 2022, 13(6), 1070.
[http://dx.doi.org/10.3390/genes13061070] [PMID: 35741832]
[5]
Silveira, F.T.; Lainson, R.; Corbett, C.E.P. Clinical and immunopathological spectrum of American cutaneous leishmaniasis with special reference to the disease in Amazonian Brazil: A review. Mem. Inst. Oswaldo Cruz, 2004, 99(3), 239-251.
[http://dx.doi.org/10.1590/S0074-02762004000300001] [PMID: 15273794]
[6]
Scarpini, S.; Dondi, A.; Totaro, C.; Biagi, C.; Melchionda, F.; Zama, D.; Pierantoni, L.; Gennari, M.; Campagna, C.; Prete, A.; Lanari, M. Visceral leishmaniasis: Epidemiology, diagnosis, and treatment regimens in different geographical areas with a focus on pediatrics. Microorganisms, 2022, 10(10), 1887.
[http://dx.doi.org/10.3390/microorganisms10101887] [PMID: 36296164]
[7]
Passero, L.F.D.; Cruz, L.A.; Santos-Gomes, G.; Rodrigues, E.; Laurenti, M.D.; Lago, J.H.G. Conventional versus natural alternative treatments for leishmaniasis: A review. Curr. Top. Med. Chem., 2018, 18(15), 1275-1286.
[http://dx.doi.org/10.2174/1568026618666181002114448] [PMID: 30277153]
[8]
Jesus, J.A.; Fragoso da Silva, T.N.; Yamamoto, E.S.; G., Lago J.H.; Dalastra, L.M.; Passero, L.F.D. Ursolic acid potentializes conventional therapy in experimental leishmaniasis. Pathogens, 2020, 9(10), 855.
[http://dx.doi.org/10.3390/pathogens9100855] [PMID: 33092305]
[9]
Salari, S.; Bamorovat, M.; Sharifi, I.; Almani, P.G.N. Global distribution of treatment resistance gene markers for leishmaniasis. J. Clin. Lab. Anal., 2022, 36(8), e24599.
[http://dx.doi.org/10.1002/jcla.24599] [PMID: 35808933]
[10]
Roatt, B.M.; de Oliveira Cardoso, J.M.; De Brito, R.C.F.; Coura-Vital, W.; de Oliveira, A.R.D.; Reis, A.B. Recent advances and new strategies on leishmaniasis treatment. Appl. Microbiol. Biotechnol., 2020, 104(21), 8965-8977.
[http://dx.doi.org/10.1007/s00253-020-10856-w] [PMID: 32875362]
[11]
Lanza, J.S.; Pomel, S.; Loiseau, P.M.; Frézard, F. Recent advances in amphotericin B delivery strategies for the treatment of leishmaniases. Expert Opin. Drug Deliv., 2019, 16(10), 1063-1079.
[http://dx.doi.org/10.1080/17425247.2019.1659243] [PMID: 31433678]
[12]
Pradhan, S.; Schwartz, R.A.; Patil, A.; Grabbe, S.; Goldust, M. Treatment options for leishmaniasis. Clin. Exp. Dermatol., 2022, 47(3), 516-521.
[http://dx.doi.org/10.1111/ced.14919] [PMID: 34480806]
[13]
Gervazoni, L.F.O.; Barcellos, G.B.; Ferreira-Paes, T.; Almeida-Amaral, E.E. Use of natural products in leishmaniasis chemotherapy: An overview. Front Chem., 2020, 8, 579891.
[http://dx.doi.org/10.3389/fchem.2020.579891] [PMID: 33330368]
[14]
Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov., 2021, 20(3), 200-216.
[http://dx.doi.org/10.1038/s41573-020-00114-z] [PMID: 33510482]
[15]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod., 2020, 83(3), 770-803.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01285] [PMID: 32162523]
[16]
Schmidt, T.J.; Khalid, S.A.; Romanha, A.J.; Alves, T.M.; Biavatti, M.W.; Brun, R.; Da Costa, F.B.; de Castro, S.L.; Ferreira, V.F.; de Lacerda, M.V.; Lago, J.H.; Leon, L.L.; Lopes, N.P. das Neves Amorim, R.C.; Niehues, M.; Ogungbe, I.V.; Pohlit, A.M.; Scotti, M.T.; Setzer, W.N.; de N C Soeiro, M.; Steindel, M.; Tempone, A.G. The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases - part I. Curr. Med. Chem., 2012, 19(14), 2128-2175.
[http://dx.doi.org/10.2174/092986712800229023] [PMID: 22414103]
[17]
Schmidt, T.J.; Khalid, S.A.; Romanha, A.J.; Alves, T.M.; Biavatti, M.W.; Brun, R.; Da Costa, F.B.; de Castro, S.L.; Ferreira, V.F.; de Lacerda, M.V.; Lago, J.H.; Leon, L.L.; Lopes, N.P. das Neves Amorim, R.C.; Niehues, M.; Ogungbe, I.V.; Pohlit, A.M.; Scotti, M.T.; Setzer, W.N.; de N C Soeiro, M.; Steindel, M.; Tempone, A.G. The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases - part II. Curr. Med. Chem., 2012, 19(14), 2176-2228.
[http://dx.doi.org/10.2174/092986712800229087] [PMID: 22414104]
[18]
Cortes, S.; Bruno de Sousa, C.; Morais, T.; Lago, J.; Campino, L. Potential of the natural products against leishmaniasis in Old World - a review of in-vitro studies. Pathog. Glob. Health, 2020, 114(4), 170-182.
[http://dx.doi.org/10.1080/20477724.2020.1754655] [PMID: 32339079]
[19]
Oryan, A. Plant-derived compounds in treatment of leishmaniasis. Majallah-i Tahqiqat-i Dampizishki-i Iran, 2015, 16(1), 1-19.
[PMID: 27175144]
[20]
Passero, L.F.D.; Brunelli, E.S.; Sauini, T.; Amorim Pavani, T.F.; Jesus, J.A.; Rodrigues, E. The potential of traditional knowledge to develop effective medicines for the treatment of leishmaniasis. Front. Pharmacol., 2021, 12, 690432.
[http://dx.doi.org/10.3389/fphar.2021.690432] [PMID: 34220515]
[21]
Hassan, A.A.; Khalid, H.E.; Abdalla, A.H.; Mukhtar, M.M.; Osman, W.J.; Efferth, T. Antileishmanial activities of medicinal herbs and phytochemicals in vitro and in vivo: An update for the years 2015 to 2021. Molecules, 2022, 27(21), 7579.
[http://dx.doi.org/10.3390/molecules27217579] [PMID: 36364404]
[22]
Koko, W.S.; Al Nasr, I.S.; Khan, T.A.; Schobert, R.; Biersack, B. An update on natural antileishmanial treatment options from plants, fungi and algae. Chem. Biodivers., 2022, 19(1), e202100542.
[http://dx.doi.org/10.1002/cbdv.202100542] [PMID: 34822224]
[23]
Soto-Sánchez, J. Bioactivity of natural polyphenols as antiparasitic agents and their biochemical targets. Mini Rev. Med. Chem., 2022, 22(20), 2661-2677.
[http://dx.doi.org/10.2174/1389557522666220404090429] [PMID: 35379147]
[24]
Lage, O.; Ramos, M.; Calisto, R.; Almeida, E.; Vasconcelos, V.; Vicente, F. Current screening methodologies in drug discovery for selected human diseases. Mar. Drugs, 2018, 16(8), 279.
[http://dx.doi.org/10.3390/md16080279] [PMID: 30110923]
[25]
Ferreira, M.E.; Rojas de Arias, A.; Yaluff, G.; de Bilbao, N.V.; Nakayama, H.; Torres, S.; Schinini, A.; Guy, I.; Heinzen, H.; Fournet, A. Antileishmanial activity of furoquinolines and coumarins from Helietta apiculata. Phytomedicine, 2010, 17(5), 375-378.
[http://dx.doi.org/10.1016/j.phymed.2009.09.009] [PMID: 19879121]
[26]
Montrieux, E.; Perera, W.H.; García, M.; Maes, L.; Cos, P.; Monzote, L. In vitro and in vivo activity of major constituents from Pluchea carolinensis against Leishmania amazonensis. Parasitol. Res., 2014, 113(8), 2925-2932.
[http://dx.doi.org/10.1007/s00436-014-3954-1] [PMID: 24906989]
[27]
Lezama-Dávila, C.M.; McChesney, J.D.; Bastos, J.K.; Miranda, M.A.; Tiossi, R.F.; da Costa, J.C.; Bentley, M.V.; Gaitan-Puch, S.E.; Isaac-Márquez, A.P. A new antileishmanial preparation of combined solamargine and solasonine heals cutaneous leishmaniasis through different immunochemical pathways. Antimicrob. Agents Chemother., 2016, 60(5), 2732-2738.
[http://dx.doi.org/10.1128/AAC.02804-15] [PMID: 26883711]
[28]
Ghorbani, M.; Farhoudi, R. Leishmaniasis in humans: Drug or vaccine therapy? Drug Des. Devel. Ther., 2017, 12, 25-40.
[http://dx.doi.org/10.2147/DDDT.S146521] [PMID: 29317800]
[29]
Vieira-Araújo, F.M.; Macedo, R.F.C.; Pinto, V.Í.G.; Pereira, M.F.N.; de Freitas, C.J.C.; de Morais, M.S. Sinergism between alkaloids piperine and capsaicin with meglumine antimoniate against Leishmania infantum. Exp. Parasitol., 2018, 188, 79-82.
[http://dx.doi.org/10.1016/j.exppara.2018.04.001] [PMID: 29625099]
[30]
Monteiro, L.M.; Löbenberg, R.; Fotaki, N.; de Araújo, G.L.B.; Cotrim, P.C.; Bou-Chacra, N. Co-delivery of buparvaquone and polymyxin B in a nanostructured lipid carrier for leishmaniasis treatment. J. Glob. Antimicrob. Resist., 2019, 18, 279-283.
[http://dx.doi.org/10.1016/j.jgar.2019.06.006] [PMID: 31202979]
[31]
Das, S.; Ghosh, S.; De, A.K.; Bera, T. Oral delivery of ursolic acid-loaded nanostructured lipid carrier coated with chitosan oligosaccharides: Development, characterization, in vitro and in vivo assessment for the therapy of leishmaniasis. Int. J. Biol. Macromol., 2017, 102, 996-1008.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.04.098] [PMID: 28465178]
[32]
Ray, L.; Karthik, R.; Srivastava, V.; Singh, S.P.; Pant, A.B.; Goyal, N.; Gupta, K.C. Efficient antileishmanial activity of amphotericin B and piperine entrapped in enteric coated guar gum nanoparticles. Drug Deliv. Transl. Res., 2021, 11(1), 118-130.
[http://dx.doi.org/10.1007/s13346-020-00712-9] [PMID: 32016707]

© 2024 Bentham Science Publishers | Privacy Policy